Error bound for conic feasibility problems: case studies on the exponential cone

Ting Kei Pong
Department of Applied Mathematics
The Hong Kong Polytechnic University
Hong Kong

Distinguished Seminar in Optimization \& Data University of Washington

June 2023
(Joint work with Scott B. Lindstrom and Bruno F. Lourenço)

Conic programming problem

Conic program: Let \mathcal{K} be a closed convex cone in a Euclidean space $\mathcal{E}, c \in \mathcal{E}, \mathcal{A}$ be a linear map on \mathcal{E} and $b \in \operatorname{Range}(\mathcal{A})$.

$$
\underset{x}{\operatorname{Minimize}}\langle c, x\rangle \text { subject to } \mathcal{A} x=b, x \in \mathcal{K} .
$$

Conic programming problem

Conic program: Let \mathcal{K} be a closed convex cone in a Euclidean space $\mathcal{E}, c \in \mathcal{E}, \mathcal{A}$ be a linear map on \mathcal{E} and $b \in \operatorname{Range}(\mathcal{A})$.

$$
\underset{x}{\operatorname{Minimize}}\langle c, x\rangle \text { subject to } \mathcal{A} x=b, \quad x \in \mathcal{K} .
$$

Examples of cones:

- $\mathbb{R}_{+}^{n}, \mathcal{S}_{+}^{n}$, second-order cones.

Conic programming problem

Conic program: Let \mathcal{K} be a closed convex cone in a Euclidean space $\mathcal{E}, c \in \mathcal{E}, \mathcal{A}$ be a linear map on \mathcal{E} and $b \in \operatorname{Range}(\mathcal{A})$.

Minimize $\langle c, x\rangle$ subject to $\mathcal{A} x=b, \quad x \in \mathcal{K}$.

Examples of cones:

- $\mathbb{R}_{+}^{n}, \mathcal{S}_{+}^{n}$, second-order cones.
- Exponential cone $K_{\text {exp }}$:

$$
K_{\text {exp }}:=\left\{x \in \mathbb{R}^{3} \mid x_{2}>0, x_{3} \geq x_{2} e^{x_{1} / x_{2}}\right\} \cup\left\{\left(x_{1}, 0, x_{3}\right) \mid x_{1} \leq 0, x_{3} \geq 0\right\} .
$$

\star Epigraph of (the closure of) the perspective function of $z \mapsto \exp (z)$.

* Recent addition to MOSEK and other conic solvers.
* Has applications in relative entropy optimization (Chandrasekaran, Shah '17).

Conic programming problem

Conic program: Let \mathcal{K} be a closed convex cone in a Euclidean space $\mathcal{E}, c \in \mathcal{E}, \mathcal{A}$ be a linear map on \mathcal{E} and $b \in \operatorname{Range}(\mathcal{A})$.

Minimize $\langle c, x\rangle$ subject to $\mathcal{A} x=b, \quad x \in \mathcal{K}$.

Examples of cones:

- $\mathbb{R}_{+}^{n}, \mathcal{S}_{+}^{n}$, second-order cones.
- Exponential cone $K_{\exp }$:

$$
K_{\text {exp }}:=\left\{x \in \mathbb{R}^{3} \mid x_{2}>0, x_{3} \geq x_{2} e^{x_{1} / x_{2}}\right\} \cup\left\{\left(x_{1}, 0, x_{3}\right) \mid x_{1} \leq 0, x_{3} \geq 0\right\} .
$$

\star Epigraph of (the closure of) the perspective function of $z \mapsto \exp (z)$.

* Recent addition to MOSEK and other conic solvers.
* Has applications in relative entropy optimization (Chandrasekaran, Shah '17).
- Product cones of the above...

Why "exotic" cones?

- Richer modeling power. For example,

$$
t \geq \ln \left(\sum_{i=1}^{n} e^{x_{i}}\right) \Longleftrightarrow \sum_{i=1}^{n} z_{i} \leq 1 \text { and }\left(z_{i}, 1, x_{i}-t\right) \in K_{\exp } \forall i .
$$

See https://docs.mosek.com/cheatsheets/conic.pdf.

Why "exotic" cones?

- Richer modeling power. For example,

$$
t \geq \ln \left(\sum_{i=1}^{n} e^{x_{i}}\right) \Longleftrightarrow \sum_{i=1}^{n} z_{i} \leq 1 \text { and }\left(z_{i}, 1, x_{i}-t\right) \in K_{\exp } \forall i
$$

See https://docs.mosek.com/cheatsheets/conic.pdf.

