Error bound for conic feasibility problems:
Case studies on Exponential cone and
p-cones

Ting Kei Pong
Department of Applied Mathematics
The Hong Kong Polytechnic University
Hong Kong

Talk @ Nanjing University
September 2022
(Joint work with Scott B. Lindstrom and Bruno F. Lourenco)



Conic programming problem

Conic program: Let K be a closed convex cone in a Euclidean space
E,ce &, Abe alinear map on £ and b € Range(A).

Minigwize (c,x) subjectto Ax =b, x K.
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Conic programming problem
Conic program: Let K be a closed convex cone in a Euclidean space
E,ce &, Abe alinear map on £ and b € Range(A).
Mm@&ewx>wMWHoAx:b,xeﬂ
Examples of cones:

e R/, 87, second-order cones.
e Exponential cone Keyp:

Kexp = {Xx € R® | x2 > 0, x3 > %2/ }U{(x1,0,%3) | X3 <0, x3 > 0}.

* Epigraph of (the closure of) the perspective function of z — exp(z).

* Recent addition to MOSEK and other conic solvers.

* Has applications in relative entropy optimization (Chandrasekaran,
Shah '17).
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Conic programming problem cont.

Examples of cones cont.:
o p-cones K (p > 1):
Kot i= {x = (%0, %) € R™" | o 2 [[X[}.

* Reduces to second-order cone when p = 2.

* Widely studied as natural generalization of second-order cones.
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Conic programming problem cont.

Examples of cones cont.:
o p-cones K (p > 1):
Kot = {x = (x0,X) € R™" | x0 = X[}

* Reduces to second-order cone when p = 2.

* Widely studied as natural generalization of second-order cones.

e Geometric mean cone:
Keeo = {X = (x0,X) e R x R | xp < M4 X,/

* Available in Hypatia. (Coey, Kapelevich, Vielma '21)
* Arises when modeling Perron-Frobenius matrix completion
problems. (Agrawal, Diamond, Boyd '19)
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Conic programming problem cont.

Examples of cones cont.:
o p-cones K (p > 1):
Kot = {x = (x0,X) € R™" | x0 = X[}

* Reduces to second-order cone when p = 2.

* Widely studied as natural generalization of second-order cones.

e Geometric mean cone:
Kaeo := {X = (X0,X) e R x R} | Xo < Mz 1x1/”}
* Available in Hypatia. (Coey, Kapelevich, Vielma '21)

* Arises when modeling Perron-Frobenius matrix completion
problems. (Agrawal, Diamond, Boyd '19)

e Product cones of the above...
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Conic feasibility problem

Conic feasibility problem: Let K be a closed convex cone, £ be a
subspace of a Euclidean space £ and a € €.

Find xe Kn(L+ a).
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Conic feasibility problem
Conic feasibility problem: Let K be a closed convex cone, £ be a
subspace of a Euclidean space £ and a € €.
Find xe Kn(L+ a).

e Focus on the feasible case, i.e., KN (L + a) # 0.
e Arises from optimality conditions of conic programs.
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e Is x “a good soln” when max{d(x, K),d(x, £ + a)} is small?
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Conic feasibility problem

Conic feasibility problem: Let K be a closed convex cone, £ be a
subspace of a Euclidean space £ and a € €.

Find xe Kn(L+ a).

e Focus on the feasible case, i.e., KN (L + a) # 0.
e Arises from optimality conditions of conic programs.

When is a feasibility problem approximately solved?
e d(x,K N (L + a)) is a measure on how “feasible” x is. Herdo computer
o Typically, d(x, ) and d(x, £ + a) are relatively easier to compute.
e Is x “a good soln” when max{d(x, K),d(x, £ + a)} is small?

Key: Compare the orders of magnitude of d(x, X N (£ + a)) and
max{d(x, K),d(x, L + a)}.

Note: Typically, (£ + a) Nri K = 0.



Error bounds

Definition: Let 6 € (0, 1]. We say that {K, £ + a} satisfies a (uniform)
Holderian error bound with exponent 6 if for every bounded set B,
there exists cg > 0 such that

d(x, KN (L + a)) < cg(max{d(x,K),d(x, £+ a)})’ vxeB.

If & =1, we say that a Lipschitz error bound holds.



Error bounds

Definition: Let 6 € (0, 1]. We say that {K, £ + a} satisfies a (uniform)
Holderian error bound with exponent 6 if for every bounded set B,
there exists cg > 0 such that

d(x, KN (L + a)) < cg(max{d(x,K),d(x, £+ a)})’ vxeB.

