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Conic programming problem

Conic program: Let K be a closed convex cone in a Euclidean space
E , c ∈ E , A be a linear map on E and b ∈ Range(A).

Minimize
x

〈c, x〉 subject to Ax = b, x ∈ K.

Examples of cones:
• IRn

+, Sn
+, second-order cones.

• Exponential cone Kexp:

Kexp := {x ∈ IR3 | x2 > 0, x3 ≥ x2ex1/x2}∪{(x1,0, x3) | x1 ≤ 0, x3 ≥ 0}.

? Epigraph of (the closure of) the perspective function of z 7→ exp(z).
? Recent addition to MOSEK and other conic solvers.
? Has applications in relative entropy optimization (Chandrasekaran,

Shah ’17).

• Product cones of the above...

1 / 14



Conic programming problem

Conic program: Let K be a closed convex cone in a Euclidean space
E , c ∈ E , A be a linear map on E and b ∈ Range(A).

Minimize
x

〈c, x〉 subject to Ax = b, x ∈ K.

Examples of cones:
• IRn

+, Sn
+, second-order cones.

• Exponential cone Kexp:

Kexp := {x ∈ IR3 | x2 > 0, x3 ≥ x2ex1/x2}∪{(x1,0, x3) | x1 ≤ 0, x3 ≥ 0}.

? Epigraph of (the closure of) the perspective function of z 7→ exp(z).
? Recent addition to MOSEK and other conic solvers.
? Has applications in relative entropy optimization (Chandrasekaran,

Shah ’17).

• Product cones of the above...

1 / 14



Conic programming problem

Conic program: Let K be a closed convex cone in a Euclidean space
E , c ∈ E , A be a linear map on E and b ∈ Range(A).

Minimize
x

〈c, x〉 subject to Ax = b, x ∈ K.

Examples of cones:
• IRn

+, Sn
+, second-order cones.

• Exponential cone Kexp:

Kexp := {x ∈ IR3 | x2 > 0, x3 ≥ x2ex1/x2}∪{(x1,0, x3) | x1 ≤ 0, x3 ≥ 0}.

? Epigraph of (the closure of) the perspective function of z 7→ exp(z).
? Recent addition to MOSEK and other conic solvers.
? Has applications in relative entropy optimization (Chandrasekaran,

Shah ’17).

• Product cones of the above...

1 / 14



Conic programming problem

Conic program: Let K be a closed convex cone in a Euclidean space
E , c ∈ E , A be a linear map on E and b ∈ Range(A).

Minimize
x

〈c, x〉 subject to Ax = b, x ∈ K.

Examples of cones:
• IRn

+, Sn
+, second-order cones.

• Exponential cone Kexp:

Kexp := {x ∈ IR3 | x2 > 0, x3 ≥ x2ex1/x2}∪{(x1,0, x3) | x1 ≤ 0, x3 ≥ 0}.

? Epigraph of (the closure of) the perspective function of z 7→ exp(z).
? Recent addition to MOSEK and other conic solvers.
? Has applications in relative entropy optimization (Chandrasekaran,

Shah ’17).

• Product cones of the above...

1 / 14



Why “exotic” cones?

• Richer modeling power. For example,

t ≥ ln

(
n∑

i=1

exi

)
⇐⇒

n∑
i=1

zi ≤ 1 and (zi ,1, xi − t) ∈ Kexp ∀i .

See https://docs.mosek.com/cheatsheets/conic.pdf.

• These and many other exotic cones have nice logarithmically
homogeneous self-concordant barrier functions for the
adaptation of existing IPM routines. (Coey, Kapelevich, Vielma ’21)
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Conic feasibility problem

Conic feasibility problem: Let K be a closed convex cone, L be a
subspace of a Euclidean space E and a ∈ E .

Find x ∈ K ∩ (L+ a).

• Focus on the feasible case, i.e., K ∩ (L+ a) 6= ∅.
• Arises from optimality conditions of conic programs.

For instance, consider

Minimize
x

〈c, x〉
Subject to Ax = b, x ∈ K.

Assume the solution set S
is nonempty and denote the
optimal value by v .

Then

S = K ∩ (L+ a),

where

L+a = {x : Ax = b, 〈c, x〉 = v}.