- These and many other exotic cones have nice logarithmically homogeneous self-concordant barrier functions for the adaptation of existing IPM routines. (Coey, Kapelevich, Vielma '21)

Conic feasibility problem

Conic feasibility problem: Let \mathcal{K} be a closed convex cone, \mathcal{L} be a subspace of a Euclidean space \mathcal{E} and $a \in \mathcal{E}$.

Find $\quad x \in \mathcal{K} \cap(\mathcal{L}+a)$.

Conic feasibility problem

Conic feasibility problem: Let \mathcal{K} be a closed convex cone, \mathcal{L} be a subspace of a Euclidean space \mathcal{E} and $a \in \mathcal{E}$.

Find $\quad x \in \mathcal{K} \cap(\mathcal{L}+a)$.

- Focus on the feasible case, i.e., $\mathcal{K} \cap(\mathcal{L}+a) \neq \emptyset$.
- Arises from optimality conditions of conic programs.

Conic feasibility problem

Conic feasibility problem: Let \mathcal{K} be a closed convex cone, \mathcal{L} be a subspace of a Euclidean space \mathcal{E} and $a \in \mathcal{E}$.

$$
\text { Find } \quad x \in \mathcal{K} \cap(\mathcal{L}+a) \text {. }
$$

- Focus on the feasible case, i.e., $\mathcal{K} \cap(\mathcal{L}+a) \neq \emptyset$.
- Arises from optimality conditions of conic programs.

For instance, consider
$\underset{x}{\operatorname{Minimize}}\langle c, x\rangle$
Subject to $\mathcal{A} x=b, \quad x \in \mathcal{K}$.
Assume the solution set S is nonempty and denote the optimal value by v.

Conic feasibility problem

Conic feasibility problem: Let \mathcal{K} be a closed convex cone, \mathcal{L} be a subspace of a Euclidean space \mathcal{E} and $a \in \mathcal{E}$.

Find $\quad x \in \mathcal{K} \cap(\mathcal{L}+a)$.

- Focus on the feasible case, i.e., $\mathcal{K} \cap(\mathcal{L}+a) \neq \emptyset$.
- Arises from optimality conditions of conic programs.

For instance, consider
$\underset{x}{\operatorname{Minimize}}\langle c, x\rangle$
Subject to $\mathcal{A} x=b, \quad x \in \mathcal{K}$.
Assume the solution set S is nonempty and denote the optimal value by v.

Then

$$
S=\mathcal{K} \cap(\mathcal{L}+a),
$$

where

$$
\mathcal{L}+a=\{x: \mathcal{A} x=b,\langle c, x\rangle=v\}
$$

Conic feasibility problem

Conic feasibility problem: Let \mathcal{K} be a closed convex cone, \mathcal{L} be a subspace of a Euclidean space \mathcal{E} and $a \in \mathcal{E}$.

Find $\quad x \in \mathcal{K} \cap(\mathcal{L}+a)$.

- Focus on the feasible case, i.e., $\mathcal{K} \cap(\mathcal{L}+a) \neq \emptyset$.
- Arises from optimality conditions of conic programs.

For instance, consider
$\underset{x}{\operatorname{Minimize}}\langle c, x\rangle$
Subject to $\mathcal{A} x=b, \quad x \in \mathcal{K}$.
Assume the solution set S is nonempty and denote the optimal value by v.

Then

$$
S=\mathcal{K} \cap(\mathcal{L}+a),
$$

where

$$
\mathcal{L}+a=\{x: \mathcal{A} x=b,\langle c, x\rangle=v\} .
$$

In this case, typically, $(\mathcal{L}+a) \cap$ ri $\mathcal{K}=\emptyset$.

Conic feasibility problem cont.

Conic feasibility problem: Let \mathcal{K} be a closed convex cone, \mathcal{L} be a subspace of a Euclidean space \mathcal{E} and $a \in \mathcal{E}$.

Find $\quad x \in \mathcal{K} \cap(\mathcal{L}+a)$.
When is a feasibility problem approximately solved?

Conic feasibility problem cont.

Conic feasibility problem: Let \mathcal{K} be a closed convex cone, \mathcal{L} be a subspace of a Euclidean space \mathcal{E} and $a \in \mathcal{E}$.