If & =1, we say that a Lipschitz error bound holds.

Examples:
e If K is polyhedral, Lipschitz error bound holds. (Hoffman '57)

e If (L4 a)NriK # 0, Lipschitz error bound holds. (Bauschke,
Borwein '96)



Error bounds

Definition: Let 6 € (0, 1]. We say that {K, £ + a} satisfies a (uniform)
Holderian error bound with exponent 6 if for every bounded set B,
there exists cg > 0 such that

d(x, KN (L + a)) < cg(max{d(x,K),d(x, £+ a)})’ vxeB.

If & =1, we say that a Lipschitz error bound holds.

Examples:
e If K is polyhedral, Lipschitz error bound holds. (Hoffman '57)
e If (L4 a)NriK # 0, Lipschitz error bound holds. (Bauschke,
Borwein '96)

o If K = 87, Holderian error bound with exponent 2=(~") holds
(Sturm ’00); here ¢ has to do with facial reduction. (Borwein,
Wolkowicz ’81)



Faces and facial reduction

Definition: A sub-cone F C K is called

e afaceifx, ye Kand x +y € Fimplies x, y € F;

e an exposed face if 3 z € K* such that F = K n {z}+.
Note: Recall that £* := {x | (x,y) > 0 Vy € K}.



Faces and facial reduction

Definition: A sub-cone F C K is called

e afaceifx, ye Kand x +y € Fimplies x, y € F;

e an exposed face if 3 z € K* such that F = K n {z}+.
Note: Recall that £* := {x | (x,y) > 0 Vy € K}.

Theorem 1. (Lourengo, Muramatsu, Tsuchiya '18)
Suppose K N (£ + a) # 0. Then there exists a chain of faces
FiCCF=K
and vectors {z, ..., z,_1} satisfying
e Forallie {1,...,0—1},
zie FFnLtn{a}t and Fiuq=Fn{z}*.

e FyN(L+a)=Kn(L+a)and {Fy, L + a} satisfies a Lipschitz
error bound.



Sturm’s error bounds and facial reduction

Key observation: (Sturm '00, Lourengo '21)
Let F < ST and z € F*. Then 3 £ > 0 such that for all x,

d(x, F N {z}") < ke + /€| x]],
where e = max{d(x, F),d(x, {z}1)}.
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Key observation: (Sturm '00, Lourengo '21)
Let F < ST and z € F*. Then 3 £ > 0 such that for all x,

d(x, F N {z}") < ke + /€| x]],
where e = max{d(x, F),d(x, {z}1)}.
Error bound for {S”, (£ + a)} follows from induction: For x € B,
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Key observation: (Sturm '00, Lourengo '21)
Let F < ST and z € F*. Then 3 £ > 0 such that for all x,

d(x, F N {z}") < ke + /€| x]],
where e = max{d(x, F),d(x, {z}1)}.

Error bound for {S”, (£ + a)} follows from induction: For x € B,

d(x,KN (L + a)) =d(x,FeN (L +a) < c,max{d(x,F),d(x, L+ a)}
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Sturm’s error bounds and facial reduction

Key observation: (Sturm '00, Lourengo '21)
Let F < ST and z € F*. Then 3 £ > 0 such that for all x,

d(x, F N {z}") < ke + /€| x]],
where e = max{d(x, F),d(x, {z}1)}.
Error bound for {S”, (£ + a)} follows from induction: For x € B,
d(x,KN(L+a)) =d(x,FeN(L+ a)) < cemax{d(x, F;),d(x, L+ a)}

< Cg[d(X,ﬁ + a) + d(X, Fo_1 N {Z/,1 }L)]
< Cg[d(X,ﬁ + a) + Cr—1 (max{d(x, ./T/_1),d(X, {25_1 }L)}

+\/max{d(x,]-}71 ), d(x, {ze—1} 1) }HIxI])]

= O([max{d(x, Fe—1),d(x, L+ a)}]‘?) = O([max{d(x, K),d(x, L + a)}]zﬁ).
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Facial residual function

Definition: (Lourengo ‘21, Lindstrom, Lourenco, P. '22)
Let F <K and z € F7*. Suppose ¢ : R, x R, — R, satisfies
e ¢ is nondecreasing in each argument and ¢(0,t) =0V t € Ry;
e It holds that
d(x, Fn{z}*) < ¢(max{d(x, F),d(x, {z}1)}, ||x]]) Vx € span F.