In this case, typically, (L+a)∩riK = ∅.
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Conic feasibility problem cont.

Conic feasibility problem: Let K be a closed convex cone, L be a
subspace of a Euclidean space E and a ∈ E .

Find x ∈ K ∩ (L+ a).

When is a feasibility problem approximately solved?

• d(x ,K ∩ (L+ a)) is a measure on how “feasible” x is. Hard to compute!

• Typically, d(x ,K) and d(x ,L+ a) are relatively easier to compute.
• Is x “a good soln.” when max{d(x ,K), d(x ,L+ a)} is small?

Key: Compare the orders of magnitude of d(x ,K ∩ (L + a)) and
max{d(x ,K), d(x ,L+ a)}.

Note: Typically, (L+ a) ∩ riK = ∅.
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Error bounds

Definition: Let θ ∈ (0,1]. We say that {K,L+ a} satisfies a (uniform)
Hölderian error bound with exponent θ if for every bounded set B,
there exists cB > 0 such that

d(x ,K ∩ (L+ a)) ≤ cB (max{d(x ,K), d(x ,L+ a)})θ ∀x ∈ B.

If θ = 1, we say that a Lipschitz error bound holds.

Examples:
• If K is polyhedral, Lipschitz error bound holds. (Hoffman ’57)

• If (L+ a) ∩ riK 6= ∅, Lipschitz error bound holds. (Bauschke,
Borwein ’96)

• If K = Sn
+, Hölderian error bound with exponent 2−(`−1) holds

(Sturm ’00); here ` has to do with facial reduction. (Borwein,
Wolkowicz ’81)
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Faces and facial reduction

Definition: A sub-cone F ⊆ K is called
• a face if x , y ∈ K and x + y ∈ F implies x , y ∈ F ;
• an exposed face if ∃ z ∈ K∗ such that F = K ∩ {z}⊥.

Note: Recall that K∗ := {x | 〈x , y〉 ≥ 0 ∀y ∈ K}.

Theorem 1. (Borwein, Wolkowicz ’81, Lourenço, Muramatsu, Tsuchiya ’18)
Suppose K ∩ (L+ a) 6= ∅. Then there exists a chain of faces

F` ( · · · ( F1 = K

and vectors {z1, . . . , z`−1} satisfying
• For all i ∈ {1, . . . , `− 1},

zi ∈ F∗i ∩ L⊥ ∩ {a}⊥ and Fi+1 = Fi ∩ {zi}⊥.

• F` ∩ (L+ a) = K ∩ (L+ a) and {F`,L+ a} satisfies a Lipschitz
error bound.
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Facial reduction: Illustration

Z上

z \
F世Oo☆

lix即/1

比

—
The picture is provided by B. F. Lourenço.

For {K,L+ a}:
• L+ a ⊆ {z}⊥;
• F = K ∩ {z}⊥;
• {F ,L+a} has Lip. err. bd.
• K ∩ (L+ a) = F ∩ (L+ a).
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Sturm’s error bounds and facial reduction

Key observation: (Sturm ’00, Lourenço ’21)
Let F � Sn

+ and z ∈ F∗. Then ∃ κ > 0 such that for all x ,

d(x ,F ∩ {z}⊥) ≤ κε+ κ
√
ε‖x‖,

where ε = max{d(x ,F), d(x , {z}⊥)}.

Error bound for {Sn
+, (L+ a)} follows from induction: For x ∈ B,

d(x ,K ∩ (L+ a)) = d(x ,F` ∩ (L+ a)) ≤ c` max{d(x ,F`), d(x ,L+ a)}
≤ c`[d(x ,L+ a) + d(x ,F`−1 ∩ {z`−1}⊥)]
≤ c`[d(x ,L+ a) + c`−1

(
max{d(x ,F`−1), d(x , {z`−1}⊥)}

+
√

max{d(x ,F`−1), d(x , {z`−1}⊥)}‖x‖
)
]

=O([max{d(x ,F`−1), d(x ,L+ a)}] 1
2 ) = O([max{d(x ,K), d(x ,L+ a)}]

1
2`−1 ).
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Facial residual function
Definition: (Lourenço ’21, Lindstrom, Lourenço, P. ’22)
Let F �K and z ∈ F∗. Suppose ψ : IR+ × IR+ → IR+ satisfies
• ψ is nondecreasing in each argument and ψ(0, t) = 0 ∀ t ∈ IR+;
• It holds that

d(x ,F ∩ {z}⊥) ≤ ψ(max{d(x ,F), d(x , {z}⊥)}, ‖x‖) ∀x ∈ spanF .

