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Conic programming problem

Conic program: Let K be a closed convex cone in a Euclidean space
E , c ∈ E , A be a linear map on E and b ∈ Range(A).

Minimize
x

〈c, x〉 subject to Ax = b, x ∈ K.

Examples of cones:
• IRn

+, Sn
+, second-order cones.

• Exponential cone Kexp:

Kexp := {x ∈ IR3 | x2 > 0, x3 ≥ x2ex1/x2}∪{(x1,0, x3) | x1 ≤ 0, x3 ≥ 0}.

? Epigraph of (the closure of) the perspective function of z 7→ exp(z).
? Recent addition to MOSEK and other conic solvers.
? Has applications in relative entropy optimization (Chandrasekaran,

Shah ’17).
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Conic programming problem cont.

Examples of cones cont.:
• p-cones K n+1

p (p > 1):

K n+1
p := {x = (x0, x) ∈ IRn+1 | x0 ≥ ‖x‖p}.

? Reduces to second-order cone when p = 2.
? Widely studied as natural generalization of second-order cones.

• Geometric mean cone:

Kgeo := {x = (x0, x) ∈ IR× IRn
+ | x0 ≤ Πi=1x1/n

i }.
? Available in Hypatia. (Coey, Kapelevich, Vielma ’21)
? Arises when modeling Perron-Frobenius matrix completion

problems. (Agrawal, Diamond, Boyd ’19)

• Product cones of the above...
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Conic feasibility problem

Conic feasibility problem: Let K be a closed convex cone, L be a
subspace of a Euclidean space E and a ∈ E .

Find x ∈ K ∩ (L+ a).

• Focus on the feasible case, i.e., K ∩ (L+ a) 6= ∅.
• Arises from optimality conditions of conic programs.

When is a feasibility problem approximately solved?
• d(x ,K ∩ (L+ a)) is a measure on how “feasible” x is. Hard to compute!

• Typically, d(x ,K) and d(x ,L+ a) are relatively easier to compute.
• Is x “a good soln.” when max{d(x ,K), d(x ,L+ a)} is small?

Key: Compare the orders of magnitude of d(x ,K ∩ (L + a)) and
max{d(x ,K), d(x ,L+ a)}.

Note: Typically, (L+ a) ∩ riK = ∅.
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Error bounds

Definition: Let θ ∈ (0,1]. We say that {K,L+ a} satisfies a (uniform)
Hölderian error bound with exponent θ if for every bounded set B,
there exists cB > 0 such that

d(x ,K ∩ (L+ a)) ≤ cB (max{d(x ,K), d(x ,L+ a)})θ ∀x ∈ B.

If θ = 1, we say that a Lipschitz error bound holds.

Examples:
• If K is polyhedral, Lipschitz error bound holds. (Hoffman ’57)

• If (L+ a) ∩ riK 6= ∅, Lipschitz error bound holds. (Bauschke,
Borwein ’96)

• If K = Sn
+, Hölderian error bound with exponent 2−(`−1) holds

(Sturm ’00); here ` has to do with facial reduction. (Borwein,
Wolkowicz ’81)
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Faces and facial reduction

Definition: A sub-cone F ⊆ K is called
• a face if x , y ∈ K and x + y ∈ F implies x , y ∈ F ;
• an exposed face if ∃ z ∈ K∗ such that F = K ∩ {z}⊥.

Note: Recall that K∗ := {x | 〈x , y〉 ≥ 0 ∀y ∈ K}.

Theorem 1. (Lourenço, Muramatsu, Tsuchiya ’18)
Suppose K ∩ (L+ a) 6= ∅. Then there exists a chain of faces

F` ( · · · ( F1 = K

and vectors {z1, . . . , z`−1} satisfying
• For all i ∈ {1, . . . , `− 1},

zi ∈ F∗i ∩ L⊥ ∩ {a}⊥ and Fi+1 = Fi ∩ {zi}⊥.

• F` ∩ (L+ a) = K ∩ (L+ a) and {F`,L+ a} satisfies a Lipschitz
error bound.
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Sturm’s error bounds and facial reduction

Key observation: (Sturm ’00, Lourenço ’21)
Let F � Sn

+ and z ∈ F∗. Then ∃ κ > 0 such that for all x ,

d(x ,F ∩ {z}⊥) ≤ κε+ κ
√
ε‖x‖,

where ε = max{d(x ,F), d(x , {z}⊥)}.