Then v is called a 1-step facial residual function for F and z.



Facial residual function
Definition: (Lourengo ‘21, Lindstrom, Lourenco, P. '22)
Let F <K and z € F7*. Suppose ¢ : R, x R, — R, satisfies
e ¢ is nondecreasing in each argument and ¢(0,t) =0V t € Ry;
e It holds that

d(x, F N {z}+) < ¢(max{d(x, F),d(x, {z} ")}, [|X]]) VX € span F.

Then v is called a 1-step facial residual function for F and z.

Remarks:
e For K = 87, we have ¢(s, t) = x - (s + /st) for some x > 0.
¢ Induction arguments show that error bound can be derived given

the face chain from facial reduction and by composing 1-step
facial residual functions. (Lindstrom, Lourenco, P. '22)
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Facial residual function

Definition: (Lourengo ‘21, Lindstrom, Lourenco, P. '22)
Let F <K and z € F7*. Suppose ¢ : R, x R, — R, satisfies

e ¢ is nondecreasing in each argument and ¢(0,t) =0V t € Ry;
e It holds that

d(x, F N {z}*) < p(max{d(x, F),d(x,{z} )}, [x[]) ¥x € span F.
Then v is called a 1-step facial residual function for F and z.

Remarks:
e For K = 87, we have ¢(s, t) = x - (s + /st) for some x > 0.
¢ Induction arguments show that error bound can be derived given
the face chain from facial reduction and by composing 1-step
facial residual functions. (Lindstrom, Lourenco, P. '22)
e Two key ingredients: For each nonpolyhedral F,

* ldentify all its exposed faces.
* Obtain all 1-step facial residual functions: Depends on F and z.
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Outline

Aim: Case studies on errors bounds for Ke, and p-cones (K,Q’“).

1. Derive error bounds for {Keyp, £ + a}.

= Describe all nontrivial exposed faces of exponential cone Kexp.

* Find the associated 1-step facial residual functions (1-FRFs).
* Discuss our strategy for computing 1-FRFs.
2. Derive error bounds for {K5™", £ + a} with p € (1, c0).

* Describe all nontrivial exposed faces of p-cone KFQ’“.
* Find the associated 1-step facial residual functions (1-FRFs).
* Discuss our strategy for computing 1-FRFs.
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Outline

Aim: Case studies on errors bounds for Ke, and p-cones (K,Q’“).
1. Derive error bounds for {Keyp, £ + a}.

« Describe all nontrivial exposed faces of exponential cone Kexp.
* Find the associated 1-step facial residual functions (1-FRFs).
* Discuss our strategy for computing 1-FRFs.

2. Derive error bounds for {K5™", £ + a} with p € (1, c0).

* Describe all nontrivial exposed faces of p-cone KFQ’“.
* Find the associated 1-step facial residual functions (1-FRFs).
* Discuss our strategy for computing 1-FRFs.

3. Applications:

* (Informally) The infimum of Kurdyka-tojasiewicz (KL) exponents
may not be a KL exponent.
* Finding KL exponent for some p-norm regularized problems.



Exponential cone

Kexp = {X € R® | xo > 0, X3 > 2"/} U {(x1,0,X3) | X1 <0, x; > 0}.

/126



Faces of exponential cone

Kexp = {X € R® | xo > 0,x3 > x2€"/*2} U {(x1,0,X3) | x; <0, x3 > 0}.

Nontrivial exposed faces: (Lindstrom, Lourencgo, P. '22)

e (Infinitely many) 1-D face exposed by a unique (up to scaling)
z € 0K, \{0}:

Fs:={(t(1 — B),t,te' | t > 0} foreach 3 € R.

e An exceptional extreme ray exposed by any
ze€{(0,22,23) | 22> 0,23 > 0} C 0K, \{0}:

Foo i= {(X1,0,0) | X1 < 0}
e A unique 2-D face exposed uniquely (up to scaling) by (0, 1,0):
Foo 1= {(X1707X3) | X1 < 07X3 > O}

10/26



1-FRFs for exponential cone

1-FRFs: (Lindstrom, Lourengo, P.'22) Assume ||z|| = 1.
e (Infinitely many) 1-D face exposed by a unique z € 9K, \{0}:

W(s. 1) = s+ k(t) - V2s,
where «(-) is nonnegative nondecreasing.

e The exceptional extreme ray F.:

s+ 2k(t)s if z2 > 0,

s )= {s+ k(1) - goo(28) if 22 =0,

where «(-) is nonnegative nondecreasing, and g, : Ry — R, is
0 if s=0,
goo(S) = —(Ins)~! ifo<s<e?
0.25(1 + €?s) else.
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1-FRFs for exponential cone cont.

