Convergence rate analysis of a Dykstra-type projection algorithm

Ting Kei Pong
Department of Applied Mathematics
The Hong Kong Polytechnic University Hong Kong

pre-SIAM Optimization Workshop
University of Washington
May 2023
(Joint work with Xiaozhou Wang)

Motivating applications

- Nearest correlation matrices: (Higham '02)

$$
\underset{x \in S^{n}}{\operatorname{Minimize}}\|x-\bar{v}\|_{F}^{2} \text { subject to } x \in \cap_{i=1}^{3} C_{i},
$$

where $\bar{v} \in S^{n}, C_{1}=S_{+}^{n}, C_{2}=\left\{x \in S^{n}: L_{i j} \leq x_{i j} \leq U_{i j} \forall i, j\right\}$ and

$$
C_{3}:=\left\{x \in S^{n}: x_{i i}=1 \forall i\right\} .
$$

- System identification: (Liu et al. '20)
$\underset{x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}}{\operatorname{Minimize}} \sum_{i=1}^{m}\left\|x_{i}-\bar{v}_{i}\right\|^{2}$ subject to $x:=\left(x_{1}, \ldots, x_{m}\right) \in D_{1} \cap D_{2}$,
where \bar{v} is given, and

$$
\begin{aligned}
& D_{1}:=\left\{x \in \mathbb{R}^{m n}:\left\|\mathcal{H}_{r_{i+1}}\left(x_{i}\right)\right\|_{*} \leq k_{i}, i=1, \ldots, m\right\}, \\
& D_{2}:=\left\{x \in \mathbb{R}^{m n}:\left\|\left[\mathcal{H}_{r+1}\left(x_{1}\right) \cdots \mathcal{H}_{r+1}\left(x_{m}\right)\right]\right\|_{*} \leq k\right\},
\end{aligned}
$$

with \mathcal{H}_{s} being a linear map that returns a suitable Hankel matrix, $\|\cdot\|_{*}$ is the nuclear norm, $r_{i}, r \in \mathbb{N}$, and $k_{i}, k>0$.

Best approximation problems

Consider the following best approximation problem:

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{Minimize}} \frac{1}{2}\|x-\bar{v}\|^{2} \text { subject to } x \in \bigcap_{i=1}^{\ell} A_{i}^{-1} C_{i},
$$

where

- $A_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m_{i}}$ is linear and nonzero;
- each $C_{i} \subseteq \mathbb{R}^{m_{i}}$ is closed and convex;
- projection onto C_{i} can be computed more efficiently than projection onto $A_{i}^{-1} C_{i}$;
- For technical succintness:

$$
\bigcap_{i=1}^{\ell} A_{i}^{-1} C_{i} \neq \emptyset
$$

When $A_{i}=I$

Dykstra's projection algorithm: (Boyle, Dykstra '86, Han '88)
Set $x_{\ell}^{0}=\bar{v}, y_{1}^{0}=\cdots=y_{\ell}^{0}=0$. For each $t \geq 0$, set $x_{0}^{t+1}=x_{\ell}^{t}$ and compute

$$
x_{i}^{t+1}=\operatorname{Proj}_{C_{i}}\left(y_{i}^{t}+x_{i-1}^{t+1}\right), \quad y_{i}^{t+1}=y_{i}^{t}+x_{i-1}^{t+1}-x_{i}^{t+1} \text { for } i=1, \ldots, \ell .
$$

When $A_{i}=I$

Dykstra's projection algorithm: (Boyle, Dykstra '86, Han '88)
Set $x_{\ell}^{0}=\bar{v}, y_{1}^{0}=\cdots=y_{\ell}^{0}=0$. For each $t \geq 0$, set $x_{0}^{t+1}=x_{\ell}^{t}$ and compute

$$
x_{i}^{t+1}=\operatorname{Proj}_{C_{i}}\left(y_{i}^{t}+x_{i-1}^{t+1}\right), \quad y_{i}^{t+1}=y_{i}^{t}+x_{i-1}^{t+1}-x_{i}^{t+1} \text { for } i=1, \ldots, \ell .
$$

Known facts:

- $x_{\ell}^{t}=: x^{t} \rightarrow \operatorname{Proj}_{\cap_{i=1}^{e} c_{i}}(\bar{v})$.
- Reduces to cyclic projection when each C_{i} is affine. (Gaffke, Mathar '89).
- Equivalent to CGD applied to

$$
\underset{y_{1}, \ldots, y_{\ell}}{\operatorname{Minimize}} \frac{1}{2}\left\|\sum_{i=1}^{\ell} y_{i}-\bar{v}\right\|^{2}-\frac{1}{2}\|\bar{v}\|^{2}+\sum_{i=1}^{\ell} \sigma_{C_{i}}\left(y_{i}\right)
$$

starting from $y_{1}^{0}=\cdots=y_{\ell}^{0}=0$.

When $A_{i}=I$ cont.

Dykstra's projection algorithm: (Boyle, Dykstra '86, Han '88)
Set $x_{\ell}^{0}=\bar{v}, y_{1}^{0}=\cdots=y_{\ell}^{0}=0$. For each $t \geq 0$, set $x_{0}^{t+1}=x_{\ell}^{t}$ and compute

$$
x_{i}^{t+1}=\operatorname{Proj}_{C_{i}}\left(y_{i}^{t}+x_{i-1}^{t+1}\right), \quad y_{i}^{t+1}=y_{i}^{t}+x_{i-1}^{t+1}-x_{i}^{t+1} \quad \text { for } i=1, \ldots, \ell .
$$

Known facts cont.:

- Local linear convergence of $\left\{x_{\ell}^{t}\right\}$ and all $\left\{y_{i}^{t}\right\}$ when each C_{i} is polyhedral. (Luo, Tseng '93)
- Convergence rate unknown for general C_{i}.

When $A_{i}=I$ cont.

Dykstra's projection algorithm: (Boyle, Dykstra '86, Han '88)
Set $x_{\ell}^{0}=\bar{v}, y_{1}^{0}=\cdots=y_{\ell}^{0}=0$. For each $t \geq 0$, set $x_{0}^{t+1}=x_{\ell}^{t}$ and compute

$$
x_{i}^{t+1}=\operatorname{Proj}_{C_{i}}\left(y_{i}^{t}+x_{i-1}^{t+1}\right), \quad y_{i}^{t+1}=y_{i}^{t}+x_{i-1}^{t+1}-x_{i}^{t+1} \quad \text { for } i=1, \ldots, \ell .
$$

Known facts cont.:

- Local linear convergence of $\left\{x_{\ell}^{t}\right\}$ and all $\left\{y_{i}^{t}\right\}$ when each C_{i} is polyhedral. (Luo, Tseng '93)
- Convergence rate unknown for general C_{i}.

Outline:

- Develop Dykstra-type projection algorithm when $A_{i} \neq I$.
- Identify a class of sets C_{i} for convergence rate analysis.
- Explicit error bounds and convergence rate, with "tightness" examples.

A Dykstra-type algorithm

Dykstra-type projection algorithm:
Set $y_{i}^{0}=0 \in \mathbb{R}^{m_{i}}$ and $\gamma_{i}:=\lambda_{\max }\left(A_{i}^{T} A_{i}\right)$ for all $i, x_{\ell}^{0}=\bar{v} \in \mathbb{R}^{n}$.
For each $t \geq 0$, set $x_{0}^{t+1}=x_{\ell}^{t}$ and $x^{t}=x_{\ell}^{t}$. Compute, for $i=1, \ldots, \ell$,

$$
\begin{aligned}
x_{i}^{t+1} & =\left(I-\gamma_{i}^{-1} A_{i}^{T} A_{i}\right) x_{i-1}^{t+1}+\gamma_{i}^{-1} A_{i}^{T} \operatorname{Proj}_{C_{i}}\left(\gamma_{i} y_{i}^{t}+\boldsymbol{A}_{i} x_{i-1}^{t+1}\right), \\
y_{i}^{t+1} & =y_{i}^{t}+\gamma_{i}^{-1} \boldsymbol{A}_{i} x_{i-1}^{t+1}-\gamma_{i}^{-1} \operatorname{Proj}_{C_{i}}\left(\gamma_{i} y_{i}^{t}+\boldsymbol{A}_{i} x_{i-1}^{t+1}\right) .
\end{aligned}
$$