Find $\quad x \in \mathcal{K} \cap(\mathcal{L}+a)$.
When is a feasibility problem approximately solved?

- $\mathrm{d}(x, \mathcal{K} \cap(\mathcal{L}+a))$ is a measure on how "feasible" x is.

Conic feasibility problem cont.

Conic feasibility problem: Let \mathcal{K} be a closed convex cone, \mathcal{L} be a subspace of a Euclidean space \mathcal{E} and $a \in \mathcal{E}$.

Find $\quad x \in \mathcal{K} \cap(\mathcal{L}+a)$.
When is a feasibility problem approximately solved?

- $\mathrm{d}(x, \mathcal{K} \cap(\mathcal{L}+a))$ is a measure on how "feasible" x is. Hard to compute!
- Typically, $\mathrm{d}(x, \mathcal{K})$ and $\mathrm{d}(x, \mathcal{L}+a)$ are relatively easier to compute.
- Is x "a good soln." when $\max \{\mathrm{d}(x, \mathcal{K}), \mathrm{d}(x, \mathcal{L}+a)\}$ is small?

Conic feasibility problem cont.

Conic feasibility problem: Let \mathcal{K} be a closed convex cone, \mathcal{L} be a subspace of a Euclidean space \mathcal{E} and $a \in \mathcal{E}$.

Find $\quad x \in \mathcal{K} \cap(\mathcal{L}+a)$.
When is a feasibility problem approximately solved?

- $\mathrm{d}(x, \mathcal{K} \cap(\mathcal{L}+a))$ is a measure on how "feasible" x is. Hard to compute!
- Typically, $\mathrm{d}(x, \mathcal{K})$ and $\mathrm{d}(x, \mathcal{L}+a)$ are relatively easier to compute.
- Is x "a good soln." when $\max \{\mathrm{d}(x, \mathcal{K}), \mathrm{d}(x, \mathcal{L}+a)\}$ is small?

Key: Compare the orders of magnitude of $\mathrm{d}(x, \mathcal{K} \cap(\mathcal{L}+a))$ and $\max \{\mathrm{d}(x, \mathcal{K}), \mathrm{d}(x, \mathcal{L}+a)\}$.

Conic feasibility problem cont.

Conic feasibility problem: Let \mathcal{K} be a closed convex cone, \mathcal{L} be a subspace of a Euclidean space \mathcal{E} and $a \in \mathcal{E}$.

Find $\quad x \in \mathcal{K} \cap(\mathcal{L}+a)$.
When is a feasibility problem approximately solved?

- $\mathrm{d}(x, \mathcal{K} \cap(\mathcal{L}+a))$ is a measure on how "feasible" x is. Hard to compute!
- Typically, $\mathrm{d}(x, \mathcal{K})$ and $\mathrm{d}(x, \mathcal{L}+a)$ are relatively easier to compute.
- Is x "a good soln." when $\max \{\mathrm{d}(x, \mathcal{K}), \mathrm{d}(x, \mathcal{L}+a)\}$ is small?

Key: Compare the orders of magnitude of $\mathrm{d}(x, \mathcal{K} \cap(\mathcal{L}+a))$ and $\max \{\mathrm{d}(x, \mathcal{K}), \mathrm{d}(x, \mathcal{L}+a)\}$.

Note: Typically, $(\mathcal{L}+a) \cap$ ri $\mathcal{K}=\emptyset$.

Error bounds

Definition: Let $\theta \in(0,1]$. We say that $\{\mathcal{K}, \mathcal{L}+a\}$ satisfies a (uniform) Hölderian error bound with exponent θ if for every bounded set B, there exists $c_{B}>0$ such that

$$
\mathrm{d}(x, \mathcal{K} \cap(\mathcal{L}+a)) \leq c_{B}(\max \{\mathrm{~d}(x, \mathcal{K}), \mathrm{d}(x, \mathcal{L}+a)\})^{\theta} \quad \forall x \in B .
$$

If $\theta=1$, we say that a Lipschitz error bound holds.