Error bound for {Sn
+, (L+ a)} follows from induction: For x ∈ B,

d(x ,K ∩ (L+ a)) = d(x ,F` ∩ (L+ a)) ≤ c` max{d(x ,F`), d(x ,L+ a)}
≤ c`[d(x ,L+ a) + d(x ,F`−1 ∩ {z`−1}⊥)]

≤ c`[d(x ,L+ a) + c`−1
(

max{d(x ,F`−1), d(x , {z`−1}⊥)}

+
√

max{d(x ,F`−1), d(x , {z`−1}⊥)}‖x‖
)
]

=O([max{d(x ,F`−1), d(x ,L+ a)}] 1
2 ) = O([max{d(x ,K), d(x ,L+ a)}]

1
2`−1 ).
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Facial residual function
Definition: (Lourenço ’21, Lindstrom, Lourenço, P. ’22)
Let F �K and z ∈ F∗. Suppose ψ : IR+ × IR+ → IR+ satisfies
• ψ is nondecreasing in each argument and ψ(0, t) = 0 ∀ t ∈ IR+;
• It holds that

d(x ,F ∩ {z}⊥) ≤ ψ(max{d(x ,F), d(x , {z}⊥)}, ‖x‖) ∀x ∈ spanF .

Then ψ is called a 1-step facial residual function for F and z.

Remarks:
• For K = Sn

+, we have ψ(s, t) = κ · (s +
√

st) for some κ > 0.
• Induction arguments show that error bound can be derived given

the face chain from facial reduction and by composing 1-step
facial residual functions. (Lindstrom, Lourenço, P. ’22)

• Two key ingredients: For each nonpolyhedral F ,
? Identify all its exposed faces.
? Obtain all 1-step facial residual functions: Depends on F and z.
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Outline

Aim: Case studies on errors bounds for Kexp and p-cones (K n+1
p ).

1. Derive error bounds for {Kexp,L+ a}.
? Describe all nontrivial exposed faces of exponential cone Kexp.
? Find the associated 1-step facial residual functions (1-FRFs).
? Discuss our strategy for computing 1-FRFs.

2. Derive error bounds for {K n+1
p ,L+ a} with p ∈ (1,∞).

? Describe all nontrivial exposed faces of p-cone K n+1
p .

? Find the associated 1-step facial residual functions (1-FRFs).
? Discuss our strategy for computing 1-FRFs.

3. Applications:
? (Informally) The infimum of Kurdyka-Łojasiewicz (KL) exponents

may not be a KL exponent.
? Finding KL exponent for some p-norm regularized problems.
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Exponential cone

Kexp = {x ∈ IR3 | x2 > 0, x3 ≥ x2ex1/x2} ∪ {(x1,0, x3) | x1 ≤ 0, x3 ≥ 0}.
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Faces of exponential cone

Kexp = {x ∈ IR3 | x2 > 0, x3 ≥ x2ex1/x2} ∪ {(x1,0, x3) | x1 ≤ 0, x3 ≥ 0}.

Nontrivial exposed faces: (Lindstrom, Lourenço, P. ’22)

• (Infinitely many) 1-D face exposed by a unique (up to scaling)
z ∈ ∂K ∗exp\{0}:

Fβ := {(t(1− β), t , te1−β | t ≥ 0} for each β ∈ IR.

• An exceptional extreme ray exposed by any
z ∈ {(0, z2, z3) | z2 ≥ 0, z3 > 0} ⊂ ∂K ∗exp\{0}:

F∞ := {(x1,0,0) | x1 ≤ 0}.

• A unique 2-D face exposed uniquely (up to scaling) by (0,1,0):

F−∞ := {(x1,0, x3) | x1 ≤ 0, x3 ≥ 0}.
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1-FRFs for exponential cone

1-FRFs: (Lindstrom, Lourenço, P. ’22) Assume ‖z‖ = 1.
• (Infinitely many) 1-D face exposed by a unique z ∈ ∂K ∗exp\{0}:

ψ(s, t) = s + κ(t) ·
√

2s,

where κ(·) is nonnegative nondecreasing.
• The exceptional extreme ray F∞:

ψ(s, t) =

{
s + 2κ(t)s if z2 > 0,
s + κ(t) · g∞(2s) if z2 = 0,

where κ(·) is nonnegative nondecreasing, and g∞ : IR+ → IR+ is

g∞(s) :=


0 if s = 0,
−(ln s)−1 if 0 < s ≤ e−2,

0.25(1 + e2s) else.
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1-FRFs for exponential cone cont.
1-FRFs cont.: Assume ‖z‖ = 1.
• The unique 2-D face exposed uniquely by (0,1,0):

ψ(s, t) = s + κ(t) · g−∞(2s),

where κ(·) is nonnegative nondecreasing, g−∞ : IR+ → IR+ is

g−∞(s) :=


0 if s = 0,
−s ln s if 0 < s ≤ e−2,

s + e−2 else.

