# Convergence rate analysis of a Dykstra-type projection algorithm

Ting Kei Pong
Department of Applied Mathematics
The Hong Kong Polytechnic University
Hong Kong

pre-SIAM Optimization Workshop University of Washington May 2023 (Joint work with Xiaozhou Wang)

# Motivating applications

Nearest correlation matrices: (Higham '02)

where 
$$\bar{v} \in S^n$$
,  $C_1 = S^n_+$ ,  $C_2 = \{x \in S^n : L_{ij} \le x_{ij} \le U_{ij} \ \forall i,j \}$  and 
$$C_3 := \{x \in S^n : x_{ii} = 1 \ \forall i \}.$$

System identification: (Liu et al. '20)

Minimize 
$$\sum_{x_1,...,x_m \in \mathbb{R}^n}^{...} \|x_i - \bar{v}_i\|^2$$
 subject to  $x := (x_1,...,x_m) \in D_1 \cap D_2$ ,

where  $\bar{v}$  is given, and

$$D_1 := \{ x \in \mathbb{R}^{mn} : \|\mathcal{H}_{r_{i+1}}(x_i)\|_* \le k_i, i = 1, \dots, m \}, D_2 := \{ x \in \mathbb{R}^{mn} : \|[\mathcal{H}_{r+1}(x_1) \cdots \mathcal{H}_{r+1}(x_m)]\|_* \le k \},$$

with  $\mathcal{H}_s$  being a linear map that returns a suitable Hankel matrix,  $\|\cdot\|_*$  is the nuclear norm,  $r_i$ ,  $r \in \mathbb{N}$ , and  $k_i$ , k > 0.



### Best approximation problems

Consider the following best approximation problem:

$$\underset{x \in \mathbb{R}^n}{\text{Minimize}} \ \frac{1}{2} \|x - \bar{v}\|^2 \ \text{ subject to } \ x \in \bigcap_{i=1}^{\ell} A_i^{-1} C_i,$$

#### where

- $A_i: \mathbb{R}^n \to \mathbb{R}^{m_i}$  is linear and nonzero;
- each  $C_i \subseteq \mathbb{R}^{m_i}$  is closed and convex;
- projection onto C<sub>i</sub> can be computed more efficiently than projection onto A<sub>i</sub><sup>-1</sup>C<sub>i</sub>;
- For technical succintness:

$$\bigcap_{i=1}^{\ell} A_i^{-1} C_i \neq \emptyset$$

### When $A_i = I$

Dykstra's projection algorithm: (Boyle, Dykstra '86, Han '88)

Set 
$$x_{\ell}^0 = \bar{v}$$
,  $y_1^0 = \cdots = y_{\ell}^0 = 0$ . For each  $t \ge 0$ , set  $x_0^{t+1} = x_{\ell}^t$  and compute  $x_i^{t+1} = \text{Proj}_{C_i}(y_i^t + x_{i-1}^{t+1}), \quad y_i^{t+1} = y_i^t + x_{i-1}^{t+1} - x_i^{t+1} \text{ for } i = 1, \dots, \ell.$ 

### When $A_i = I$

Dykstra's projection algorithm: (Boyle, Dykstra '86, Han '88)

Set 
$$x_{\ell}^0 = \bar{v}$$
,  $y_1^0 = \cdots = y_{\ell}^0 = 0$ . For each  $t \ge 0$ , set  $x_0^{t+1} = x_{\ell}^t$  and compute  $x_i^{t+1} = \operatorname{Proj}_{C_i}(y_i^t + x_{i-1}^{t+1}), \quad y_i^{t+1} = y_i^t + x_{i-1}^{t+1} - x_i^{t+1} \quad \text{for } i = 1, \dots, \ell.$ 

#### Known facts:

- $x_{\ell}^t =: x^t \to \mathsf{Proj}_{\cap_{i=1}^{\ell} C_i}(\bar{v}).$
- Reduces to cyclic projection when each C<sub>i</sub> is affine. (Gaffke, Mathar '89).
- Equivalent to CGD applied to

Minimize 
$$\frac{1}{2} \left\| \sum_{i=1}^{\ell} y_i - \bar{v} \right\|^2 - \frac{1}{2} \|\bar{v}\|^2 + \sum_{i=1}^{\ell} \sigma_{C_i}(y_i)$$

starting from  $y_1^0 = \cdots = y_\ell^0 = 0$ .