A Dykstra-type algorithm

Dykstra-type projection algorithm:
Set $y_{i}^{0}=0 \in \mathbb{R}^{m_{i}}$ and $\gamma_{i}:=\lambda_{\max }\left(A_{i}^{T} A_{i}\right)$ for all $i, x_{\ell}^{0}=\bar{v} \in \mathbb{R}^{n}$.
For each $t \geq 0$, set $x_{0}^{t+1}=x_{\ell}^{t}$ and $x^{t}=x_{\ell}^{t}$. Compute, for $i=1, \ldots, \ell$,

$$
\begin{aligned}
x_{i}^{t+1} & =\left(I-\gamma_{i}^{-1} A_{i}^{T} A_{i}\right) x_{i-1}^{t+1}+\gamma_{i}^{-1} A_{i}^{T} \operatorname{Proj}_{C_{i}}\left(\gamma_{i} y_{i}^{t}+\boldsymbol{A}_{i} x_{i-1}^{t+1}\right), \\
y_{i}^{t+1} & =y_{i}^{t}+\gamma_{i}^{-1} A_{i} x_{i-1}^{t+1}-\gamma_{i}^{-1} \operatorname{Proj}_{c_{i}}\left(\gamma_{i} y_{i}^{t}+\boldsymbol{A}_{i} x_{i-1}^{t+1}\right) .
\end{aligned}
$$

For notational simplicity, write $\boldsymbol{y}^{t}:=\left(y_{1}^{t}, \ldots, y_{\ell}^{t}\right)$ for all t.

A Dykstra-type algorithm

Dykstra-type projection algorithm:
Set $y_{i}^{0}=0 \in \mathbb{R}^{m_{i}}$ and $\gamma_{i}:=\lambda_{\max }\left(A_{i}^{T} A_{i}\right)$ for all $i, x_{\ell}^{0}=\bar{v} \in \mathbb{R}^{n}$.
For each $t \geq 0$, set $x_{0}^{t+1}=x_{\ell}^{t}$ and $x^{t}=x_{\ell}^{t}$. Compute, for $i=1, \ldots, \ell$,

$$
\begin{aligned}
& x_{i}^{t+1}=\left(I-\gamma_{i}^{-1} A_{i}^{T} A_{i}\right) x_{i-1}^{t+1}+\gamma_{i}^{-1} A_{i}^{T} \operatorname{Proj}_{C_{i}}\left(\gamma_{i} y_{i}^{t}+A_{i} x_{i-1}^{t+1}\right), \\
& y_{i}^{t+1}=y_{i}^{t}+\gamma_{i}^{-1} A_{i} x_{i-1}^{t+1}-\gamma_{i}^{-1} \operatorname{Proj}_{C_{i}}\left(\gamma_{i} y_{i}^{t}+\boldsymbol{A}_{i} x_{i-1}^{t+1}\right) .
\end{aligned}
$$

For notational simplicity, write $\boldsymbol{y}^{t}:=\left(y_{1}^{t}, \ldots, y_{\ell}^{t}\right)$ for all t.

- The algorithm is equivalent to a proximal CGD applied to

$$
\underset{y_{1}, \ldots, y_{\ell}}{\operatorname{Minimize}} d(\boldsymbol{y}):=\frac{1}{2}\left\|\sum_{i=1}^{\ell} A_{i}^{T} y_{i}-\bar{v}\right\|^{2}-\frac{1}{2}\|\bar{v}\|^{2}+\sum_{i=1}^{\ell} \sigma_{C_{i}}\left(y_{i}\right)
$$

starting from $y_{i}^{0}=0$ for all i.

A Dykstra-type algorithm cont.

Key facts:

- It holds that

$$
-\inf _{y} d(\boldsymbol{y})=\inf _{x}\left\{\frac{1}{2}\|x-\bar{v}\|^{2}: x \in \cap_{i=1}^{\ell} A_{i}^{-1} C_{i}\right\} .
$$

A Dykstra-type algorithm cont.

