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Motivating applications

• Matrix completion: (Candés, Recht ’09)

min
x∈IRm×n

∑
(i,j)∈Ω

(xij − x̄ij )
2 subject to Φ(x) ≤ σ,

where x comes from observation, Ω is the index set of observed
entries, σ > 0, and typical choices of Φ : IRm×n → IR+ are:
? Φ(x) = ‖x‖∗, the nuclear norm of x ;
? Φ(x) = ‖x‖∗ − µ‖x‖F , µ ∈ (0, 1).

• Adversarial (`p) attack: (Chen, Zhou, Yi, Gu ’20)

min
x∈IRn

h(x̄ + x) subject to ‖x‖p
p ≤ σ,

where x̄ is a correctly classified data point, h is smooth, σ > 0,
‖x‖p

p =
∑n

i=1 |xi |p, p > 0.

• Project onto the constraint sets?
. .
∠
_ Alternatives?
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Frank-Wolfe method
Let X be a finite dimensional Hilbert space. Consider

min
x∈X

f (x) subject to x ∈ D,

where f ∈ C1(X) and D is compact convex such that for any v ∈ X, a

u ∈ Arg min
x∈D

〈v , x〉

can be easily obtained.

Examples of D:
• D = {x ∈ IRn : ‖x‖p ≤ σ} for p ∈ [1,∞] and some σ > 0.

Then u can be computed by considering the dual norm.
• D = {x ∈ IRm×n : ‖x‖∗ ≤ σ} for some σ > 0. Then u = −σr1sT

1 ,
where r1 and s1 are the left and right unit singular vectors,
respectively, corresponding to the largest singular value of −v ,
obtained via Lanzcos method.
In contrast, projecting onto D requires full SVD of v .
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Frank-Wolfe method cont.
Frank-Wolfe method for convex D: (Frank, Wolfe ’56)

Step 1. Choose x0 ∈ D. Pick any c ∈ (0,1) and set k = 0.
Step 2. Compute uk ∈ Arg minx∈D〈∇f (xk ), x〉.
Step 3. If 〈∇f (xk ),uk − xk 〉 = 0, terminate.
Step 4. Choose αk ∈ (0,1] using backtracking to satisfy

f (xk + αk (uk − xk )) ≤ f (xk ) + cαk 〈∇f (xk ),uk − xk 〉.

Step 5. Set xk+1 = xk + αk (uk − xk ), k ← k + 1. Go to Step 2.

Remarks:
• The algorithm either terminates finitely at a stationary point x k̄ , or

every accumulation point of {xk} is stationary.
• When f is convex with Lipschitz gradient (modulus Lf ), one can

choose in Step 4

αk =
2

k + 2
or αk = min

{
1,−〈∇f (xk ),uk − xk 〉

Lf‖uk − xk‖2

}
.
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Extending FW?

Frank-Wolfe method for convex D (recapped):
Step 1. Choose x0 ∈ D and set k = 0.
Step 2. Compute uk ∈ Arg minx∈D〈∇f (xk ), x〉.
Step 3. If 〈∇f (xk ),uk − xk 〉 = 0, terminate.
Step 4. Choose αk ∈ (0,1] to satisfy Armijo rule via backtracking.
Step 5. Set xk+1 = xk + αk (uk − xk ), k ← k + 1. Go to Step 2.

What if D is nonconvex?
• Is uk ∈ Arg minx∈D〈∇f (xk ), x〉 in Step 2 easy to solve? (Oracle issue)

• Is the termination in Step 3 correct? (Termination issue)

• The convex combination in Step 5 can make xk+1 /∈ D! (Feas. issue)
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Existing work
D as subset of sphere: (Luss, Teboulle ’13, Balashov, Polyak, Tremba ’20)

• Arises naturally from sparse PCA.
• Assumes concavity of f , so that

f (xk + (uk − xk )) ≤ f (xk ) + 〈∇f (xk ),uk − xk 〉.

i.e., αk ≡ 1, which means xk+1 = uk ∈ D.

• Note that ∇f being Lipschitz with modulus Lf implies concavity of
x 7→ f (x)− Lf‖x‖2.
∴ Concavity can be assumed WLOG on spheres, but can be
restrictive for other D.

