Error bound for conic feasibility problems: case studies on the exponential cone

Ting Kei Pong
Department of Applied Mathematics
The Hong Kong Polytechnic University
Hong Kong

Distinguished Seminar in Optimization & Data University of Washington June 2023

(Joint work with Scott B. Lindstrom and Bruno F. Lourenço)

Conic program: Let \mathcal{K} be a closed convex cone in a Euclidean space \mathcal{E} , $c \in \mathcal{E}$, \mathcal{A} be a linear map on \mathcal{E} and $b \in \text{Range}(\mathcal{A})$.

 $\underset{x}{\mathsf{Minimize}}\ \langle c,x\rangle\ \ \mathsf{subject\ to}\ \ \mathcal{A}x=b,\ \ x\in\mathcal{K}.$

Conic program: Let \mathcal{K} be a closed convex cone in a Euclidean space \mathcal{E} , $c \in \mathcal{E}$, \mathcal{A} be a linear map on \mathcal{E} and $b \in \text{Range}(\mathcal{A})$.

$$\underset{x}{\mathsf{Minimize}}\ \langle c,x\rangle\ \ \mathsf{subject\ to}\ \ \mathcal{A}x=b,\ \ x\in\mathcal{K}.$$

Examples of cones:

• \mathbb{R}^n_+ , \mathcal{S}^n_+ , second-order cones.

Conic program: Let \mathcal{K} be a closed convex cone in a Euclidean space \mathcal{E} , $c \in \mathcal{E}$, \mathcal{A} be a linear map on \mathcal{E} and $b \in \text{Range}(\mathcal{A})$.

Minimize
$$\langle c, x \rangle$$
 subject to $Ax = b$, $x \in \mathcal{K}$.

Examples of cones:

- \mathbb{R}^n_+ , \mathcal{S}^n_+ , second-order cones.
- Exponential cone K_{exp}:

$$\mathcal{K}_{\text{exp}} := \{ x \in \mathbb{R}^3 \mid x_2 > 0, x_3 \geq x_2 e^{x_1/x_2} \} \cup \{ (x_1, 0, x_3) \mid x_1 \leq 0, x_3 \geq 0 \}.$$

- * Epigraph of (the closure of) the perspective function of $z \mapsto \exp(z)$.
- * Recent addition to MOSEK and other conic solvers.
- Has applications in relative entropy optimization (Chandrasekaran, Shah '17).

Conic program: Let \mathcal{K} be a closed convex cone in a Euclidean space \mathcal{E} , $c \in \mathcal{E}$, \mathcal{A} be a linear map on \mathcal{E} and $b \in \text{Range}(\mathcal{A})$.

$$\underset{x}{\mathsf{Minimize}} \ \langle c, x \rangle \ \ \mathsf{subject to} \ \ \mathcal{A}x = b, \ \ x \in \mathcal{K}.$$

Examples of cones:

- \mathbb{R}^n_+ , \mathcal{S}^n_+ , second-order cones.
- Exponential cone K_{exp}:

$$\textit{K}_{\text{exp}} := \{x \in \mathbb{R}^3 \mid \textit{x}_2 > 0, \textit{x}_3 \geq \textit{x}_2 e^{\textit{x}_1/\textit{x}_2}\} \cup \{(\textit{x}_1, 0, \textit{x}_3) \mid \textit{x}_1 \leq 0, \textit{x}_3 \geq 0\}.$$

- ★ Epigraph of (the closure of) the perspective function of $z \mapsto \exp(z)$.
- * Recent addition to MOSEK and other conic solvers.
- Has applications in relative entropy optimization (Chandrasekaran, Shah '17).
- Product cones of the above...

Why "exotic" cones?

• Richer modeling power. For example,

$$t \ge \ln \left(\sum_{i=1}^n e^{x_i}\right) \iff \sum_{i=1}^n z_i \le 1 \text{ and } (z_i, 1, x_i - t) \in \mathcal{K}_{\mathsf{exp}} \ \forall i.$$

See https://docs.mosek.com/cheatsheets/conic.pdf.