Key facts:

- It holds that

$$
-\inf _{y} d(\boldsymbol{y})=\inf _{x}\left\{\frac{1}{2}\|x-\bar{v}\|^{2}: x \in \cap_{i=1}^{\ell} A_{i}^{-1} C_{i}\right\} .
$$

- $\left\|\boldsymbol{y}^{t+1}-\boldsymbol{y}^{t}\right\| \rightarrow 0$ and $\operatorname{dist}\left(\mathbf{0}, \partial d\left(\boldsymbol{y}^{t}\right)\right) \rightarrow 0$.
- Every accumulation point of $\left\{\boldsymbol{y}^{t}\right\}$ minimizes d.

A Dykstra-type algorithm cont.

Key facts:

- It holds that

$$
-\inf _{y} d(\boldsymbol{y})=\inf _{x}\left\{\frac{1}{2}\|x-\bar{v}\|^{2}: x \in \cap_{i=1}^{\ell} A_{i}^{-1} C_{i}\right\} .
$$

- $\left\|\boldsymbol{y}^{t+1}-\boldsymbol{y}^{t}\right\| \rightarrow 0$ and $\operatorname{dist}\left(\mathbf{0}, \partial d\left(\boldsymbol{y}^{t}\right)\right) \rightarrow 0$.
- Every accumulation point of $\left\{\boldsymbol{y}^{t}\right\}$ minimizes d.
- If $\boldsymbol{y}^{*} \in \operatorname{Arg} \min d$, then $\operatorname{Proj}_{\cap_{i=1}^{\ell} A_{i}^{-1} c_{i}}(\bar{v})=\bar{v}-\sum_{i=1}^{\ell} A_{i}^{T} y_{i}^{*}$.

A Dykstra-type algorithm cont.

Key facts:

- It holds that

$$
-\inf _{y} d(\boldsymbol{y})=\inf _{x}\left\{\frac{1}{2}\|x-\bar{v}\|^{2}: x \in \cap_{i=1}^{\ell} A_{i}^{-1} C_{i}\right\} .
$$

- $\left\|\boldsymbol{y}^{t+1}-\boldsymbol{y}^{t}\right\| \rightarrow 0$ and $\operatorname{dist}\left(\mathbf{0}, \partial d\left(\boldsymbol{y}^{t}\right)\right) \rightarrow 0$.
- Every accumulation point of $\left\{\boldsymbol{y}^{t}\right\}$ minimizes d.
- If $\boldsymbol{y}^{*} \in \operatorname{Arg} \min d$, then $\operatorname{Proj}_{\cap_{i=1}^{\ell} A_{i}^{-1} C_{i}}(\bar{v})=\bar{v}-\sum_{i=1}^{\ell} A_{i}^{T} y_{i}^{*}$.
- (Auslender, Cominetti, Crouziex '93) Suppose that $\cap_{i=1}^{\ell} A_{i}^{-1}$ ri $C_{i} \neq \emptyset$. Then $\operatorname{Arg} \min d=E_{1}+E_{2} \neq \emptyset$, where E_{1} is compact and E_{2} is a subspace. Moreover, we have

$$
d\left(\boldsymbol{y}^{t}\right) \rightarrow \inf d, \quad \operatorname{dist}\left(\boldsymbol{y}^{t}, \operatorname{Arg} \min d\right) \rightarrow 0
$$

and $d(\boldsymbol{y}+\boldsymbol{u})=d(\boldsymbol{y})$ for all $\boldsymbol{y} \in \mathbb{R}^{m_{1}} \times \cdots \times \mathbb{R}^{m_{\ell}}$ and $\boldsymbol{u} \in E_{2}$.

$C^{1, \alpha}$-cone reducibility

Let \mathbb{X} and \mathbb{Y} be two finite dimensional Hilbert spaces.
Definition: Let $\alpha \in(0,1]$. A closed set $\Omega \subseteq \mathbb{X}$ is said to be $C^{1, \alpha}$-cone reducible at $\hat{x} \in \Omega$ if $\exists \rho>0$, a closed convex pointed cone $K \subseteq \mathbb{Y}$ and a mapping $\equiv: \mathbb{X} \rightarrow \mathbb{Y}$ satisfies $\equiv(\hat{x})=0$ and is $C^{1, \alpha}$ in $B(\hat{x}, \rho)$ with $D \equiv(\hat{x})$ being surjective, and moreover

$$
\Omega \cap B(\hat{x}, \rho)=\{x: \equiv(x) \in K\} \cap B(\hat{x}, \rho) .
$$

We say that Ω is $C^{1, \alpha}$-cone reducible if it is so at each $x \in \Omega$.