### When $A_i = I$ cont.

Dykstra's projection algorithm: (Boyle, Dykstra '86, Han '88)

Set 
$$x_{\ell}^0 = \bar{v}$$
,  $y_1^0 = \cdots = y_{\ell}^0 = 0$ . For each  $t \ge 0$ , set  $x_0^{t+1} = x_{\ell}^t$  and compute  $x_i^{t+1} = \text{Proj}_{C_i}(y_i^t + x_{i-1}^{t+1})$ ,  $y_i^{t+1} = y_i^t + x_{i-1}^{t+1} - x_i^{t+1}$  for  $i = 1, \dots, \ell$ .

#### Known facts cont.:

- Local linear convergence of  $\{x_{\ell}^t\}$  and all  $\{y_i^t\}$  when each  $C_i$  is polyhedral. (Luo, Tseng '93)
- Convergence rate unknown for general C<sub>i</sub>.

### When $A_i = I$ cont.

Dykstra's projection algorithm: (Boyle, Dykstra '86, Han '88)

Set 
$$x_{\ell}^0 = \bar{v}$$
,  $y_1^0 = \cdots = y_{\ell}^0 = 0$ . For each  $t \ge 0$ , set  $x_0^{t+1} = x_{\ell}^t$  and compute  $x_i^{t+1} = \operatorname{Proj}_{C_i}(y_i^t + x_{i-1}^{t+1}), \quad y_i^{t+1} = y_i^t + x_{i-1}^{t+1} - x_i^{t+1} \text{ for } i = 1, \dots, \ell.$ 

#### Known facts cont.:

- Local linear convergence of  $\{x_{\ell}^t\}$  and all  $\{y_i^t\}$  when each  $C_i$  is polyhedral. (Luo, Tseng '93)
- Convergence rate unknown for general C<sub>i</sub>.

#### Outline:

- Develop Dykstra-type projection algorithm when  $A_i \neq I$ .
- Identify a class of sets  $C_i$  for convergence rate analysis.
- Explicit error bounds and convergence rate, with "tightness" examples.

### A Dykstra-type algorithm

Dykstra-type projection algorithm: Set  $y_i^0 = 0 \in \mathbb{R}^{m_i}$  and  $\gamma_i := \lambda_{\max}(A_i^T A_i)$  for all  $i, x_\ell^0 = \bar{v} \in \mathbb{R}^n$ . For each  $t \ge 0$ , set  $x_0^{t+1} = x_\ell^t$  and  $x^t = x_\ell^t$ . Compute, for  $i = 1, \dots, \ell$ ,  $x_i^{t+1} = (I - \gamma_i^{-1} A_i^T A_i) x_{i-1}^{t+1} + \gamma_i^{-1} A_i^T \operatorname{Proj}_{C_i}(\gamma_i y_i^t + A_i x_{i-1}^{t+1}),$  $y_i^{t+1} = y_i^t + \gamma_i^{-1} A_i x_{i-1}^{t+1} - \gamma_i^{-1} \operatorname{Proj}_{C_i}(\gamma_i y_i^t + A_i x_{i-1}^{t+1}).$ 

### A Dykstra-type algorithm

Dykstra-type projection algorithm:

Set 
$$y_i^0 = 0 \in \mathbb{R}^{m_i}$$
 and  $\gamma_i := \lambda_{\max}(A_i^T A_i)$  for all  $i, x_\ell^0 = \bar{v} \in \mathbb{R}^n$ .  
For each  $t \ge 0$ , set  $x_0^{t+1} = x_\ell^t$  and  $x^t = x_\ell^t$ . Compute, for  $i = 1, \dots, \ell$ , 
$$x_i^{t+1} = (I - \gamma_i^{-1} A_i^T A_i) x_{i-1}^{t+1} + \gamma_i^{-1} A_i^T \operatorname{Proj}_{C_i}(\gamma_i y_i^t + A_i x_{i-1}^{t+1}),$$
$$y_i^{t+1} = y_i^t + \gamma_i^{-1} A_i x_{i-1}^{t+1} - \gamma_i^{-1} \operatorname{Proj}_{C_i}(\gamma_i y_i^t + A_i x_{i-1}^{t+1}).$$

For notational simplicity, write  $\mathbf{y}^t := (y_1^t, \dots, y_\ell^t)$  for all t.