Error bounds

Definition: Let $\theta \in(0,1]$. We say that $\{\mathcal{K}, \mathcal{L}+a\}$ satisfies a (uniform) Hölderian error bound with exponent θ if for every bounded set B, there exists $c_{B}>0$ such that

$$
\mathrm{d}(x, \mathcal{K} \cap(\mathcal{L}+a)) \leq c_{B}(\max \{\mathrm{~d}(x, \mathcal{K}), \mathrm{d}(x, \mathcal{L}+a)\})^{\theta} \quad \forall x \in B .
$$

If $\theta=1$, we say that a Lipschitz error bound holds.
Examples:

- If \mathcal{K} is polyhedral, Lipschitz error bound holds. (Hoffman '57)
- If $(\mathcal{L}+a) \cap$ ri $\mathcal{K} \neq \emptyset$, Lipschitz error bound holds. (Bauschke, Borwein '96)

Error bounds

Definition: Let $\theta \in(0,1]$. We say that $\{\mathcal{K}, \mathcal{L}+a\}$ satisfies a (uniform) Hölderian error bound with exponent θ if for every bounded set B, there exists $c_{B}>0$ such that

$$
\mathrm{d}(x, \mathcal{K} \cap(\mathcal{L}+a)) \leq c_{B}(\max \{\mathrm{~d}(x, \mathcal{K}), \mathrm{d}(x, \mathcal{L}+a)\})^{\theta} \quad \forall x \in B .
$$

If $\theta=1$, we say that a Lipschitz error bound holds.
Examples:

- If \mathcal{K} is polyhedral, Lipschitz error bound holds. (Hoffman '57)
- If $(\mathcal{L}+a) \cap$ ri $\mathcal{K} \neq \emptyset$, Lipschitz error bound holds. (Bauschke, Borwein '96)
- If $\mathcal{K}=\mathcal{S}_{+}^{n}$, Hölderian error bound with exponent $2^{-(\ell-1)}$ holds (Sturm '00); here ℓ has to do with facial reduction. (Borwein, Wolkowicz '81)

Faces and facial reduction

Definition: A sub-cone $\mathcal{F} \subseteq \mathcal{K}$ is called

- a face if $x, y \in \mathcal{K}$ and $x+y \in \mathcal{F}$ implies $x, y \in \mathcal{F}$;
- an exposed face if $\exists z \in \mathcal{K}^{*}$ such that $\mathcal{F}=\mathcal{K} \cap\{z\}^{\perp}$.

Note: Recall that $\mathcal{K}^{*}:=\{x \mid\langle x, y\rangle \geq 0 \forall y \in \mathcal{K}\}$.

Faces and facial reduction

Definition: A sub-cone $\mathcal{F} \subseteq \mathcal{K}$ is called

- a face if $x, y \in \mathcal{K}$ and $x+y \in \mathcal{F}$ implies $x, y \in \mathcal{F}$;
- an exposed face if $\exists z \in \mathcal{K}^{*}$ such that $\mathcal{F}=\mathcal{K} \cap\{z\}^{\perp}$.

Note: Recall that $\mathcal{K}^{*}:=\{x \mid\langle x, y\rangle \geq 0 \forall y \in \mathcal{K}\}$.
Theorem 1. (Borwein, Wolkowicz '81, Lourenço, Muramatsu, Tsuchiya '18) Suppose $\mathcal{K} \cap(\mathcal{L}+a) \neq \emptyset$. Then there exists a chain of faces

$$
\mathcal{F}_{\ell} \subsetneq \cdots \subsetneq \mathcal{F}_{1}=\mathcal{K}
$$

and vectors $\left\{z_{1}, \ldots, z_{\ell-1}\right\}$ satisfying

- For all $i \in\{1, \ldots, \ell-1\}$,

$$
z_{i} \in \mathcal{F}_{i}^{*} \cap \mathcal{L}^{\perp} \cap\{a\}^{\perp} \quad \text { and } \quad \mathcal{F}_{i+1}=\mathcal{F}_{i} \cap\left\{z_{i}\right\}^{\perp}
$$

- $\mathcal{F}_{\ell} \cap(\mathcal{L}+a)=\mathcal{K} \cap(\mathcal{L}+a)$ and $\left\{\mathcal{F}_{\ell}, \mathcal{L}+a\right\}$ satisfies a Lipschitz error bound.

Facial reduction: Illustration

The picture is provided by B. F. Lourenço.