Our approach:
• Restrict to a different but broader class of nonconvex D.
• Construct new linear oracles.
• Study optimality conditions.
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Generalized LO
Consider compact sets of the form

D := {x ∈ X : P1(x)− P2(x) ≤ σ},

where P1 : X→ IR and P2 : X→ IR are convex, σ > 0.

Definition: For P1, P2 and σ as above, y ∈ D and ξ ∈ ∂P2(y), define

D(y , ξ) := {x ∈ X : P1(x)− P2(y)− 〈ξ, x − y〉 ≤ σ}.

For any v ∈ X, a linear-optimization oracle for (v , y , ξ) (denoted by
LO(v , y , ξ)) computes a solution of

min
x∈X
〈v , x〉 subject to x ∈ D(y , ξ).

Remarks:
• It holds that y ∈ D(y , ξ) ⊆ D. Thus, LO(v , y , ξ) is well-defined.
• For any output u of LO(v , y , ξ) and any α ∈ (0,1), we have

αy + (1− α)u ∈ D(y , ξ)
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Generalized LO: Example
Matrix completion: Let X = IRm×n, P1(x) := ‖x‖∗, P2(x) := µ‖x‖F
for some µ ∈ (0,1) and σ > 0 so that D := {x : ‖x‖∗ − µ‖x‖F ≤ σ}.
Now, for any v ∈ IRm×n, y ∈ D and ξ ∈ ∂P2(y), the LO(v , y , ξ) solves

min
x∈IRm×n

〈v , x〉 subject to ‖x‖∗ − 〈ξ, x〉 ≤ σ,

where ‖ξ‖F ≤ µ < 1.

Theorem 1. (Zeng, Zhang, Li, P. ’21)

Suppose that v 6= 0. Let z =
[
zT

1 zT
2

]T with z1 ∈ IRm and z2 ∈ IRn be
a generalized eigenvector of the smallest generalized eigenvalue of
the matrix pencil (ṽ , I − ξ̃), and satisfy zT (I − ξ̃)z = 1, where

ṽ =

[
0 v

vT 0

]
and ξ̃ =

[
0 ξ
ξT 0

]
.

Then u∗ = 2σz1zT
2 is an output of LO(v , y , ξ).

Remark: Since I − ξ̃ � 0, the above z can be computed using eigifp.
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CQ & Optimality conditions
Consider

min
x∈X

f (x) subject to D := {x ∈ X : P1(x)− P2(x) ≤ σ}, (♠)

where
• D is compact, P1, P2 : X→ IR are convex, σ > 0; and

• the generalized Slater’s condition holds: For any y ∈ D and
ξ ∈ ∂P2(y), there exists x̂ ∈ X such that

P1(x̂)− P2(y)− 〈ξ, x̂ − y〉 < σ.

Note: The generalized Slater’s condition holds for the D in the matrix completion problem.

Theorem 2. (Zeng, Zhang, Li, P. ’21)
Assume the generalized Slater’s condition. Then TFAE:
• x∗ is a stationary point of (♠), i.e., ∃λ ≥ 0 such that

0 ∈ ∇f (x∗) + λ∂P1(x∗)− λ∂P2(x∗).

• ∃ ξ∗ ∈ ∂P2(x∗) and u∗ ∈ Arg minx∈D(x∗,ξ∗)〈∇f (x∗), x〉 such that

〈∇f (x∗),u∗ − x∗〉 = 0.
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ξ ∈ ∂P2(y), there exists x̂ ∈ X such that

P1(x̂)− P2(y)− 〈ξ, x̂ − y〉 < σ.

Note: The generalized Slater’s condition holds for the D in the matrix completion problem.

Theorem 2. (Zeng, Zhang, Li, P. ’21)
Assume the generalized Slater’s condition. Then TFAE:
• x∗ is a stationary point of (♠), i.e., ∃λ ≥ 0 such that

0 ∈ ∇f (x∗) + λ∂P1(x∗)− λ∂P2(x∗).

• ∃ ξ∗ ∈ ∂P2(x∗) and u∗ ∈ Arg minx∈D(x∗,ξ∗)〈∇f (x∗), x〉 such that

〈∇f (x∗),u∗ − x∗〉 = 0.
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Nonconvex FW method
FWncvx: Frank-Wolfe method for (♠)

Step 1. Choose x0 ∈ D and set k = 0.
Step 2. Pick any ξk ∈ ∂P2(xk ) and compute

uk ∈ Arg min
x∈D(xk ,ξk )

〈∇f (xk ), x〉.