Then ψ is called a 1-step facial residual function for F and z.

Remarks:
• For K = Sn

+, we have ψ(s, t) = κ · (s +
√

st) for some κ > 0.
• Induction arguments show that error bound can be derived given

the face chain from facial reduction and by composing 1-step
facial residual functions. (Lindstrom, Lourenço, P. ’22)

• Two key ingredients: For each nonpolyhedral F ,
? Identify all its exposed faces.
? Obtain all 1-step facial residual functions: Depends on F and z.
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Exponential cone

Kexp = {x ∈ IR3 | x2 > 0, x3 ≥ x2ex1/x2} ∪ {(x1,0, x3) | x1 ≤ 0, x3 ≥ 0}.
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Faces of exponential cone

Kexp = {x ∈ IR3 | x2 > 0, x3 ≥ x2ex1/x2} ∪ {(x1,0, x3) | x1 ≤ 0, x3 ≥ 0}.

Nontrivial exposed faces: (Lindstrom, Lourenço, P. ’22)

• (Infinitely many) 1-D face exposed by a unique (up to scaling)
z ∈ ∂K ∗exp\{0}:

Fβ := {(t(1− β), t , te1−β | t ≥ 0} for each β ∈ IR.

• An exceptional extreme ray exposed by any
z ∈ {(0, z2, z3) | z2 ≥ 0, z3 > 0} ⊂ ∂K ∗exp\{0}:

F∞ := {(x1,0,0) | x1 ≤ 0}.

• A unique 2-D face exposed uniquely (up to scaling) by (0,1,0):

F−∞ := {(x1,0, x3) | x1 ≤ 0, x3 ≥ 0}.
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1-FRFs for exponential cone

1-FRFs: (Lindstrom, Lourenço, P. ’22) Assume ‖z‖ = 1.
• (Infinitely many) 1-D face exposed by a unique z ∈ ∂K ∗exp\{0}:

ψ(s, t) = s + κ(t) ·
√

2s,

where κ(·) is nonnegative nondecreasing.
• The exceptional extreme ray F∞:

ψ(s, t) =

{
s + 2κ(t)s if z2 > 0,
s + κ(t) · g∞(2s) if z2 = 0,

where κ(·) is nonnegative nondecreasing, and g∞ : IR+ → IR+ is

g∞(s) :=


0 if s = 0,
−(ln s)−1 if 0 < s ≤ e−2,

0.25(1 + e2s) else.
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1-FRFs for exponential cone cont.
1-FRFs cont.: Assume ‖z‖ = 1.
• The unique 2-D face exposed uniquely by (0,1,0):

ψ(s, t) = s + κ(t) · g−∞(2s),

where κ(·) is nonnegative nondecreasing, g−∞ : IR+ → IR+ is

g−∞(s) :=


0 if s = 0,
−s ln s if 0 < s ≤ e−2,

s + e−2 else.

Remark:
• As all nontrivial exposed faces are polyhedral, ` ≤ 2. The final

error bound has the same “order of magnitude” as the 1-FRFs.
• As s ↓ 0: −(ln s)−1 → 0 slower than sα for any α ∈ (0,1];
−s ln s → 0 faster than sα for any α ∈ (0,1), but is slower than s.

• These 1-FRFs are asymptotically the “best”. (Lindstrom, Lourenço,
P. ’22)
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Conclusion

Conclusion:
• Facial reduction and 1-FRFs are two key ingredients for deriving

error bounds.
• Error bounds for Kexp feasibility problem.

References:
• S. B. Lindstrom, B. F. Lourenço and T. K. Pong.

Error bounds, facial residual functions and applications to the
exponential cone.
Math. Program. 200, 2023, pp. 229–278.

Thanks for coming!
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