Why "exotic" cones?

Richer modeling power. For example,

$$t \ge \ln \left(\sum_{i=1}^n e^{x_i}\right) \iff \sum_{i=1}^n z_i \le 1 \text{ and } (z_i,1,x_i-t) \in \mathcal{K}_{\text{exp}} \ \forall i.$$

See https://docs.mosek.com/cheatsheets/conic.pdf.

 These and many other exotic cones have nice logarithmically homogeneous self-concordant barrier functions for the adaptation of existing IPM routines. (Coey, Kapelevich, Vielma '21)

Conic feasibility problem: Let \mathcal{K} be a closed convex cone, \mathcal{L} be a subspace of a Euclidean space \mathcal{E} and $a \in \mathcal{E}$.

Find
$$x \in \mathcal{K} \cap (\mathcal{L} + a)$$
.

Conic feasibility problem: Let \mathcal{K} be a closed convex cone, \mathcal{L} be a subspace of a Euclidean space \mathcal{E} and $a \in \mathcal{E}$.

Find
$$x \in \mathcal{K} \cap (\mathcal{L} + a)$$
.

- Focus on the feasible case, i.e., $\mathcal{K} \cap (\mathcal{L} + a) \neq \emptyset$.
- Arises from optimality conditions of conic programs.

Conic feasibility problem: Let \mathcal{K} be a closed convex cone, \mathcal{L} be a subspace of a Euclidean space \mathcal{E} and $a \in \mathcal{E}$.

Find
$$x \in \mathcal{K} \cap (\mathcal{L} + a)$$
.

- Focus on the feasible case, i.e., $\mathcal{K} \cap (\mathcal{L} + a) \neq \emptyset$.
- Arises from optimality conditions of conic programs.

For instance, consider

Minimize
$$\langle c, x \rangle$$

Subject to $Ax = b, x \in K$.

Assume the solution set S is nonempty and denote the optimal value by v.

Conic feasibility problem: Let $\mathcal K$ be a closed convex cone, $\mathcal L$ be a subspace of a Euclidean space $\mathcal E$ and $a \in \mathcal E$.

Find
$$x \in \mathcal{K} \cap (\mathcal{L} + a)$$
.

- Focus on the feasible case, i.e., $\mathcal{K} \cap (\mathcal{L} + a) \neq \emptyset$.
- Arises from optimality conditions of conic programs.

For instance, consider

Minimize
$$\langle c, x \rangle$$

Subject to
$$Ax = b$$
, $x \in \mathcal{K}$.

Assume the solution set S is nonempty and denote the optimal value by v.

Then

$$S = \mathcal{K} \cap (\mathcal{L} + a),$$

where

$$\mathcal{L}+a=\{x:\ \mathcal{A}x=b,\langle c,x\rangle=v\}.$$

Conic feasibility problem: Let \mathcal{K} be a closed convex cone, \mathcal{L} be a subspace of a Euclidean space \mathcal{E} and $a \in \mathcal{E}$.

Find
$$x \in \mathcal{K} \cap (\mathcal{L} + a)$$
.

- Focus on the feasible case, i.e., $\mathcal{K} \cap (\mathcal{L} + a) \neq \emptyset$.
- Arises from optimality conditions of conic programs.

For instance, consider

Minimize
$$\langle c, x \rangle$$

Subject to
$$Ax = b$$
, $x \in \mathcal{K}$.

Assume the solution set S is nonempty and denote the optimal value by v.

Then

$$S = \mathcal{K} \cap (\mathcal{L} + a),$$

where

$$\mathcal{L}+a=\{x: \mathcal{A}x=b, \langle c,x\rangle=v\}.$$

In this case, typically, $(\mathcal{L}+a)\cap \mathrm{ri}\,\mathcal{K}=\emptyset$.