$C^{1, \alpha}$-cone reducibility

Let \mathbb{X} and \mathbb{Y} be two finite dimensional Hilbert spaces.
Definition: Let $\alpha \in(0,1]$. A closed set $\Omega \subseteq \mathbb{X}$ is said to be $C^{1, \alpha}$-cone reducible at $\hat{x} \in \Omega$ if $\exists \rho>0$, a closed convex pointed cone $K \subseteq \mathbb{Y}$ and a mapping $\equiv: \mathbb{X} \rightarrow \mathbb{Y}$ satisfies $\equiv(\hat{x})=0$ and is $C^{1, \alpha}$ in $B(\hat{x}, \rho)$ with $D \equiv(\hat{x})$ being surjective, and moreover

$$
\Omega \cap B(\hat{x}, \rho)=\{x: \equiv(x) \in K\} \cap B(\hat{x}, \rho) .
$$

We say that Ω is $C^{1, \alpha}$-cone reducible if it is so at each $x \in \Omega$.

Examples:

- A set C is $C^{1,1}$-cone reducible at any $x \in \operatorname{int} C$: just take $\mathbb{Y}=\{0\}$.

$C^{1, \alpha}$-cone reducibility

Let \mathbb{X} and \mathbb{Y} be two finite dimensional Hilbert spaces.
Definition: Let $\alpha \in(0,1]$. A closed set $\Omega \subseteq \mathbb{X}$ is said to be $C^{1, \alpha}$-cone reducible at $\hat{x} \in \Omega$ if $\exists \rho>0$, a closed convex pointed cone $K \subseteq \mathbb{Y}$ and a mapping $\equiv: \mathbb{X} \rightarrow \mathbb{Y}$ satisfies $\equiv(\hat{x})=0$ and is $C^{1, \alpha}$ in $B(\hat{x}, \rho)$ with $D \equiv(\hat{x})$ being surjective, and moreover

$$
\Omega \cap B(\hat{x}, \rho)=\{x: \equiv(x) \in K\} \cap B(\hat{x}, \rho) .
$$

We say that Ω is $C^{1, \alpha}$-cone reducible if it is so at each $x \in \Omega$.

Examples:

- A set C is $C^{1,1}$-cone reducible at any $x \in \operatorname{int} C$: just take $\mathbb{Y}=\{0\}$. Note that $C^{1,1}$-cone reducibility $\Longrightarrow C^{1, \alpha}$-cone reducibility for any $\alpha \in(0,1]$.

$C^{1, \alpha}$-cone reducibility

Let \mathbb{X} and \mathbb{Y} be two finite dimensional Hilbert spaces.
Definition: Let $\alpha \in(0,1]$. A closed set $\Omega \subseteq \mathbb{X}$ is said to be $C^{1, \alpha}$-cone reducible at $\hat{x} \in \Omega$ if $\exists \rho>0$, a closed convex pointed cone $K \subseteq \mathbb{Y}$ and a mapping $\equiv: \mathbb{X} \rightarrow \mathbb{Y}$ satisfies $\equiv(\hat{x})=0$ and is $C^{1, \alpha}$ in $B(\hat{x}, \rho)$ with $D \equiv(\hat{x})$ being surjective, and moreover

$$
\Omega \cap B(\hat{x}, \rho)=\{x: \equiv(x) \in K\} \cap B(\hat{x}, \rho) .
$$

We say that Ω is $C^{1, \alpha}$-cone reducible if it is so at each $x \in \Omega$.

Examples:

- A set C is $C^{1,1}$-cone reducible at any $x \in \operatorname{int} C$: just take $\mathbb{Y}=\{0\}$. Note that $C^{1,1}$-cone reducibility $\Longrightarrow C^{1, \alpha}$-cone reducibility for any $\alpha \in(0,1]$.
- A closed convex pointed cone is $C^{1,1}$-cone reducible at the origin.