Sturm's error bounds and facial reduction

Key observation: (Sturm '00, Lourenço '21)
Let $\mathcal{F} \unlhd \mathcal{S}_{+}^{n}$ and $z \in \mathcal{F}^{*}$. Then $\exists \kappa>0$ such that for all x,

$$
\mathrm{d}\left(x, \mathcal{F} \cap\{z\}^{\perp}\right) \leq \kappa \epsilon+\kappa \sqrt{\epsilon\|x\|},
$$

where $\epsilon=\max \left\{\mathrm{d}(x, \mathcal{F}), \mathrm{d}\left(x,\{z\}^{\perp}\right)\right\}$.

Sturm's error bounds and facial reduction

Key observation: (Sturm '00, Lourenço '21)
Let $\mathcal{F} \unlhd \mathcal{S}_{+}^{n}$ and $z \in \mathcal{F}^{*}$. Then $\exists \kappa>0$ such that for all x,

$$
\mathrm{d}\left(x, \mathcal{F} \cap\{z\}^{\perp}\right) \leq \kappa \epsilon+\kappa \sqrt{\epsilon\|x\|},
$$

where $\epsilon=\max \left\{\mathrm{d}(x, \mathcal{F}), \mathrm{d}\left(x,\{z\}^{\perp}\right)\right\}$.
Error bound for $\left\{\mathcal{S}_{+}^{n},(\mathcal{L}+a)\right\}$ follows from induction: For $x \in B$,

$$
\mathrm{d}(x, \mathcal{K} \cap(\mathcal{L}+a))=\mathrm{d}\left(x, \mathcal{F}_{\ell} \cap(\mathcal{L}+a)\right) \leq c_{\ell} \max \left\{\mathrm{d}\left(x, \mathcal{F}_{\ell}\right), \mathrm{d}(x, \mathcal{L}+a)\right\}
$$

Sturm's error bounds and facial reduction

Key observation: (Sturm '00, Lourenço '21)
Let $\mathcal{F} \unlhd \mathcal{S}_{+}^{n}$ and $z \in \mathcal{F}^{*}$. Then $\exists \kappa>0$ such that for all x,

$$
\mathrm{d}\left(x, \mathcal{F} \cap\{z\}^{\perp}\right) \leq \kappa \epsilon+\kappa \sqrt{\epsilon\|x\|},
$$

where $\epsilon=\max \left\{\mathrm{d}(x, \mathcal{F}), \mathrm{d}\left(x,\{z\}^{\perp}\right)\right\}$.
Error bound for $\left\{\mathcal{S}_{+}^{n},(\mathcal{L}+a)\right\}$ follows from induction: For $x \in B$,

$$
\begin{aligned}
& \mathrm{d}(x, \mathcal{K} \cap(\mathcal{L}+a))=\mathrm{d}\left(x, \mathcal{F}_{\ell} \cap(\mathcal{L}+a)\right) \leq c_{\ell} \max \left\{\mathrm{d}\left(x, \mathcal{F}_{\ell}\right), \mathrm{d}(x, \mathcal{L}+a)\right\} \\
& \leq c_{\ell}\left[\mathrm{d}(x, \mathcal{L}+a)+\mathrm{d}\left(x, \mathcal{F}_{\ell-1} \cap\left\{z_{\ell-1}\right\}^{\perp}\right)\right] \\
& \leq c_{\ell}\left[\mathrm{d}(x, \mathcal{L}+a)+c_{\ell-1}\left(\max \left\{\mathrm{~d}\left(x, \mathcal{F}_{\ell-1}\right), \mathrm{d}\left(x,\left\{z_{\ell-1}\right\}^{\perp}\right)\right\}\right.\right. \\
& \left.\left.\quad+\sqrt{\max \left\{\mathrm{d}\left(x, \mathcal{F}_{\ell-1}\right), \mathrm{d}\left(x,\left\{z_{\ell-1}\right\}^{\perp}\right)\right\}\|x\|}\right)\right]
\end{aligned}
$$