Conic feasibility problem: Let \mathcal{K} be a closed convex cone, \mathcal{L} be a subspace of a Euclidean space \mathcal{E} and $a \in \mathcal{E}$.

Find
$$x \in \mathcal{K} \cap (\mathcal{L} + a)$$
.

When is a feasibility problem approximately solved?

Conic feasibility problem: Let \mathcal{K} be a closed convex cone, \mathcal{L} be a subspace of a Euclidean space \mathcal{E} and $a \in \mathcal{E}$.

Find
$$x \in \mathcal{K} \cap (\mathcal{L} + a)$$
.

When is a feasibility problem approximately solved?

• $d(x, K \cap (L + a))$ is a measure on how "feasible" x is.

Conic feasibility problem: Let \mathcal{K} be a closed convex cone, \mathcal{L} be a subspace of a Euclidean space \mathcal{E} and $a \in \mathcal{E}$.

Find
$$x \in \mathcal{K} \cap (\mathcal{L} + a)$$
.

When is a feasibility problem approximately solved?

- $d(x, \mathcal{K} \cap (\mathcal{L} + a))$ is a measure on how "feasible" x is. Hard to compute!
- Typically, $d(x, \mathcal{K})$ and $d(x, \mathcal{L} + a)$ are relatively easier to compute.
- Is x "a good soln." when $\max\{d(x,\mathcal{K}),d(x,\mathcal{L}+a)\}$ is small?

Conic feasibility problem: Let \mathcal{K} be a closed convex cone, \mathcal{L} be a subspace of a Euclidean space \mathcal{E} and $a \in \mathcal{E}$.

Find
$$x \in \mathcal{K} \cap (\mathcal{L} + a)$$
.

When is a feasibility problem approximately solved?

- $d(x, \mathcal{K} \cap (\mathcal{L} + a))$ is a measure on how "feasible" x is. Hard to compute!
- Typically, $d(x, \mathcal{K})$ and $d(x, \mathcal{L} + a)$ are relatively easier to compute.
- Is x "a good soln." when $\max\{d(x,\mathcal{K}),d(x,\mathcal{L}+a)\}$ is small?

Key: Compare the orders of magnitude of $d(x, \mathcal{K} \cap (\mathcal{L} + a))$ and $\max\{d(x, \mathcal{K}), d(x, \mathcal{L} + a)\}.$

Conic feasibility problem: Let \mathcal{K} be a closed convex cone, \mathcal{L} be a subspace of a Euclidean space \mathcal{E} and $a \in \mathcal{E}$.

Find
$$x \in \mathcal{K} \cap (\mathcal{L} + a)$$
.

When is a feasibility problem approximately solved?

- $d(x, \mathcal{K} \cap (\mathcal{L} + a))$ is a measure on how "feasible" x is. Hard to compute!
- Typically, $d(x, \mathcal{K})$ and $d(x, \mathcal{L} + a)$ are relatively easier to compute.
- Is x "a good soln." when $\max\{d(x,\mathcal{K}),d(x,\mathcal{L}+a)\}$ is small?

Key: Compare the orders of magnitude of $d(x, \mathcal{K} \cap (\mathcal{L} + a))$ and $\max\{d(x, \mathcal{K}), d(x, \mathcal{L} + a)\}.$

Note: Typically, $(\mathcal{L} + a) \cap \operatorname{ri} \mathcal{K} = \emptyset$.

Error bounds

Definition: Let $\theta \in (0,1]$. We say that $\{\mathcal{K}, \mathcal{L} + a\}$ satisfies a (uniform) Hölderian error bound with exponent θ if for every bounded set B, there exists $c_B > 0$ such that

$$d(x, \mathcal{K} \cap (\mathcal{L} + a)) \le c_B (\max\{d(x, \mathcal{K}), d(x, \mathcal{L} + a)\})^{\theta} \quad \forall x \in B.$$

If $\theta = 1$, we say that a Lipschitz error bound holds.