### A Dykstra-type algorithm

Dykstra-type projection algorithm:

Set 
$$y_i^0 = 0 \in \mathbb{R}^{m_i}$$
 and  $\gamma_i := \lambda_{\max}(A_i^T A_i)$  for all  $i, x_\ell^0 = \bar{v} \in \mathbb{R}^n$ .  
For each  $t \ge 0$ , set  $x_0^{t+1} = x_\ell^t$  and  $x^t = x_\ell^t$ . Compute, for  $i = 1, \dots, \ell$ , 
$$x_i^{t+1} = (I - \gamma_i^{-1} A_i^T A_i) x_{i-1}^{t+1} + \gamma_i^{-1} A_i^T \operatorname{Proj}_{C_i}(\gamma_i y_i^t + A_i x_{i-1}^{t+1}),$$
$$y_i^{t+1} = y_i^t + \gamma_i^{-1} A_i x_{i-1}^{t+1} - \gamma_i^{-1} \operatorname{Proj}_{C_i}(\gamma_i y_i^t + A_i x_{i-1}^{t+1}).$$

For notational simplicity, write  $\mathbf{y}^t := (y_1^t, \dots, y_\ell^t)$  for all t.

The algorithm is equivalent to a proximal CGD applied to

Minimize 
$$d(y) := \frac{1}{2} \left\| \sum_{i=1}^{\ell} A_i^T y_i - \bar{v} \right\|^2 - \frac{1}{2} \|\bar{v}\|^2 + \sum_{i=1}^{\ell} \sigma_{C_i}(y_i)$$

starting from  $y_i^0 = 0$  for all *i*.

### Key facts:

$$-\inf_{\mathbf{y}} d(\mathbf{y}) = \inf_{x} \left\{ \frac{1}{2} \|x - \bar{v}\|^{2} : x \in \cap_{i=1}^{\ell} A_{i}^{-1} C_{i} \right\}.$$

#### Key facts:

$$-\inf_{\mathbf{y}} d(\mathbf{y}) = \inf_{x} \left\{ \frac{1}{2} \|x - \bar{v}\|^{2} : x \in \cap_{i=1}^{\ell} A_{i}^{-1} C_{i} \right\}.$$

- $\|\boldsymbol{y}^{t+1} \boldsymbol{y}^t\| \to 0$  and  $\operatorname{dist}(\boldsymbol{0}, \partial \boldsymbol{d}(\boldsymbol{y}^t)) \to 0$ .
- Every accumulation point of  $\{y^t\}$  minimizes d.

#### Key facts:

$$-\inf_{\mathbf{y}} d(\mathbf{y}) = \inf_{x} \left\{ \frac{1}{2} \|x - \bar{v}\|^{2} : x \in \cap_{i=1}^{\ell} A_{i}^{-1} C_{i} \right\}.$$

- $\|\boldsymbol{y}^{t+1} \boldsymbol{y}^t\| \to 0$  and  $\operatorname{dist}(\boldsymbol{0}, \partial \boldsymbol{d}(\boldsymbol{y}^t)) \to 0$ .
- Every accumulation point of  $\{y^t\}$  minimizes d.
- If  $\mathbf{y}^* \in \operatorname{Arg\,min} d$ , then  $\operatorname{Proj}_{\cap_{i=1}^\ell A_i^{-1} C_i}(\bar{\mathbf{v}}) = \bar{\mathbf{v}} \sum_{i=1}^\ell A_i^T y_i^*$ .

#### Key facts:

$$-\inf_{\mathbf{y}} d(\mathbf{y}) = \inf_{x} \left\{ \frac{1}{2} \|x - \bar{v}\|^{2} : x \in \cap_{i=1}^{\ell} A_{i}^{-1} C_{i} \right\}.$$

- $\| \boldsymbol{y}^{t+1} \boldsymbol{y}^t \| \to 0$  and  $\operatorname{dist}(\boldsymbol{0}, \partial \boldsymbol{d}(\boldsymbol{y}^t)) \to 0$ .
- Every accumulation point of  $\{y^t\}$  minimizes d.
- If  $\mathbf{y}^* \in \operatorname{Arg\,min} d$ , then  $\operatorname{Proj}_{\cap_{i=1}^\ell A_i^{-1} C_i}(\bar{\mathbf{v}}) = \bar{\mathbf{v}} \sum_{i=1}^\ell A_i^T y_i^*$ .
- (Auslender, Cominetti, Crouziex '93) Suppose that  $\cap_{i=1}^{\ell} A_i^{-1}$  ri  $C_i \neq \emptyset$ . Then Arg min  $d = E_1 + E_2 \neq \emptyset$ , where  $E_1$  is compact and  $E_2$  is a subspace. Moreover, we have

$$\begin{split} d(\pmb{y}^t) &\to \inf d, \quad \operatorname{dist}(\pmb{y}^t, \operatorname{Arg\,min} d) \to 0, \\ \operatorname{and} d(\pmb{y} + \pmb{u}) &= d(\pmb{y}) \text{ for all } \pmb{y} \in \mathbb{R}^{m_1} \times \dots \times \mathbb{R}^{m_\ell} \text{ and } \pmb{u} \in E_2. \end{split}$$

Let  $\mathbb{X}$  and  $\mathbb{Y}$  be two finite dimensional Hilbert spaces.