Sturm's error bounds and facial reduction

Key observation: (Sturm '00, Lourenço '21)
Let $\mathcal{F} \unlhd \mathcal{S}_{+}^{n}$ and $z \in \mathcal{F}^{*}$. Then $\exists \kappa>0$ such that for all x,

$$
\mathrm{d}\left(x, \mathcal{F} \cap\{z\}^{\perp}\right) \leq \kappa \epsilon+\kappa \sqrt{\epsilon\|x\|},
$$

where $\epsilon=\max \left\{\mathrm{d}(x, \mathcal{F}), \mathrm{d}\left(x,\{z\}^{\perp}\right)\right\}$.
Error bound for $\left\{\mathcal{S}_{+}^{n},(\mathcal{L}+a)\right\}$ follows from induction: For $x \in B$,

$$
\begin{aligned}
& \mathrm{d}(x, \mathcal{K} \cap(\mathcal{L}+a))=\mathrm{d}\left(x, \mathcal{F}_{\ell} \cap(\mathcal{L}+a)\right) \leq c_{\ell} \max \left\{\mathrm{d}\left(x, \mathcal{F}_{\ell}\right), \mathrm{d}(x, \mathcal{L}+a)\right\} \\
& \leq c_{\ell}\left[\mathrm{d}(x, \mathcal{L}+a)+\mathrm{d}\left(x, \mathcal{F}_{\ell-1} \cap\left\{z_{\ell-1}\right\}^{\perp}\right)\right] \\
& \leq c_{\ell}\left[\mathrm{d}(x, \mathcal{L}+a)+c_{\ell-1}\left(\max \left\{\mathrm{~d}\left(x, \mathcal{F}_{\ell-1}\right), \mathrm{d}\left(x,\left\{z_{\ell-1}\right\}^{\perp}\right)\right\}\right.\right. \\
& \left.\left.\quad+\sqrt{\max \left\{\mathrm{d}\left(x, \mathcal{F}_{\ell-1}\right), \mathrm{d}\left(x,\left\{z_{\ell-1}\right\}^{\perp}\right)\right\}\|x\|}\right)\right] \\
& = \\
& O\left(\left[\max \left\{\mathrm{~d}\left(x, \mathcal{F}_{\ell-1}\right), \mathrm{d}(x, \mathcal{L}+a)\right\}\right]^{\frac{1}{2}}\right)
\end{aligned}
$$

Sturm's error bounds and facial reduction

Key observation: (Sturm '00, Lourenço '21)
Let $\mathcal{F} \unlhd \mathcal{S}_{+}^{n}$ and $z \in \mathcal{F}^{*}$. Then $\exists \kappa>0$ such that for all x,

$$
\mathrm{d}\left(x, \mathcal{F} \cap\{z\}^{\perp}\right) \leq \kappa \epsilon+\kappa \sqrt{\epsilon\|x\|},
$$

where $\epsilon=\max \left\{\mathrm{d}(x, \mathcal{F}), \mathrm{d}\left(x,\{z\}^{\perp}\right)\right\}$.
Error bound for $\left\{\mathcal{S}_{+}^{n},(\mathcal{L}+a)\right\}$ follows from induction: For $x \in B$,

$$
\begin{aligned}
& \mathrm{d}(x, \mathcal{K} \cap(\mathcal{L}+a))=\mathrm{d}\left(x, \mathcal{F}_{\ell} \cap(\mathcal{L}+a)\right) \leq c_{\ell} \max \left\{\mathrm{d}\left(x, \mathcal{F}_{\ell}\right), \mathrm{d}(x, \mathcal{L}+a)\right\} \\
& \leq c_{\ell}\left[\mathrm{d}(x, \mathcal{L}+a)+\mathrm{d}\left(x, \mathcal{F}_{\ell-1} \cap\left\{z_{\ell-1}\right\}^{\perp}\right)\right] \\
& \leq c_{\ell}\left[\mathrm{d}(x, \mathcal{L}+a)+c_{\ell-1}\left(\max \left\{\mathrm{~d}\left(x, \mathcal{F}_{\ell-1}\right), \mathrm{d}\left(x,\left\{z_{\ell-1}\right\}^{\perp}\right)\right\}\right.\right. \\
& \left.\left.\quad+\sqrt{\max \left\{\mathrm{d}\left(x, \mathcal{F}_{\ell-1}\right), \mathrm{d}\left(x,\left\{z_{\ell-1}\right\}^{\perp}\right)\right\}\|x\|}\right)\right] \\
& =O\left(\left[\max \left\{\mathrm{~d}\left(x, \mathcal{F}_{\ell-1}\right), \mathrm{d}(x, \mathcal{L}+a)\right\}\right]^{\frac{1}{2}}\right)=O\left([\max \{\mathrm{~d}(x, \mathcal{K}), \mathrm{d}(x, \mathcal{L}+a)\}]_{]^{\frac{1}{\ell-1}}}\right) .
\end{aligned}
$$