Error bounds

Definition: Let $\theta \in (0,1]$. We say that $\{\mathcal{K}, \mathcal{L} + a\}$ satisfies a (uniform) Hölderian error bound with exponent θ if for every bounded set B, there exists $c_B > 0$ such that

$$d(x, \mathcal{K} \cap (\mathcal{L} + a)) \leq c_B (\max\{d(x, \mathcal{K}), d(x, \mathcal{L} + a)\})^{\theta} \quad \forall x \in B.$$

If $\theta = 1$, we say that a Lipschitz error bound holds.

Examples:

- If $\mathcal K$ is polyhedral, Lipschitz error bound holds. (Hoffman '57)
- If $(\mathcal{L} + a) \cap ri \mathcal{K} \neq \emptyset$, Lipschitz error bound holds. (Bauschke, Borwein '96)

Error bounds

Definition: Let $\theta \in (0,1]$. We say that $\{\mathcal{K}, \mathcal{L} + a\}$ satisfies a (uniform) Hölderian error bound with exponent θ if for every bounded set B, there exists $c_B > 0$ such that

$$d(x, \mathcal{K} \cap (\mathcal{L} + a)) \le c_B (\max\{d(x, \mathcal{K}), d(x, \mathcal{L} + a)\})^{\theta} \quad \forall x \in B.$$

If $\theta = 1$, we say that a Lipschitz error bound holds.

Examples:

- If $\mathcal K$ is polyhedral, Lipschitz error bound holds. (Hoffman '57)
- If $(\mathcal{L} + a) \cap \operatorname{ri} \mathcal{K} \neq \emptyset$, Lipschitz error bound holds. (Bauschke, Borwein '96)
- If $K = S_+^n$, Hölderian error bound with exponent $2^{-(\ell-1)}$ holds (Sturm '00); here ℓ has to do with facial reduction. (Borwein, Wolkowicz '81)

Faces and facial reduction

Definition: A sub-cone $\mathcal{F} \subseteq \mathcal{K}$ is called

- a face if $x, y \in \mathcal{K}$ and $x + y \in \mathcal{F}$ implies $x, y \in \mathcal{F}$;
- an exposed face if $\exists z \in \mathcal{K}^*$ such that $\mathcal{F} = \mathcal{K} \cap \{z\}^{\perp}$.

Note: Recall that $\mathcal{K}^* := \{x \mid \langle x, y \rangle \geq 0 \ \forall y \in \mathcal{K}\}.$

Faces and facial reduction

Definition: A sub-cone $\mathcal{F} \subseteq \mathcal{K}$ is called

- a face if $x, y \in \mathcal{K}$ and $x + y \in \mathcal{F}$ implies $x, y \in \mathcal{F}$;
- an exposed face if $\exists z \in \mathcal{K}^*$ such that $\mathcal{F} = \mathcal{K} \cap \{z\}^{\perp}$.

Note: Recall that $\mathcal{K}^* := \{x \mid \langle x, y \rangle \geq 0 \ \forall y \in \mathcal{K}\}.$

Theorem 1. (Borwein, Wolkowicz '81, Lourenço, Muramatsu, Tsuchiya '18) Suppose $\mathcal{K} \cap (\mathcal{L} + a) \neq \emptyset$. Then there exists a chain of faces

$$\mathcal{F}_{\ell} \subsetneq \cdots \subsetneq \mathcal{F}_1 = \mathcal{K}$$

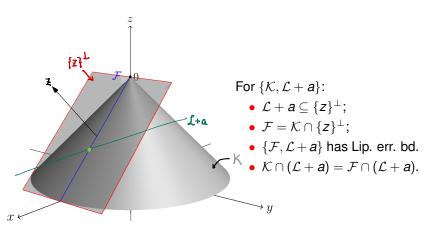
and vectors $\{z_1, \ldots, z_{\ell-1}\}$ satisfying

• For all $i \in \{1, ..., \ell - 1\}$,

$$z_i \in \mathcal{F}_i^* \cap \mathcal{L}^{\perp} \cap \{a\}^{\perp}$$
 and $\mathcal{F}_{i+1} = \mathcal{F}_i \cap \{z_i\}^{\perp}$.