$C^{1, \alpha}$-cone reducibility cont.

Examples cont.:

- Let C be closed and convex, and B be the unit ball, then for any $\epsilon>0$, the set $C+\epsilon B$ is $C^{1,1}$-cone reducible.

$C^{1, \alpha}$-cone reducibility cont.

Examples cont.:

- Let C be closed and convex, and B be the unit ball, then for any $\epsilon>0$, the set $C+\epsilon B$ is $C^{1,1}$-cone reducible. Indeed,

$$
C+\epsilon B=\left\{x: \operatorname{dist}(x, C)^{2}-\epsilon^{2} \leq 0\right\} ;
$$

for boundary points, take $K=\mathbb{R}_{-}$and $\equiv(x):=\operatorname{dist}(x, C)^{2}-\epsilon^{2}$.

$C^{1, \alpha}$-cone reducibility cont.

Examples cont.:

- Let C be closed and convex, and B be the unit ball, then for any $\epsilon>0$, the set $C+\epsilon B$ is $C^{1,1}$-cone reducible. Indeed,

$$
C+\epsilon B=\left\{x: \operatorname{dist}(x, C)^{2}-\epsilon^{2} \leq 0\right\} ;
$$

for boundary points, take $K=\mathbb{R}_{-}$and $\equiv(x):=\operatorname{dist}(x, C)^{2}-\epsilon^{2}$.

- Let $p \in(1, \infty)$ and let $C=\left\{(x, r) \in \mathbb{R}^{n} \times \mathbb{R}:\|x\|_{p} \leq r\right\}$. Then C is $C^{1, \alpha}$-cone reducible with $\alpha=\min \{1, p-1\}$.

$C^{1, \alpha}$-cone reducibility cont.

Examples cont.:

- Let C be closed and convex, and B be the unit ball, then for any $\epsilon>0$, the set $C+\epsilon B$ is $C^{1,1}$-cone reducible. Indeed,

$$
C+\epsilon B=\left\{x: \operatorname{dist}(x, C)^{2}-\epsilon^{2} \leq 0\right\} ;
$$

for boundary points, take $K=\mathbb{R}_{-}$and $\equiv(x):=\operatorname{dist}(x, C)^{2}-\epsilon^{2}$.

- Let $p \in(1, \infty)$ and let $C=\left\{(x, r) \in \mathbb{R}^{n} \times \mathbb{R}:\|x\|_{p} \leq r\right\}$. Then C is $C^{1, \alpha}$-cone reducible with $\alpha=\min \{1, p-1\}$. Indeed, if we let $G(x, r):=\|x\|_{p}-r$, then $\nabla G(x, r)$ is

$$
\|x\|_{p}^{1-p} \cdot\left[\begin{array}{lll}
\operatorname{sgn}\left(x_{1}\right)\left|x_{1}\right|^{p-1} & \cdots & \operatorname{sgn}\left(x_{n}\right)\left|x_{n}\right|^{p-1} \\
-\|x\|_{p}^{p-1}
\end{array}\right]^{T},
$$

which is nonzero at any nonzero boundary points, and is $\min \{1, p-1\}$ - Hölder continuous.

$C^{1, \alpha}$-cone reducibility cont.

Examples cont.:

- Let C be closed and convex, and B be the unit ball, then for any $\epsilon>0$, the set $C+\epsilon B$ is $C^{1,1}$-cone reducible. Indeed,

$$
C+\epsilon B=\left\{x: \operatorname{dist}(x, C)^{2}-\epsilon^{2} \leq 0\right\} ;
$$

for boundary points, take $K=\mathbb{R}_{-}$and $\equiv(x):=\operatorname{dist}(x, C)^{2}-\epsilon^{2}$.