Facial residual function

Definition: (Lourenço '21, Lindstrom, Lourenço, P. '22)
Let $\mathcal{F} \unlhd \mathcal{K}$ and $z \in \mathcal{F}^{*}$. Suppose $\psi: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfies

- ψ is nondecreasing in each argument and $\psi(0, t)=0 \forall t \in \mathbb{R}_{+}$;
- It holds that

$$
\mathrm{d}\left(x, \mathcal{F} \cap\{z\}^{\perp}\right) \leq \psi\left(\max \left\{\mathrm{d}(x, \mathcal{F}), \mathrm{d}\left(x,\{z\}^{\perp}\right)\right\},\|x\|\right) \quad \forall x \in \operatorname{span} \mathcal{F} .
$$

Then ψ is called a 1 -step facial residual function for \mathcal{F} and z.

Facial residual function

Definition: (Lourenço '21, Lindstrom, Lourenço, P. '22)
Let $\mathcal{F} \unlhd \mathcal{K}$ and $z \in \mathcal{F}^{*}$. Suppose $\psi: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfies

- ψ is nondecreasing in each argument and $\psi(0, t)=0 \forall t \in \mathbb{R}_{+}$;
- It holds that

$$
\mathrm{d}\left(x, \mathcal{F} \cap\{z\}^{\perp}\right) \leq \psi\left(\max \left\{\mathrm{d}(x, \mathcal{F}), \mathrm{d}\left(x,\{z\}^{\perp}\right)\right\},\|x\|\right) \quad \forall x \in \operatorname{span} \mathcal{F} .
$$

Then ψ is called a 1 -step facial residual function for \mathcal{F} and z.

Remarks:

- For $\mathcal{K}=\mathcal{S}_{+}^{n}$, we have $\psi(s, t)=\kappa \cdot(s+\sqrt{s t})$ for some $\kappa>0$.
- Induction arguments show that error bound can be derived given the face chain from facial reduction and by composing 1 -step facial residual functions. (Lindstrom, Lourenço, P. '22)

Facial residual function

Definition: (Lourenço '21, Lindstrom, Lourenço, P. '22)
Let $\mathcal{F} \unlhd \mathcal{K}$ and $z \in \mathcal{F}^{*}$. Suppose $\psi: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfies

- ψ is nondecreasing in each argument and $\psi(0, t)=0 \forall t \in \mathbb{R}_{+}$;
- It holds that

$$
\mathrm{d}\left(x, \mathcal{F} \cap\{z\}^{\perp}\right) \leq \psi\left(\max \left\{\mathrm{d}(x, \mathcal{F}), \mathrm{d}\left(x,\{z\}^{\perp}\right)\right\},\|x\|\right) \quad \forall x \in \operatorname{span} \mathcal{F} .
$$

Then ψ is called a 1 -step facial residual function for \mathcal{F} and z.

Remarks:

- For $\mathcal{K}=\mathcal{S}_{+}^{n}$, we have $\psi(s, t)=\kappa \cdot(s+\sqrt{s t})$ for some $\kappa>0$.
- Induction arguments show that error bound can be derived given the face chain from facial reduction and by composing 1-step facial residual functions. (Lindstrom, Lourenço, P. '22)
- Two key ingredients: For each nonpolyhedral \mathcal{F},
* Identify all its exposed faces.
* Obtain all 1-step facial residual functions: Depends on \mathcal{F} and z.

Exponential cone

$$
K_{\exp }=\left\{x \in \mathbb{R}^{3} \mid x_{2}>0, x_{3} \geq x_{2} e^{x_{1} / x_{2}}\right\} \cup\left\{\left(x_{1}, 0, x_{3}\right) \mid x_{1} \leq 0, x_{3} \geq 0\right\} .
$$

Faces of exponential cone

$$
K_{\text {exp }}=\left\{x \in \mathbb{R}^{3} \mid x_{2}>0, x_{3} \geq x_{2} e^{x_{1} / x_{2}}\right\} \cup\left\{\left(x_{1}, 0, x_{3}\right) \mid x_{1} \leq 0, x_{3} \geq 0\right\} .
$$

Nontrivial exposed faces: (Lindstrom, Lourenço, P. '22)

- (Infinitely many) 1-D face exposed by a unique (up to scaling)

$$
z \in \partial K_{\text {exp }}^{*} \backslash\{0\}:
$$

$$
\mathcal{F}_{\beta}:=\left\{\left(t(1-\beta), t, t e^{1-\beta} \mid t \geq 0\right\} \text { for each } \beta \in \mathbb{R} .\right.
$$