Definition: Let  $\alpha \in (0,1]$ . A closed set  $\Omega \subseteq \mathbb{X}$  is said to be  $C^{1,\alpha}$ -cone reducible at  $\hat{x} \in \Omega$  if  $\exists \ \rho > 0$ , a closed convex pointed cone  $K \subseteq \mathbb{Y}$  and a mapping  $\Xi : \mathbb{X} \to \mathbb{Y}$  satisfies  $\Xi(\hat{x}) = 0$  and is  $C^{1,\alpha}$  in  $B(\hat{x},\rho)$  with  $D\Xi(\hat{x})$  being surjective, and moreover

$$\Omega \cap B(\hat{x}, \rho) = \{x : \Xi(x) \in K\} \cap B(\hat{x}, \rho).$$

We say that  $\Omega$  is  $C^{1,\alpha}$ -cone reducible if it is so at each  $x \in \Omega$ .

Let  $\mathbb X$  and  $\mathbb Y$  be two finite dimensional Hilbert spaces.

Definition: Let  $\alpha \in (0,1]$ . A closed set  $\Omega \subseteq \mathbb{X}$  is said to be  $C^{1,\alpha}$ -cone reducible at  $\hat{x} \in \Omega$  if  $\exists \ \rho > 0$ , a closed convex pointed cone  $K \subseteq \mathbb{Y}$  and a mapping  $\Xi : \mathbb{X} \to \mathbb{Y}$  satisfies  $\Xi(\hat{x}) = 0$  and is  $C^{1,\alpha}$  in  $B(\hat{x},\rho)$  with  $D\Xi(\hat{x})$  being surjective, and moreover

$$\Omega \cap B(\hat{x}, \rho) = \{x : \Xi(x) \in K\} \cap B(\hat{x}, \rho).$$

We say that  $\Omega$  is  $C^{1,\alpha}$ -cone reducible if it is so at each  $x \in \Omega$ .

### Examples:

• A set C is  $C^{1,1}$ -cone reducible at any  $x \in \text{int } C$ : just take  $\mathbb{Y} = \{0\}$ .

Let  $\mathbb X$  and  $\mathbb Y$  be two finite dimensional Hilbert spaces.

Definition: Let  $\alpha \in (0,1]$ . A closed set  $\Omega \subseteq \mathbb{X}$  is said to be  $C^{1,\alpha}$ -cone reducible at  $\hat{x} \in \Omega$  if  $\exists \ \rho > 0$ , a closed convex pointed cone  $K \subseteq \mathbb{Y}$  and a mapping  $\Xi : \mathbb{X} \to \mathbb{Y}$  satisfies  $\Xi(\hat{x}) = 0$  and is  $C^{1,\alpha}$  in  $B(\hat{x},\rho)$  with  $D\Xi(\hat{x})$  being surjective, and moreover

$$\Omega \cap B(\hat{x}, \rho) = \{x : \Xi(x) \in K\} \cap B(\hat{x}, \rho).$$

We say that  $\Omega$  is  $C^{1,\alpha}$ -cone reducible if it is so at each  $x \in \Omega$ .

### Examples:

• A set C is  $C^{1,1}$ -cone reducible at any  $x \in \text{int } C$ : just take  $\mathbb{Y} = \{0\}$ . Note that  $C^{1,1}$ -cone reducibility  $\Longrightarrow C^{1,\alpha}$ -cone reducibility for any  $\alpha \in (0,1]$ .

Let  $\mathbb{X}$  and  $\mathbb{Y}$  be two finite dimensional Hilbert spaces.