1-FRFs cont.: Assume ||z|| = 1.
e The unique 2-D face exposed uniquely by (0, 1,0):
P(s, 1) = s+ k() - -0 (28),
where «(-) is nonnegative nondecreasing, g—« : Ry — R, is
0 if s=0,
9-(8):=¢ —sins f0<s<e?
s+e? else.
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1-FRFs for exponential cone cont.

1-FRFs cont.: Assume ||z|| = 1.
e The unique 2-D face exposed uniquely by (0, 1,0):
P(s, 1) = s+ k() - -0 (28),
where «(-) is nonnegative nondecreasing, g—« : Ry — R, is
0 if s=0,
9-(8):=¢ —sins f0<s<e?
s+e? else.
Remark:

e As all nontrivial exposed faces are polyhedral, ¢ < 2. The final
error bound has the same “order of magnitude” as the 1-FRFs.

e Ass | 0: —(Ins)~! — 0 slower than s for any a € (0, 1];
—slIns — 0 faster than s* for any « € (0, 1), but is slower than s.

e These 1-FRFs are asymptotically the “best”. (Lindstrom, Lourenco,
P.’22)
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Computing 1-FRFs
Difficulties:
o Need to compare d(X, Kexp), d(x, {z}*), and d(x, Kexp N {2}+).

e Projection onto Keyp (and hence d(x, Kexp)) does not have an
easy-to-analyze analytic form.

13/26



Computing 1-FRFs
Difficulties:
o Need to compare d(X, Kexp), d(x, {z}*), and d(x, Kexp N {2}+).

e Projection onto Keyp (and hence d(x, Kexp)) does not have an
easy-to-analyze analytic form.

The v — w — u approach:
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Computing 1-FRFs cont.

Theorem 2. (Lindstrom, Lourenco, P. '22)

Let K be a closed convex cone and z € K* (with ||z|| = 1) be such
that {z}+ N K is a nontrivial exposed face of K.

Letn > 0,a € (0,1] and g : R, — R, be nondecreasing and satisfy
g(0)=0and g > |- |*. Consider

{g(IW—VII)‘ veoknBm)\ ({z}-NK) }

= inf i j
Yz, ' w—u]| w= ProJ{Z}L vV, U= Prol{z}Lm](:Wv w#u

v
Suppose that v, € (0, 00]. Then
d(x,{Z}" NK) < kzye(d(x,K)) ¥ x € {z}+ N B(0,7),
where &, = maX{27]1_0‘,2’yz_7717}. Moreover,
P(s,t) == S+ K7,:9(28)
is a 1-FRF of £ and z.
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Main idea

We illustrate how Theorem 2 can be used for computing 1-FRF for
those (infinitely many) 1-D face F3.
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Main idea

We illustrate how Theorem 2 can be used for computing 1-FRF for
those (infinitely many) 1-D face F3.

Key Lemma 1. (Lindstrom, Lourencgo, P. '22)

Let 5 € Rand z € K, with z; < 0 such that F3 = {Z}+ N Keyp. Let
n >0,V e 0Kep N B(n)\Fs, w= Proj;,y.vand u = Projfﬁ w. Then

5 Bl i ) >
w—vi =&Y ang woyy =] T V)20
2] |w|  otherwise.
where
1 A 1-8 Belh 1 gf1
Z .= I5) , = 1 , b: —61_ﬁ—(1—ﬁ)eﬁ‘1 .
—e’™! el=f B2 —B+1

Moreover, when (f,v) > 0, we have u = Pyur, W.
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Main idea cont.

Consider those (infinitely many) 1-D face F3 exposed by a unique (up
to scaling) z € 0K, \{0}: Let | z|| = 1 and F = cone {f}.
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Main idea cont.

Consider those (infinitely many) 1-D face F3 exposed by a unique (up
to scaling) z € 0K, \{0}: Let | z|| = 1 and F = cone {f}.
o If (f,v)>0and v ¢ F_,then v = (vy, vo, ,€"/"2) and
W —v| =Q(va-[hi(v1/v2)]) and [[w —ul| = O(vz - [h2(v4/12)]),
where
hi(¢):=¢+pB— et
he(C) = (B! + "7 1)C — €177 — (1= B)e"! + (5° — B+ 1)e.