- An exceptional extreme ray exposed by any

$$
\begin{aligned}
& z \in\left\{\left(0, z_{2}, z_{3}\right) \mid z_{2}\right.\left.\geq 0, z_{3}>0\right\} \subset \partial K_{\text {exp }}^{*} \backslash\{0\}: \\
& \mathcal{F}_{\infty}:=\left\{\left(x_{1}, 0,0\right) \mid x_{1} \leq 0\right\} .
\end{aligned}
$$

- A unique 2-D face exposed uniquely (up to scaling) by ($0,1,0$):

$$
\mathcal{F}_{-\infty}:=\left\{\left(x_{1}, 0, x_{3}\right) \mid x_{1} \leq 0, x_{3} \geq 0\right\} .
$$

1-FRFs for exponential cone

1-FRFs: (Lindstrom, Lourenço, P. '22) Assume $\|z\|=1$.

- (Infinitely many) 1-D face exposed by a unique $z \in \partial K_{\text {exp }}^{*} \backslash\{0\}$:

$$
\psi(s, t)=s+\kappa(t) \cdot \sqrt{2 s}
$$

where $\kappa(\cdot)$ is nonnegative nondecreasing.

- The exceptional extreme ray \mathcal{F}_{∞} :

$$
\psi(s, t)= \begin{cases}s+2 \kappa(t) s & \text { if } z_{2}>0 \\ s+\kappa(t) \cdot \mathfrak{g}_{\infty}(2 s) & \text { if } z_{2}=0\end{cases}
$$

where $\kappa(\cdot)$ is nonnegative nondecreasing, and $\mathfrak{g}_{\infty}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is

$$
\mathfrak{g}_{\infty}(s):= \begin{cases}0 & \text { if } s=0 \\ -(\ln s)^{-1} & \text { if } 0<s \leq e^{-2} \\ 0.25\left(1+e^{2} s\right) & \text { else }\end{cases}
$$

1-FRFs for exponential cone cont.

1 -FRFs cont.: Assume $\|z\|=1$.

- The unique 2-D face exposed uniquely by $(0,1,0)$:

$$
\psi(s, t)=s+\kappa(t) \cdot \mathfrak{g}_{-\infty}(2 s)
$$

where $\kappa(\cdot)$ is nonnegative nondecreasing, $\mathfrak{g}_{-\infty}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is

$$
\mathfrak{g}_{-\infty}(s):= \begin{cases}0 & \text { if } s=0 \\ -s \ln s & \text { if } 0<s \leq e^{-2} \\ s+e^{-2} & \text { else }\end{cases}
$$

1-FRFs for exponential cone cont.

1 -FRFs cont.: Assume $\|z\|=1$.

- The unique 2-D face exposed uniquely by $(0,1,0)$:

$$
\psi(s, t)=s+\kappa(t) \cdot \mathfrak{g}_{-\infty}(2 s)
$$

where $\kappa(\cdot)$ is nonnegative nondecreasing, $\mathfrak{g}_{-\infty}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is

$$
\mathfrak{g}_{-\infty}(s):= \begin{cases}0 & \text { if } s=0 \\ -s \ln s & \text { if } 0<s \leq e^{-2} \\ s+e^{-2} & \text { else }\end{cases}
$$

Remark:

- As all nontrivial exposed faces are polyhedral, $\ell \leq 2$. The final error bound has the same "order of magnitude" as the 1 -FRFs.
- As $s \downarrow 0:-(\ln s)^{-1} \rightarrow 0$ slower than s^{α} for any $\alpha \in(0,1]$; $-s \ln s \rightarrow 0$ faster than s^{α} for any $\alpha \in(0,1)$, but is slower than s.
- These 1 -FRFs are asymptotically the "best". (Lindstrom, Lourenço, P. '22)

Conclusion

Conclusion:

- Facial reduction and $\mathbb{1}$-FRFs are two key ingredients for deriving error bounds.
- Error bounds for $K_{\text {exp }}$ feasibility problem.

References:

- S. B. Lindstrom, B. F. Lourenço and T. K. Pong.

Error bounds, facial residual functions and applications to the exponential cone.
Math. Program. 200, 2023, pp. 229-278.
Thanks for coming! ¿