- Let $p \in(1, \infty)$ and let $C=\left\{(x, r) \in \mathbb{R}^{n} \times \mathbb{R}:\|x\|_{p} \leq r\right\}$. Then C is $C^{1, \alpha}$-cone reducible with $\alpha=\min \{1, p-1\}$. Indeed, if we let $G(x, r):=\|x\|_{p}-r$, then $\nabla G(x, r)$ is

$$
\|x\|_{p}^{1-p} \cdot\left[\begin{array}{lll}
\operatorname{sgn}\left(x_{1}\right)\left|x_{1}\right|^{p-1} & \cdots & \operatorname{sgn}\left(x_{n}\right)\left|x_{n}\right|^{p-1} \\
-\|x\|_{p}^{p-1}
\end{array}\right]^{T},
$$

which is nonzero at any nonzero boundary points, and is $\min \{1, p-1\}$ - Hölder continuous.

- Let $p \in(1, \infty)$ and let $C=\left\{x \in \mathbb{R}^{n}:\|x\|_{p} \leq 1\right\}$. Then C is $C^{1, \alpha}$-cone reducible with $\alpha=\min \{1, p-1\}$.

Error bound

Theorem 1. (Wang, P. '22)
For the best approximation problem

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{Minimize}} 0.5\|x-\bar{v}\|^{2} \text { subject to } x \in \cap_{i=1}^{\ell} A_{i}^{-1} C_{i},
$$

suppose that
(i) Each C_{i} is $C^{1, \alpha}$-cone reducible with $\alpha \in(0,1]$, closed \& convex;
(ii) $\cap_{i=1}^{\ell} A_{i}^{-1}$ ri $C_{i} \neq \emptyset$;
(iii) $0 \in x^{*}-\bar{v}+\operatorname{ri} \partial\left(\sum_{i=1}^{\ell} \delta_{A_{i}^{-1} c_{i}}\right)\left(x^{*}\right)$, where $x^{*}=\operatorname{Proj}_{\cap_{i=1}^{\ell} A_{i}^{-1} C_{i}}(\bar{v})$.

Then there exist $\epsilon>0$ and $c>0$ such that

$$
\operatorname{dist}(\boldsymbol{y}, \operatorname{Arg} \min d) \leq c(d(\boldsymbol{y})-\inf d)^{1-\frac{1}{1+\alpha}}
$$

whenever \boldsymbol{y} satisfies $\operatorname{dist}(\boldsymbol{y}, \operatorname{Arg} \min d) \leq \epsilon \& \inf d \leq d(\boldsymbol{y}) \leq \inf d+\epsilon$.

Example: tightness of exponent

Example: Let $\bar{v}=(2,0)$ and consider

$$
\underset{x \in \mathbb{R}^{2}}{\operatorname{Minimize}}\|x-\bar{v}\|^{2} / 2 \text { subject to } A_{1} x \in C_{1}
$$

where $A_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], C_{1}=\left\{x \in \mathbb{R}^{2}:\|x\|_{p} \leq 1\right\}$ and $p \in(1,2]$.

Example: tightness of exponent

Example: Let $\bar{v}=(2,0)$ and consider

$$
\underset{x \in \mathbf{R}^{2}}{\operatorname{Minimize}}\|x-\bar{v}\|^{2} / 2 \text { subject to } A_{1} x \in C_{1}
$$

where $A_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], C_{1}=\left\{x \in \mathbb{R}^{2}:\|x\|_{p} \leq 1\right\}$ and $p \in(1,2]$.
The feasible region is $[-1,1] \times \mathbb{R}$, hence the solution is $x^{*}=(1,0)$.
Also, C_{1} is $C^{1, p-1}$-cone reducible, A_{1}^{-1} ri $C_{1} \neq \emptyset$ and

$$
\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{T}=\bar{v}-x^{*} \in\left\{\left[\begin{array}{ll}
t & 0
\end{array}\right]^{T}: t>0\right\}=\operatorname{ri} \mathcal{N}_{A_{1}^{-1} C_{1}}\left(x^{*}\right) .
$$

Then $1-\frac{1}{1+\alpha}=1-\frac{1}{p}=: \frac{1}{q}$, and Theorem 1 shows that

$$
\operatorname{dist}\left(y_{1}, \operatorname{Arg} \min d\right) \leq c\left(d\left(y_{1}\right)-\inf d\right)^{\frac{1}{q}}
$$

whenever y_{1} satisfies $\operatorname{dist}\left(y_{1}, \operatorname{Arg} \min d\right) \leq \epsilon \& \inf d \leq d\left(y_{1}\right) \leq \inf d+\epsilon$.