Step 3. If 〈∇f (xk ),uk − xk 〉 = 0, terminate.
Step 4. Choose αk ∈ (0,1] to satisfy Armijo rule via backtracking.
Step 5. Set xk+1 = xk + αk (uk − xk ), k ← k + 1. Go to Step 2.

Theorem 3. (Zeng, Zhang, Li, P. ’21)
Assume the generalized Slater’s condition. Then:

• Finite termination returns a stationary point x k̄ .
• Line-search loop in Step 4 terminates finitely.
• {xk} ⊆ D and each accumulation point is stationary.
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Convergence proof idea

Define a gap function G : D → IR by

G(x) = inf
ξ∈∂P2(x)

max
y∈D(x,ξ)

〈∇f (x), x − y〉.

Theorem 4. (Zeng, Zhang, Li, P. ’21)
Assume the generalized Slater’s condition. Then G(x) ≥ 0 for all
x ∈ D. Moreover, if {wk} ⊆ D is such that

G(wk )→ 0 and wk → x∗

for some x∗, then x∗ ∈ D and is a stationary point of (♠).

Convergence of FWncvx: Let {xk} be generated by FWncvx.
• Direct computation shows that 0 ≤ G(xk ) ≤ −〈∇f (xk ),uk − xk 〉.
• Backtracking + Armijo rule give 〈∇f (xk ),uk − xk 〉 → 0.
• Convergence follows from these and Theorem 4.
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Numerical experiments
• Matrix completion:

min
x∈IRm×n

∑
(i,j)∈Ω

(xij − x̄ij )
2 subject to ‖x‖∗ − 0.5‖x‖F ≤ σ,

where
? Ω collects the indices of observed entries;
? x comes from observation, σ > 0;
? ‖x‖∗ and ‖x‖F are resp. nuclear and Fröbenius norm.

• Efficient implementation: Following (Freund, Grigas, Mazumder ’17)
? Maintain (Rk ,Σk ,T k ) (reduced SVD of xk ), never form xk .
? Compute xk

ij for (i , j) ∈ Ω only to obtain the gradient.
? Compute uk using eigifp, which has rank ONE.
? KEY: Since

xk+1 = (1− αk )xk + αk uk ,

one can obtain (Rk+1,Σk+1,T k+1) using SVD rank-one update.

In contrast, GP will need to form xk , and perform full SVD (for projection).
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• Efficient implementation: Following (Freund, Grigas, Mazumder ’17)
? Maintain (Rk ,Σk ,T k ) (reduced SVD of xk ), never form xk .
? Compute xk

ij for (i , j) ∈ Ω only to obtain the gradient.
? Compute uk using eigifp, which has rank ONE.
? KEY: Since

xk+1 = (1− αk )xk + αk uk ,

one can obtain (Rk+1,Σk+1,T k+1) using SVD rank-one update.

In contrast, GP will need to form xk , and perform full SVD (for projection).

11 / 13



Numerical experiments
• Matrix completion:

min
x∈IRm×n

∑
(i,j)∈Ω

(xij − x̄ij )
2 subject to ‖x‖∗ − 0.5‖x‖F ≤ σ,

where
? Ω collects the indices of observed entries;
? x comes from observation, σ > 0;
? ‖x‖∗ and ‖x‖F are resp. nuclear and Fröbenius norm.
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Numerical experiments cont.

• MovieLens10M: n = 10677 movie ratings from m = 69878 users.
• Randomly choose 70% as training dataset (i.e.,Ω). Training and

testing errors as the algorithm progresses are shown below.
• For simplicity, we used the same Ω and the same σ (determined

via CV on nuc. norm model) as in (Freund, Grigas, Mazumder ’17).

Matlab 2017b on a 64-bit PC with an Intel(R) Core(TM) i5-7200 CPU (2.50GHz) and 8GB of RAM
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Conclusion and future work

Conclusion:
• Extended FW method for special nonconvex sets: Level set of

DC functions satisfying some regularity conditions.
• Introduced generalized LO: Efficient implementation for

applications such as matrix completion.
• Established subsequential convergence.

Reference:
• L. Zeng, Y. Zhang, G. Li and T. K. Pong.

Frank-Wolfe type methods for nonconvex inequality-constrained
problems.
Preprint. Available at https://arxiv.org/abs/2112.14404.
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