For those vy /v, close to 1 — /3, the exponent of 1/2 pops up upon
comparing Taylor seriesat{ =1 — 3.

e Other cases can be dealt with similarly.
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Faces of p-cone

We focus on the case where p € (1,00)\{2} and n > 2.
Ko™ = {x=(%,%) € R™" | x0 > [[X]|p}-

It is known that (Ky*')* = Kj*', where 1/p+1/q = 1.
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Faces of p-cone

We focus on the case where p € (1,00)\{2} and n > 2.
Kg“ ={x=(x0,%X) €ER™ | X0 > |[X||p}
It is known that (Ky*')* = Kj*', where 1/p+1/q = 1.

Nontrivial exposed faces: (Lindstrom, Lourengo, P. '22)
¢ (Infinitely many) 1-D face exposed by a unique (up to scaling)
z:=(20,Z) € OK§T\{0}:
Feo={t-f|t>0} =K' n{z}",
where 1
f':
T [-san(@) oz z9 )

where the sign, inverse, absolute value and power are taken
componentwise.
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1-FRFs for p-cone
1-FRFs: (Lindstrom, Lourengo, P. '22) Assume ||z|| = 1.

e (Infinitely many) 1-D face exposed by the unique z € 6K‘§’+1 \{0}:

QZ}(S, t) =85+ K’(t) ’ (2S)azv
where «(-) is nonnegative nondecreasing, and
if |Jz| = n,
if |J;]=1and p < 2,
min {3, 1p} otherwise,
with J, := {i | Z; # 0}.

Q
N
|
SIEYNIEN
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1-FRFs for p-cone
1-FRFs: (Lindstrom, Lourengo, P. '22) Assume ||z|| = 1.
e (Infinitely many) 1-D face exposed by the unique z € 6K‘§’+1 \{0}:
P(s, 1) = s+ x(t) - (28),
where «(-) is nonnegative nondecreasing, and

if |Jz| = n,
if |J;]=1and p < 2,

min {3, 1p} otherwise,

TI= M=

with J; == {i | Z; # O}.

Remark:
e Since all nontrivial faces are polyhedral, ¢ < 2. Hence, the final

error bound has the same “order of magnitude” as the 1-FRFs.

e These 1-FRFs are asymptotically the “best”. (Lindstrom, Lourenco,

P.'22)
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Main idea

How do the f and the weird exponent arise?
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Main idea

How do the f and the weird exponent arise?
Key Lemma 2. (Lindstrom, Lourengo, P. '22)

Letp,q € (1,00) be such that [ + L = 1and ¢ € R” satisfy [|(/lq = 1.
Define

= —sgn(¢) o [¢|7T,
Then |[¢||, = 1 and the following statements hold:
e There exist C > 0 and ¢ > 0 so that
1T+ (Cw) >CY Jwi— (P + le,\”
iel /gZI
whenever ||lw — || < eand ||lw||p, = 1, where | = {i : {; # 0}.

e For any w satisfying ||wl|, < 1, it holds that (¢,w) > —1, with the
equality holding if and only if w = (.
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Main idea

How do the f and the weird exponent arise?
Key Lemma 2. (Lindstrom, Lourengo, P. '22)

Letp,q € (1,00) be such that [ + L = 1and ¢ € R” satisfy [|(/lq = 1.
Define
= —sgn(¢) o [¢|?7,
Then |[¢||, = 1 and the following statements hold:
e There exist C > 0 and ¢ > 0 so that

1T4+(Cw) > CY |wi— (P + Zw
iel /gZI
whenever |lw — ¢|| < eand ||w|p = 1, where | = {i : (; # 0}.

e For any w satisfying ||wl|, < 1, it holds that (¢,w) > —1, with the
equality holding if and only if w = (.
We apply the above lemma to ¢ := z, 'Z for a z € 0K "\ {0}.