Remark:
• As all nontrivial exposed faces are polyhedral, ` ≤ 2. The final

error bound has the same “order of magnitude” as the 1-FRFs.
• As s ↓ 0: −(ln s)−1 → 0 slower than sα for any α ∈ (0,1];
−s ln s → 0 faster than sα for any α ∈ (0,1), but is slower than s.

• These 1-FRFs are asymptotically the “best”. (Lindstrom, Lourenço,
P. ’22)
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Computing 1-FRFs
Difficulties:
• Need to compare d(x ,Kexp), d(x , {z}⊥), and d(x ,Kexp ∩ {z}⊥).
• Projection onto Kexp (and hence d(x ,Kexp)) does not have an

easy-to-analyze analytic form.

The v − w − u approach:
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Computing 1-FRFs cont.
Theorem 2. (Lindstrom, Lourenço, P. ’22)
Let K be a closed convex cone and z ∈ K∗ (with ‖z‖ = 1) be such
that {z}⊥ ∩ K is a nontrivial exposed face of K.
Let η > 0, α ∈ (0,1] and g : IR+ → IR+ be nondecreasing and satisfy
g(0) = 0 and g ≥ | · |α. Consider

γz,η := inf
v

{
g(‖w − v‖)
‖w − u‖

∣∣∣∣ v ∈ ∂K ∩ B(η) \ ({z}⊥ ∩ K)
w = Proj{z}⊥v , u = Proj{z}⊥∩Kw , w 6= u

}
.

Suppose that γz,η ∈ (0,∞]. Then

d(x , {z}⊥ ∩ K) ≤ κz,ηg(d(x ,K)) ∀ x ∈ {z}⊥ ∩ B(0, η),

where κz,η := max{2η1−α,2γ−1
z,η}. Moreover,

ψ(s, t) := s + κz,tg(2s)

is a 1-FRF of K and z.
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Main idea

We illustrate how Theorem 2 can be used for computing 1-FRF for
those (infinitely many) 1-D face Fβ .

Key Lemma 1. (Lindstrom, Lourenço, P. ’22)
Let β ∈ IR and z ∈ K ∗exp with z1 < 0 such that Fβ = {z}⊥ ∩ Kexp. Let
η > 0, v ∈ ∂Kexp ∩ B(η)\Fβ , w = Proj{z}⊥v and u = ProjFβw . Then

‖w − v‖ =
|〈ẑ, v〉|
‖ẑ‖

and ‖w − u‖ =

{
|〈p̂,v〉|
‖p̂‖ if 〈f̂ , v〉 ≥ 0,
‖w‖ otherwise.

where

ẑ :=

 1
β

−eβ−1

 , f̂ =

1− β
1

e1−β

 , p̂ =

 βe1−β + eβ−1

−e1−β − (1− β)eβ−1

β2 − β + 1

 .
Moreover, when 〈f̂ , v〉 ≥ 0, we have u = PspanFβw .
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Main idea cont.

Consider those (infinitely many) 1-D face Fβ exposed by a unique (up
to scaling) z ∈ ∂K ∗exp\{0}: Let ‖z‖ = 1 and Fβ = cone {f̂}.

• If 〈f , v〉 ≥ 0 and v /∈ F−∞, then v = (v1, v2, v2ev1/v2 ) and

‖w − v‖ = Ω(v2 · |h1(v1/v2)|) and ‖w − u‖ = O(v2 · |h2(v1/v2)|),

where

h1(ζ) := ζ + β − eβ+ζ−1,

h2(ζ) := (βe1−β + eβ−1)ζ − e1−β − (1− β)eβ−1 + (β2 − β + 1)eζ .

For those v1/v2 close to 1− β, the exponent of 1/2 pops up upon
comparing Taylor series at ζ = 1− β.