• $\mathcal{F}_{\ell} \cap (\mathcal{L} + a) = \mathcal{K} \cap (\mathcal{L} + a)$ and $\{\mathcal{F}_{\ell}, \mathcal{L} + a\}$ satisfies a Lipschitz error bound.

Facial reduction: Illustration



The picture is provided by B. F. Lourenço.

Key observation: (Sturm '00, Lourenço '21) Let $\mathcal{F} \unlhd \mathcal{S}^n_+$ and $z \in \mathcal{F}^*$. Then $\exists \ \kappa > 0$ such that for all x, $\mathrm{d}(x,\mathcal{F} \cap \{z\}^\perp) \le \kappa \epsilon + \kappa \sqrt{\epsilon \|x\|},$ where $\epsilon = \max\{\mathrm{d}(x,\mathcal{F}),\mathrm{d}(x,\{z\}^\perp)\}.$

Key observation: (Sturm '00, Lourenço '21) Let $\mathcal{F} \unlhd \mathcal{S}^n_+$ and $z \in \mathcal{F}^*$. Then $\exists \ \kappa > 0$ such that for all x, $d(x,\mathcal{F} \cap \{z\}^\perp) \le \kappa \epsilon + \kappa \sqrt{\epsilon \|x\|},$ where $\epsilon = \max\{d(x,\mathcal{F}),d(x,\{z\}^\perp)\}.$ Error bound for $\{\mathcal{S}^n_+,(\mathcal{L}+a)\}$ follows from induction: For $x \in \mathcal{B}$, $d(x,\mathcal{K} \cap (\mathcal{L}+a)) = d(x,\mathcal{F}_\ell \cap (\mathcal{L}+a)) \le c_\ell \max\{d(x,\mathcal{F}_\ell),d(x,\mathcal{L}+a)\}$

Key observation: (Sturm '00, Lourenco '21) Let $\mathcal{F} \subseteq \mathcal{S}^n_+$ and $z \in \mathcal{F}^*$. Then $\exists \kappa > 0$ such that for all x, $d(x, \mathcal{F} \cap \{z\}^{\perp}) < \kappa \epsilon + \kappa \sqrt{\epsilon} ||x||,$ where $\epsilon = \max\{d(x, \mathcal{F}), d(x, \{z\}^{\perp})\}.$ Error bound for $\{S_+^n, (\mathcal{L}+a)\}$ follows from induction: For $x \in B$, $d(x, \mathcal{K} \cap (\mathcal{L} + a)) = d(x, \mathcal{F}_{\ell} \cap (\mathcal{L} + a)) \leq c_{\ell} \max\{d(x, \mathcal{F}_{\ell}), d(x, \mathcal{L} + a)\}$ $< c_{\ell}[d(x, \mathcal{L} + a) + d(x, \mathcal{F}_{\ell-1} \cap \{z_{\ell-1}\}^{\perp})]$ $\leq c_{\ell}[d(x,\mathcal{L}+a)+c_{\ell-1}(\max\{d(x,\mathcal{F}_{\ell-1}),d(x,\{z_{\ell-1}\}^{\perp})\})$ $+\sqrt{\max\{d(x,\mathcal{F}_{\ell-1}),d(x,\{z_{\ell-1}\}^{\perp})\}\|x\|)\}}$