19/26



KL property & exponent

Definition: (Attouch et al. *10, Attouch et al. 13)

Let f be proper closed and a € [0, 1). The function f is said to have
the Kurdyka-tojasiewicz (KL) property with exponent a at x € dom of
if there exist ¢, v, ¢ > 0 so that

c[f(x) — f(x)]* < d(0,0f(x))

whenever x € domof, ||x — X|| < eand f(x) < f(x) < f(X) +v.
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KL property & exponent

Definition: (Attouch et al. *10, Attouch et al. 13)

Let f be proper closed and a € [0, 1). The function f is said to have
the Kurdyka-tojasiewicz (KL) property with exponent a at x € dom of
if there exist ¢, v, ¢ > 0 so that

c[f(x) — f(x)]* < d(0,0f(x))
whenever x € domof, ||x — X|| < eand f(x) < f(x) < f(X) +v.

Remarks:
e Proper closed semialgebraic functions are KL functions with
exponent « € [0,1). (Bolte et al. '07)
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KL property & exponent

Definition: (Attouch et al. 10, Attouch et al. 13)
Let f be proper closed and a € [0, 1). The function f is said to have
the Kurdyka-tojasiewicz (KL) property with exponent a at x € dom of
if there exist ¢, v, ¢ > 0 so that

c[f(x) — f(x)]* < d(0,0f(x))
whenever x € domof, ||x — X|| < eand f(x) < f(x) < f(X) +v.

Remarks:

e Proper closed semialgebraic functions are KL functions with
exponent « € [0,1). (Bolte et al. '07)

e Let f be proper closed convex and X € Argmin f. Then f has KL
exponent « at x if and only if there exists ¢, 2, € > 0 so that

¢ - d(x, Argmin f) < (f(x) —inff)'—
whenever x € domf, || x — X|| < €and f(X) < f(x) < f(X) + D.
(Bolte et al. ’17)

20/26



Infimum of KL exponent

Example: In Ky, recall that a 1-FRF for the unique 2-D face F_ is:
P(s,t) = s+ k(f) - g—o(25),
where «(-) is nonnegative nondecreasing, g—.. : Ry — Ry is

0 if s=0,
g-oo(S):=<¢ —slns f0<s<e?
s+e? else.

Moreover, F_ = Kexp N F—co-
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Infimum of KL exponent

Example: In Ko, recall that a 1-FRF for the unique 2-D face F_ is:
(s, 1) = S+ A(t) - 9-oe(25).
where «(-) is nonnegative nondecreasing, g—.. : Ry — Ry is
0 if s=0,
g-oo(S):=<¢ —slns f0<s<e?
s+e? else.

Moreover, F_. = Kexp N F_oc. Then there exists € € (0, e~?) and
¢ > 0 such that

d(X, Kexp n ‘F—OO) S C- g_oo(d(X, Kexp)) VX S .7:_00 N B(O’ 6).
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Infimum of KL exponent

Example: In Ko, recall that a 1-FRF for the unique 2-D face F_ is:
(s, 1) = S+ A(t) - 9-oe(25).
where «(-) is nonnegative nondecreasing, g—.. : Ry — Ry is
0 if s=0,
g-oo(S):=<¢ —slns f0<s<e?
s+e? else.

Moreover, F_. = Kexp N F_oc. Then there exists € € (0, e~?) and
¢ > 0 such that

d(X, Kexp n ‘F—OO) S C- g_oo(d(X, Kexp)) Vx S .7:_00 n B(O’ 6).

Since for any o € (0,1), —sIns < s* for all sufficiently small s > 0,
there exists ¢; > 0 such that

d(X, Kexp N F—o0) < € - (d(X, Kexp)?)*/2 ¥x € F_oo N B(0, €1).
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Infimum of KL exponent cont.

Example cont.: Thus, the function
f(x) = d(X, Kexp)? + 07 (x)
has KL exponent 1 — «/2 at the origin, i.e., any numberin (1/2,1).

22/26



Infimum of KL exponent cont.

Example cont.: Thus, the function
f(x) = d(X, Kexp)? + 07 (x)
has KL exponent 1 — «/2 at the origin, i.e., any numberin (1/2,1).
However, there cannot be e, > 0 and ¢, > 0 such that
d(X, Kexp N F-oo) < G2 - d(X, Kexp) VX € F_oc N B(0,€2) :
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Infimum of KL exponent cont.

Example cont.: Thus, the function
f(x) = d(X, Kexp)? + 07 (x)
has KL exponent 1 — «/2 at the origin, i.e., any number in (1/2,1).
However, there cannot be e, > 0 and ¢, > 0 such that
d(X, Kexp N F-oo) < G2 - d(X, Kexp) VX € F_oc N B(0,€2) :
Indeed, suppose the above holds. Consider

In(k +1) In(k+1) 1
k* —_— k: —_———
X _< k+1 ’O’1>andv ( K+ 1 ’k+1’1 ’

Then vk € Koxp.
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Infimum of KL exponent cont.