• Other cases can be dealt with similarly.
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Faces of p-cone

We focus on the case where p ∈ (1,∞)\{2} and n ≥ 2.

K n+1
p = {x = (x0, x) ∈ IRn+1 | x0 ≥ ‖x‖p}.

It is known that (K n+1
p )∗ = K n+1

q , where 1/p + 1/q = 1.

Nontrivial exposed faces: (Lindstrom, Lourenço, P. ’22)

• (Infinitely many) 1-D face exposed by a unique (up to scaling)
z := (z0, z) ∈ ∂K n+1

q \{0}:

Fz := {t · f | t ≥ 0} = K n+1
p ∩ {z}⊥,

where
f :=

[
1

−sgn(z) ◦ |z−1
0 z|q−1

]
,

where the sign, inverse, absolute value and power are taken
componentwise.
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1-FRFs for p-cone
1-FRFs: (Lindstrom, Lourenço, P. ’22) Assume ‖z‖ = 1.
• (Infinitely many) 1-D face exposed by the unique z ∈ ∂K n+1

q \{0}:

ψ(s, t) = s + κ(t) · (2s)αz ,

where κ(·) is nonnegative nondecreasing, and

αz :=


1
2 if |Jz | = n,
1
p if |Jz | = 1 and p < 2,
min

{ 1
2 ,

1
p

}
otherwise,

with Jz := {i | z i 6= 0}.

Remark:
• Since all nontrivial faces are polyhedral, ` ≤ 2. Hence, the final

error bound has the same “order of magnitude” as the 1-FRFs.
• These 1-FRFs are asymptotically the “best”. (Lindstrom, Lourenço,

P. ’22)
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Main idea
How do the f and the weird exponent arise?

Key Lemma 2. (Lindstrom, Lourenço, P. ’22)

Let p,q ∈ (1,∞) be such that 1
p + 1

q = 1 and ζ ∈ IRn satisfy ‖ζ‖q = 1.
Define

ζ := −sgn(ζ) ◦ |ζ|q−1,

Then ‖ζ‖p = 1 and the following statements hold:
• There exist C > 0 and ε > 0 so that

1 + 〈ζ, ω〉 ≥ C
∑
i∈I

|ωi − ζ i |2 +
1
p

∑
i /∈I

|ωi |p

whenever ‖ω − ζ‖ ≤ ε and ‖ω‖p = 1, where I = {i : ζ i 6= 0}.
• For any ω satisfying ‖ω‖p ≤ 1, it holds that 〈ζ, ω〉 ≥ −1, with the

equality holding if and only if ω = ζ.
We apply the above lemma to ζ := z−1

0 z for a z ∈ ∂K n+1
q \{0}.
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KL property & exponent
Definition: (Attouch et al. ’10, Attouch et al. ’13)
Let f be proper closed and α ∈ [0,1). The function f is said to have
the Kurdyka-Łojasiewicz (KL) property with exponent α at x̄ ∈ dom ∂f
if there exist c, ν, ε > 0 so that

c [f (x)− f (x̄)]α ≤ d(0, ∂f (x))

whenever x ∈ dom ∂f , ‖x − x̄‖ ≤ ε and f (x̄) < f (x) < f (x̄) + ν.

Remarks:
• Proper closed semialgebraic functions are KL functions with

exponent α ∈ [0,1). (Bolte et al. ’07)

• Let f be proper closed convex and x̄ ∈ Arg min f . Then f has KL
exponent α at x̄ if and only if there exists ĉ, ν̂, ε̂ > 0 so that

ĉ · d(x ,Arg min f ) ≤ (f (x)− inf f )1−α

whenever x ∈ dom f , ‖x − x̄‖ ≤ ε̂ and f (x̄) < f (x) < f (x̄) + ν̂.
(Bolte et al. ’17)
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Infimum of KL exponent

Example: In Kexp, recall that a 1-FRF for the unique 2-D face F−∞ is:

ψ(s, t) = s + κ(t) · g−∞(2s),

where κ(·) is nonnegative nondecreasing, g−∞ : IR+ → IR+ is

g−∞(s) :=


0 if s = 0,
−s ln s if 0 < s ≤ e−2,

s + e−2 else.

Moreover, F−∞ = Kexp ∩ F−∞.