Key observation: (Sturm '00, Lourenco '21) Let $\mathcal{F} \subseteq \mathcal{S}^n_+$ and $z \in \mathcal{F}^*$. Then $\exists \kappa > 0$ such that for all x, $d(x, \mathcal{F} \cap \{z\}^{\perp}) < \kappa \epsilon + \kappa \sqrt{\epsilon} \|x\|$ where $\epsilon = \max\{d(x, \mathcal{F}), d(x, \{z\}^{\perp})\}.$ Error bound for $\{S_{+}^{n}, (\mathcal{L}+a)\}$ follows from induction: For $x \in B$, $d(x, \mathcal{K} \cap (\mathcal{L} + a)) = d(x, \mathcal{F}_{\ell} \cap (\mathcal{L} + a)) \leq c_{\ell} \max\{d(x, \mathcal{F}_{\ell}), d(x, \mathcal{L} + a)\}$ $< c_{\ell}[d(x, \mathcal{L} + a) + d(x, \mathcal{F}_{\ell-1} \cap \{z_{\ell-1}\}^{\perp})]$ $\leq c_{\ell}[d(x,\mathcal{L}+a)+c_{\ell-1}(\max\{d(x,\mathcal{F}_{\ell-1}),d(x,\{z_{\ell-1}\}^{\perp})\})$ $+\sqrt{\max\{d(x,\mathcal{F}_{\ell-1}),d(x,\{z_{\ell-1}\}^{\perp})\}\|x\|)]}$ $= O([\max\{d(x, \mathcal{F}_{\ell-1}), d(x, \mathcal{L} + a)\}]^{\frac{1}{2}})$

Key observation: (Sturm '00, Lourenco '21) Let $\mathcal{F} \subseteq \mathcal{S}^n_+$ and $z \in \mathcal{F}^*$. Then $\exists \kappa > 0$ such that for all x, $d(x, \mathcal{F} \cap \{z\}^{\perp}) < \kappa \epsilon + \kappa \sqrt{\epsilon} \|x\|$ where $\epsilon = \max\{d(x, \mathcal{F}), d(x, \{z\}^{\perp})\}.$ Error bound for $\{S_{+}^{n}, (\mathcal{L}+a)\}$ follows from induction: For $x \in B$, $d(x, \mathcal{K} \cap (\mathcal{L} + a)) = d(x, \mathcal{F}_{\ell} \cap (\mathcal{L} + a)) \leq c_{\ell} \max\{d(x, \mathcal{F}_{\ell}), d(x, \mathcal{L} + a)\}$ $< c_{\ell}[d(x, \mathcal{L} + a) + d(x, \mathcal{F}_{\ell-1} \cap \{z_{\ell-1}\}^{\perp})]$ $\leq c_{\ell}[d(x,\mathcal{L}+a)+c_{\ell-1}(\max\{d(x,\mathcal{F}_{\ell-1}),d(x,\{z_{\ell-1}\}^{\perp})\})$ $+\sqrt{\max\{d(x,\mathcal{F}_{\ell-1}),d(x,\{z_{\ell-1}\}^{\perp})\}\|x\|)\}}$ $= O([\max\{d(x, \mathcal{F}_{\ell-1}), d(x, \mathcal{L}+a)\}]^{\frac{1}{2}}) = O([\max\{d(x, \mathcal{K}), d(x, \mathcal{L}+a)\}]^{\frac{1}{2\ell-1}}).$

Facial residual function

Definition: (Lourenço '21, Lindstrom, Lourenço, P. '22)

Let $\mathcal{F} \unlhd \mathcal{K}$ and $z \in \mathcal{F}^*$. Suppose $\psi : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ satisfies

- ψ is nondecreasing in each argument and $\psi(0, t) = 0 \ \forall \ t \in \mathbb{R}_+$;
- It holds that

$$d(x, \mathcal{F} \cap \{z\}^{\perp}) \le \psi(\max\{d(x, \mathcal{F}), d(x, \{z\}^{\perp})\}, ||x||) \quad \forall x \in \operatorname{span} \mathcal{F}.$$

Then ψ is called a 1-step facial residual function for \mathcal{F} and z.