Example cont.: Thus, the function
f(x) = d(X, Kexp)? + 07 (x)
has KL exponent 1 — «/2 at the origin, i.e., any numberin (1/2,1).
However, there cannot be e, > 0 and ¢, > 0 such that
d(X, Kexp n .7:700) S Co - d(X, Kexp) Vx € .7:700 n B(O7 62) .
Indeed, suppose the above holds. Consider
In(k + 1) In(k+1) 1
k _ k _
X _< k+1 ’O’1> and v ( k +1 ’k+1’1 '
Then vk € Koy Since F_ := {(x1,0,x3) | x; <0, X3 > 0}, we have
for all large k that
In(k +1)
k+1
a contradiction.

C2

= d(X*, Kexp N F-oo) < Go||X* — VK| = paE
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Infimum of KL exponent cont.

Example cont.: Thus, the function
f(x) = d(X, Kexp)? + 07 (x)

has KL exponent 1 — «/2 at the origin, i.e., any numberin (1/2,1).
However, there cannot be e, > 0 and ¢, > 0 such that

d(X, Kexp M .7:700) S Cz . d(X, Kexp) VX (S .7:700 M B(O7 62) .
Indeed, suppose the above holds. Consider

In(k + 1) In(k+1) 1
k Y e AR 1 Kk Y e S )

X ( k+1 ’O’>andv k+1 ’k+1’1
Then vk € Koy Since F_ := {(x1,0,x3) | x; <0, X3 > 0}, we have
for all large k that

In(k+1)

k+1

a contradiction. .-. 1/2 is not a KL exponent at the origin!

C2

:kaK o) < k_ vk =
(K Kewp 1 F ) < ol — 4] =
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KL exponent of p-regularized problems

Consider the p-norm regularized problem:
o 1 -
Minimize F(x) := 3 |Ax — b||* + ; Ml xillp:
where
e AcR™" beR", )\ >0forall i.

e The variable x = (X, ..., Xs) with x; € R™, n; > 2.
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KL exponent of p-regularized problems

Consider the p-norm regularized problem:

S
Minimize F(x) = 5 /Ax — bl + >~ Al
where =
e AcR™" beR™ )\ >0foralli.
e The variable x = (X, ..., Xs) with x; € R™, n; > 2.

e When p =1 or oo, KL exponent of F is % (Tseng, Yun '09).

When p = 2, KL exponent of F is § (Tseng’ 10).

When p € (1.2), KL exponent of F is 5; when p € (2, 00), KL
exponent of F cannot be 15 (Zhou, Zhang, So '15).
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KL exponent of p-regularized problems

Consider the p-norm regularized problem:

L 1 -
Minimize F(x) := 5 |/Ax — b +;Ainfllp,

where

AcR™" beR™, )\ > 0forall /.

The variable x = (x1, ..., xs) with x; € R", n; > 2.

When p = 1 or oo, KL exponent of F is % (Tseng, Yun '09).
When p = 2, KL exponent of F is § (Tseng’ 10).

When p € (1.2), KL exponent of F is 5; when p € (2, 00), KL
exponent of F cannot be 15 (Zhou, Zhang, So '15).

The above results used the interplay between KL property,
growth condition and Luo-Tseng error bound in the convex
scenario. (Bolte et al. *17, Drusvyatskiy, Lewis '18)
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KL exponent of p-regularized problems

Consider the p-norm regularized problem:

o 1 -
M'Qg;‘n'ze F(x) := §\|Ax—b|| +;>\;Hx,-||p,

where

AcR™" beR™, )\ > 0forall /.

The variable x = (x1, ..., xs) with x; € R", n; > 2.

When p = 1 or oo, KL exponent of F is % (Tseng, Yun '09).
When p = 2, KL exponent of F is § (Tseng’ 10).

When p € (1.2), KL exponent of F is 5; when p € (2, 00), KL
exponent of F cannot be 15 (Zhou, Zhang, So '15).

The above results used the interplay between KL property,
growth condition and Luo-Tseng error bound in the convex
scenario. (Bolte et al. *17, Drusvyatskiy, Lewis '18)

Denote the optimal value by 6.
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KL exponent of p-regularized problems cont.