Example: tightness of exponent cont.

Example cont.: Now, note that

$$
d\left(y_{1}\right)=(1 / 2)\left\|A_{1} y_{1}-\bar{v}\right\|^{2}-(1 / 2)\|\bar{v}\|^{2}+\left\|y_{1}\right\|_{q} .
$$

Moreover, from duality,

$$
\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{T}=\bar{v}-x^{*}=A_{1} \hat{y}_{1}
$$

whenever $\hat{y}_{1} \in \operatorname{Arg} \min d$. Thus, the 1 st coordinate of \hat{y}_{1} is 1 . Moreover, the 2nd coordinate of \hat{y}_{1} is 0 . Consequently,

$$
\operatorname{Arg} \min d=\{(1,0)\} .
$$

Now, let $y_{1}^{\epsilon}=(1, \epsilon)$ for $\epsilon \downarrow 0$. Then we obtain as $\epsilon \downarrow 0$ that

$$
d\left(y_{1}^{\epsilon}\right)-d\left(\hat{y}_{1}\right)=\left(1+\epsilon^{q}\right)^{\frac{1}{q}}-1=\Theta\left(\epsilon^{q}\right) \text { and } \operatorname{dist}\left(y_{1}^{\epsilon}, \operatorname{Arg} \min d\right)=\epsilon,
$$

Consequently, dist $\left(y_{1}^{\epsilon}, \operatorname{Arg} \min d\right)=\Theta\left(\left[d\left(y_{1}^{\epsilon}\right)-\inf d\right]^{\frac{1}{q}}\right)$ as $\epsilon \downarrow 0$.

Convergence rate

Theorem 2. (Wang, P. '22)

For the best approximation problem, suppose that
(i) Each C_{i} is $C^{1, \alpha}$-cone reducible with $\alpha \in(0,1]$, closed \& convex;
(ii) $\cap_{i=1}^{\ell} A_{i}^{-1}$ ri $C_{i} \neq \emptyset$;
(iii) $0 \in x^{*}-\bar{v}+\operatorname{ri} \partial\left(\sum_{i=1}^{\ell} \delta_{A_{i}^{-1} c_{i}}\right)\left(x^{*}\right)$, where $x^{*}=\operatorname{Proj}_{\cap_{i=1}^{\ell} A_{i}^{-1} C_{i}}(\bar{v})$. Let $\left\{x^{t}\right\}$ and $\left\{\boldsymbol{y}^{t}\right\}$ be generated by the Dykstra-type algorithm. Then there exist $c>0$ and $\bar{t} \in \mathbb{N}$ such that

- If $\alpha=1$, then $\exists \boldsymbol{y}^{*} \in \operatorname{Arg} \min d, \tau \in(0,1)$ such that for any $t \geq \bar{t}$,

$$
\left\|x^{t}-x^{*}\right\| \leq \boldsymbol{c} \tau^{t}, \quad\left\|\boldsymbol{y}^{t}-\boldsymbol{y}^{*}\right\| \leq \boldsymbol{c} \tau^{t} .
$$

- If $\alpha \in(0,1)$, then for any $t \geq \bar{t}$,

$$
\left\|x^{t}-x^{*}\right\| \leq c t^{-\alpha^{2} / 2}, d\left(\boldsymbol{y}^{t}\right)-\inf d \leq c t^{-\alpha}, \operatorname{dist}\left(\boldsymbol{y}^{t}, \operatorname{Arg} \min d\right) \leq c t^{-\alpha^{2} / 2}
$$

Conclusion and future work

Conclusion:

- Explicit convergence rate of a Dykstra-type method is deduced for $C^{1, \alpha}$-cone reducible sets, $\alpha \in(0,1]$.
- An example was constructed to illustrate the tightness of an essential error bound condition.
Reference:
- X. Wang and T. K. Pong.

Convergence rate analysis of a Dykstra-type projection algorithm.
Preprint. Available at https://arxiv.org/abs/2301.03026.
Thanks for coming! ¿