Then there exists ε ∈ (0,e−2) and
c > 0 such that

d(x ,Kexp ∩ F−∞) ≤ c · g−∞(d(x ,Kexp)) ∀x ∈ F−∞ ∩ B(0, ε).

Since for any α ∈ (0,1), −s ln s ≤ sα for all sufficiently small s > 0,
there exists ε1 > 0 such that

d(x ,Kexp ∩ F−∞) ≤ c · (d(x ,Kexp)2)α/2 ∀x ∈ F−∞ ∩ B(0, ε1).
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Infimum of KL exponent cont.

Example cont.: Thus, the function

f (x) := d(x ,Kexp)2 + δF−∞(x)

has KL exponent 1− α/2 at the origin, i.e., any number in (1/2,1).

However, there cannot be ε2 > 0 and c2 > 0 such that

d(x ,Kexp ∩ F−∞) ≤ c2 · d(x ,Kexp) ∀x ∈ F−∞ ∩ B(0, ε2) :

Indeed, suppose the above holds. Consider

xk =

(
ln(k + 1)

k + 1
,0,1

)
and vk =

(
ln(k + 1)

k + 1
,

1
k + 1

,1
)
.

Then vk ∈ Kexp. Since F−∞ := {(x1,0, x3) | x1 ≤ 0, x3 ≥ 0}, we have
for all large k that

ln(k + 1)

k + 1
= d(xk ,Kexp ∩ F−∞) ≤ c2‖xk − vk‖ =

c2

k + 1
,

a contradiction. ∴ 1/2 is not a KL exponent at the origin!
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KL exponent of p-regularized problems
Consider the p-norm regularized problem:

Minimize
x∈IRn

F (x) :=
1
2
‖Ax − b‖2 +

s∑
i=1

λi‖xi‖p,

where
• A ∈ IRm×n, b ∈ IRm, λi > 0 for all i .
• The variable x = (x1, . . . , xs) with xi ∈ IRni , ni ≥ 2.

• When p = 1 or∞, KL exponent of F is 1
2 (Tseng, Yun ’09).

• When p = 2, KL exponent of F is 1
2 (Tseng’ 10).

• When p ∈ (1,2), KL exponent of F is 1
2 ; when p ∈ (2,∞), KL

exponent of F cannot be 1
2 (Zhou, Zhang, So ’15).

• The above results used the interplay between KL property,
growth condition and Luo-Tseng error bound in the convex
scenario. (Bolte et al. ’17, Drusvyatskiy, Lewis ’18)

• Denote the optimal value by θ.
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KL exponent of p-regularized problems cont.
A conic programming reformulation:

Minimize
t,u,w,y,x

0.5t +
s∑

i=1

λiyi

subject to Ax − w = b, u = 1,
(t ,u,w) ∈ Qm+2

r , (yi , xi ) ∈ K ni+1
p , i = 1, . . . , s.

where
Qm+2

r := {(t ,u,w) ∈ IR+ × IR+ × IRm | tu ≥ ‖w‖2}.

Notation:
• v = (t ,u,w , (y1, x1), . . . , (ys, xs)).
• V = {v | 0.5t +

∑s
i=1 λiyi = θ,u = 1,Ax − w = b}.

• K = Qm+2
r × K ni+1

p × · · · × K ni+1
p .

• Solution set is V ∩ K.
Idea: Derive error bound for {V,K} and invoke KL calculus rules on
inf-projection (Yu, Li, Pong ’22).
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KL exponent of p-regularized problems cont.

Theorem 3. (Lindstrom, Lourenço, P. ’22)
Let x∗ be a global minimizer of F . Then F satisfies the KL property at
x∗ with exponent 1− α, where

α = min{0.5,1/p}d for some d ≤ s + 1.

Moreover, for the v∗ ∈ V ∩ K that corresponds to x∗, if it holds that

v∗ ∈ ri(K ∩ {s∗}⊥)

for some optimal solution s∗ of the dual conic program, then d ≤ 1.

Key idea:
• The dominant exponent of the 1-FRF of the product cone K

comes from the “worst case exponent” of its constituents.
(Lindstrom, Lourenço, P. ’22)

• d + 1 = `, the length of the chain of faces in the facial reduction
process.
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Conclusion and future work
Conclusion:
• Error bounds for {Kexp,L+ a} and {K n+1

p ,L+ a} using facial
reduction and 1-FRFs.

• Techniques for computing 1-FRFs.
• Application to the study of KL exponents.
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