A conic programming reformulation:
S
Minimize 0.5f+ AiYi
t,u,w,y,x =
subjectto Ax—w=0b, u=1,
(t,u,w) e QM2 (yi,x) € Ky, i=1,...,s.
where
QM2 .— {(t,u,w) e Ry x Ry x R™ | tu> ||w|?}.
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KL exponent of p-regularized problems cont.

A conic programming reformulation:

M|n|m|ze 0.5t + Z AiYi

t,u,w,y,x =
subjectto Ax—w=0b, u=1,
(t,u,w) e QM2 (yi,x) € Ky, i=1,...,s.
where
QM2 .— {(t,u,w) e Ry x Ry x R™ | tu> ||w|?}.
Notation:

® V:(t,U, W,(y1,X1),...,(ys,xs)).
e V={v|05t+> i, \yi=0,u=1,Ax—w=b}.
o K= x KJt! x .. x K§t!.
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KL exponent of p-regularized problems cont.

A conic programming reformulation:

M|n|m|ze 0.5t + Z AiYi

t,u,w,y,x =
subjectto Ax—w=0b, u=1,
(t,u,w) e QM2 (yi,x) € Ky, i=1,...,s.
where
QM2 .— {(t,u,w) e Ry x Ry x R™ | tu> ||w|?}.
Notation:

° V:(t,U, W,(y1,X1),...,(ys,xs)).

e V={v|05t+> i, \yi=0,u=1,Ax—w=b}.
o = Qm+2 K:hH NI, K[gh+1.

e Solution setis VN K.
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KL exponent of p-regularized problems cont.
A conic programming reformulation:

Minimize 0.5f+ AiYi

t,u,w,y,x =
subjectto Ax—w=0b, u=1,
(t,u,w) e QM2 (yi,x) € Ky, i=1,...,s.
where

QM2 .— {(t,u,w) e Ry x Ry x R™ | tu> ||w|?}.

Notation:

V= (ta u,w, (y1,X1);-~~,(ys,Xs))-

e V={v|05t+> i, \yi=0,u=1,Ax—w=b}.

o K =QM2 % K”’+1 X eee X K,g"“.

e Solution setis VN K.
Idea: Derive error bound for {V, K} and invoke KL calculus rules on
inf-projection (Yu, Li, Pong '22).
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KL exponent of p-regularized problems cont.

Theorem 3. (Lindstrom, Lourencgo, P. 22)
Let x* be a global minimizer of F. Then F satisfies the KL property at
x* with exponent 1 — «, where

a =min{0.5,1/p}9 forsome d < s+ 1.
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Theorem 3. (Lindstrom, Lourenco, P. 22)

Let x* be a global minimizer of F. Then F satisfies the KL property at
x* with exponent 1 — «, where

o =min{0.5,1/p}? forsome d < s+ 1.
Moreover, for the v* € V N K that corresponds to x*, if it holds that
v eri(kn{s*}t)
for some optimal solution s* of the dual conic program, then d < 1.
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KL exponent of p-regularized problems cont.

Theorem 3. (Lindstrom, Lourenco, P. 22)

Let x* be a global minimizer of F. Then F satisfies the KL property at
x* with exponent 1 — «, where

o =min{0.5,1/p}? forsome d < s+ 1.
Moreover, for the v* € V N K that corresponds to x*, if it holds that
v eri(kn{s*}t)
for some optimal solution s* of the dual conic program, then d < 1.

Key idea:

e The dominant exponent of the 1-FRF of the product cone K
comes from the “worst case exponent” of its constituents.
(Lindstrom, Lourencgo, P. °22)

e d+ 1 =/, the length of the chain of faces in the facial reduction
process.
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Conclusion and future work
Conclusion:

e Error bounds for {Kexp, £ + a} and {KJ", £ + a} using facial
reduction and 1-FRFs.

e Techniques for computing 1-FRFs.
e Application to the study of KL exponents.

References:
e S. B. Lindstrom, B. F. Lourengo and T. K. Pong.
Error bounds, facial residual functions and applications to the
exponential cone.
To appear in Math. Program.
Available at https://arxiv.org/abs/2010.16391.

e S. B. Lindstrom, B. F. Lourengo and T. K. Pong.
Optimal error bounds in the absence of constraint qualifications
with applications to the p-cones and beyond.
Preprint. Available at https://arxiv.org/abs/2109.11729.

Thanks for coming! <

26/26