Facial residual function

Definition: (Lourenço '21, Lindstrom, Lourenço, P. '22)

Let $\mathcal{F} \unlhd \mathcal{K}$ and $z \in \mathcal{F}^*$. Suppose $\psi : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ satisfies

- ψ is nondecreasing in each argument and $\psi(0, t) = 0 \ \forall \ t \in \mathbb{R}_+$;
- It holds that

$$d(x, \mathcal{F} \cap \{z\}^{\perp}) \le \psi(\max\{d(x, \mathcal{F}), d(x, \{z\}^{\perp})\}, ||x||) \quad \forall x \in \operatorname{span} \mathcal{F}.$$

Then ψ is called a 1-step facial residual function for \mathcal{F} and z.

Remarks:

- For $K = S_+^n$, we have $\psi(s, t) = \kappa \cdot (s + \sqrt{st})$ for some $\kappa > 0$.
- Induction arguments show that error bound can be derived given the face chain from facial reduction and by composing 1-step facial residual functions. (Lindstrom, Lourenço, P. '22)

Facial residual function

Definition: (Lourenço '21, Lindstrom, Lourenço, P. '22)

Let $\mathcal{F} \unlhd \mathcal{K}$ and $z \in \mathcal{F}^*$. Suppose $\psi : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ satisfies

- ψ is nondecreasing in each argument and $\psi(0, t) = 0 \ \forall \ t \in \mathbb{R}_+$;
- It holds that

$$d(x, \mathcal{F} \cap \{z\}^{\perp}) \le \psi(\max\{d(x, \mathcal{F}), d(x, \{z\}^{\perp})\}, ||x||) \quad \forall x \in \operatorname{span} \mathcal{F}.$$

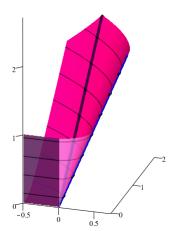
Then ψ is called a 1-step facial residual function for \mathcal{F} and z.

Remarks:

- For $\mathcal{K} = \mathcal{S}^n_+$, we have $\psi(s,t) = \kappa \cdot (s + \sqrt{st})$ for some $\kappa > 0$.
- Induction arguments show that error bound can be derived given the face chain from facial reduction and by composing 1-step facial residual functions. (Lindstrom, Lourenço, P. '22)
- Two key ingredients: For each nonpolyhedral F,
 - ⋆ Identify all its exposed faces.
 - \star Obtain all 1-step facial residual functions: Depends on ${\cal F}$ and z.

Exponential cone

$$K_{\text{exp}} = \{ x \in \mathbb{R}^3 \mid x_2 > 0, x_3 \ge x_2 e^{x_1/x_2} \} \cup \{ (x_1, 0, x_3) \mid x_1 \le 0, x_3 \ge 0 \}.$$



Faces of exponential cone

$$\textit{K}_{\text{exp}} = \{x \in \mathbb{R}^3 \mid \textit{x}_2 > 0, \textit{x}_3 \geq \textit{x}_2 e^{\textit{x}_1/\textit{x}_2}\} \cup \{(\textit{x}_1, 0, \textit{x}_3) \mid \textit{x}_1 \leq 0, \textit{x}_3 \geq 0\}.$$

Nontrivial exposed faces: (Lindstrom, Lourenço, P. '22)

(Infinitely many) 1-D face exposed by a unique (up to scaling)
 z ∈ ∂K^{*}_{exp}\{0}:

$$\mathcal{F}_{\beta} := \{(t(1-\beta), t, te^{1-\beta} \mid t \geq 0\} \text{ for each } \beta \in \mathbb{R}.$$

• An exceptional extreme ray exposed by any $z \in \{(0, z_2, z_3) \mid z_2 \geq 0, z_3 > 0\} \subset \partial \mathcal{K}^*_{\text{exp}} \setminus \{0\}$:

$$\mathcal{F}_{\infty} := \{(x_1,0,0) \mid x_1 \leq 0\}.$$

• A unique 2-D face exposed uniquely (up to scaling) by (0, 1, 0):

$$\mathcal{F}_{-\infty} := \{ (x_1, 0, x_3) \mid x_1 \leq 0, x_3 \geq 0 \}.$$

1-FRFs for exponential cone

1-FRFs: (Lindstrom, Lourenço, P. '22) Assume ||z|| = 1.

• (Infinitely many) 1-D face exposed by a unique $z \in \partial K_{\text{exp}}^* \setminus \{0\}$:

$$\psi(s,t) = s + \kappa(t) \cdot \sqrt{2s},$$

where $\kappa(\cdot)$ is nonnegative nondecreasing.

• The exceptional extreme ray \mathcal{F}_{∞} :

$$\psi(s,t) = \begin{cases} s + 2\kappa(t)s & \text{if } z_2 > 0, \\ s + \kappa(t) \cdot \mathfrak{g}_{\infty}(2s) & \text{if } z_2 = 0, \end{cases}$$

where $\kappa(\cdot)$ is nonnegative nondecreasing, and $\mathfrak{g}_{\infty}:\mathbb{R}_+\to\mathbb{R}_+$ is

$$\mathfrak{g}_{\infty}(s) := egin{cases} 0 & \text{if } s = 0, \\ -(\ln s)^{-1} & \text{if } 0 < s \leq e^{-2}, \\ 0.25(1 + e^2 s) & \text{else}. \end{cases}$$

1-FRFs for exponential cone cont.

- 1-FRFs cont.: Assume ||z|| = 1.
 - The unique 2-D face exposed uniquely by (0, 1, 0):

$$\psi(s,t) = s + \kappa(t) \cdot \mathfrak{g}_{-\infty}(2s),$$

where $\kappa(\cdot)$ is nonnegative nondecreasing, $\mathfrak{g}_{-\infty}:\mathbb{R}_+\to\mathbb{R}_+$ is

$$\mathfrak{g}_{-\infty}(s) := egin{cases} 0 & ext{if } s = 0, \ -s ext{ln } s & ext{if } 0 < s \leq e^{-2}, \ s + e^{-2} & ext{else}. \end{cases}$$

1-FRFs for exponential cone cont.

- 1-FRFs cont.: Assume ||z|| = 1.
 - The unique 2-D face exposed uniquely by (0, 1, 0):

$$\psi(s,t) = s + \kappa(t) \cdot \mathfrak{g}_{-\infty}(2s),$$

where $\kappa(\cdot)$ is nonnegative nondecreasing, $\mathfrak{g}_{-\infty}:\mathbb{R}_+\to\mathbb{R}_+$ is

$$\mathfrak{g}_{-\infty}(s) := egin{cases} 0 & ext{if } s = 0, \ -s \ln s & ext{if } 0 < s \leq e^{-2}, \ s + e^{-2} & ext{else}. \end{cases}$$

Remark:

- As all nontrivial exposed faces are polyhedral, ℓ ≤ 2. The final error bound has the same "order of magnitude" as the 1-FRFs.
- As $s \downarrow 0$: $-(\ln s)^{-1} \to 0$ slower than s^{α} for any $\alpha \in (0, 1]$; $-s \ln s \to 0$ faster than s^{α} for any $\alpha \in (0, 1)$, but is slower than s.
- These 1-FRFs are asymptotically the "best". (Lindstrom, Lourenço, P. '22)

Conclusion

Conclusion:

- Facial reduction and 1-FRFs are two key ingredients for deriving error bounds.
- Error bounds for K_{exp} feasibility problem.

References:

S. B. Lindstrom, B. F. Lourenço and T. K. Pong.
 Error bounds, facial residual functions and applications to the
 exponential cone.
 Math. Program. 200, 2023, pp. 229–278.

Thanks for coming!