Definition: Let  $\alpha \in (0,1]$ . A closed set  $\Omega \subseteq \mathbb{X}$  is said to be  $C^{1,\alpha}$ -cone reducible at  $\hat{x} \in \Omega$  if  $\exists \ \rho > 0$ , a closed convex pointed cone  $K \subseteq \mathbb{Y}$  and a mapping  $\Xi : \mathbb{X} \to \mathbb{Y}$  satisfies  $\Xi(\hat{x}) = 0$  and is  $C^{1,\alpha}$  in  $B(\hat{x},\rho)$  with  $D\Xi(\hat{x})$  being surjective, and moreover

$$\Omega \cap B(\hat{x}, \rho) = \{x : \Xi(x) \in K\} \cap B(\hat{x}, \rho).$$

We say that  $\Omega$  is  $C^{1,\alpha}$ -cone reducible if it is so at each  $x \in \Omega$ .

### Examples:

- A set C is  $C^{1,1}$ -cone reducible at any  $x \in \text{int } C$ : just take  $\mathbb{Y} = \{0\}$ . Note that  $C^{1,1}$ -cone reducibility  $\Longrightarrow C^{1,\alpha}$ -cone reducibility for any  $\alpha \in (0,1]$ .
- A closed convex pointed cone is C<sup>1,1</sup>-cone reducible at the origin.

#### Examples cont.:

• Let C be closed and convex, and B be the unit ball, then for any  $\epsilon > 0$ , the set  $C + \epsilon B$  is  $C^{1,1}$ -cone reducible.

#### Examples cont.:

• Let C be closed and convex, and B be the unit ball, then for any  $\epsilon > 0$ , the set  $C + \epsilon B$  is  $C^{1,1}$ -cone reducible. Indeed,

$$C + \epsilon B = \{x : \operatorname{dist}(x, C)^2 - \epsilon^2 \le 0\};$$

for boundary points, take  $K = \mathbb{R}_-$  and  $\Xi(x) := \operatorname{dist}(x, C)^2 - \epsilon^2$ .

### Examples cont.:

• Let C be closed and convex, and B be the unit ball, then for any  $\epsilon > 0$ , the set  $C + \epsilon B$  is  $C^{1,1}$ -cone reducible. Indeed,

$$C + \epsilon B = \{x : \operatorname{dist}(x, C)^2 - \epsilon^2 \le 0\};$$

for boundary points, take  $K = \mathbb{R}_-$  and  $\Xi(x) := \operatorname{dist}(x, C)^2 - \epsilon^2$ .

• Let  $p \in (1, \infty)$  and let  $C = \{(x, r) \in \mathbb{R}^n \times \mathbb{R} : ||x||_p \le r\}$ . Then C is  $C^{1,\alpha}$ -cone reducible with  $\alpha = \min\{1, p-1\}$ .

#### Examples cont.:

Let C be closed and convex, and B be the unit ball, then for any
 ε > 0, the set C + εB is C<sup>1,1</sup>-cone reducible. Indeed,

$$C + \epsilon B = \{x : \operatorname{dist}(x, C)^2 - \epsilon^2 \le 0\};$$

for boundary points, take  $K = \mathbb{R}_-$  and  $\Xi(x) := \operatorname{dist}(x, C)^2 - \epsilon^2$ .

• Let  $p \in (1, \infty)$  and let  $C = \{(x, r) \in \mathbb{R}^n \times \mathbb{R} : ||x||_p \le r\}$ . Then C is  $C^{1,\alpha}$ -cone reducible with  $\alpha = \min\{1, p-1\}$ . Indeed, if we let  $G(x, r) := ||x||_p - r$ , then  $\nabla G(x, r)$  is

$$||x||_{\rho}^{1-\rho} \cdot \left[\operatorname{sgn}(x_1)|x_1|^{\rho-1} \quad \cdots \quad \operatorname{sgn}(x_n)|x_n|^{\rho-1} \quad -||x||_{\rho}^{\rho-1}\right]^{\prime}$$

which is nonzero at any nonzero boundary points, and is  $min\{1, p-1\}$ - Hölder continuous.

#### Examples cont.:

• Let C be closed and convex, and B be the unit ball, then for any  $\epsilon > 0$ , the set  $C + \epsilon B$  is  $C^{1,1}$ -cone reducible. Indeed,

$$C + \epsilon B = \{x : \operatorname{dist}(x, C)^2 - \epsilon^2 \le 0\};$$

for boundary points, take  $K = \mathbb{R}_-$  and  $\Xi(x) := \operatorname{dist}(x, C)^2 - \epsilon^2$ .

• Let  $p \in (1, \infty)$  and let  $C = \{(x, r) \in \mathbb{R}^n \times \mathbb{R} : \|x\|_p \le r\}$ . Then C is  $C^{1,\alpha}$ -cone reducible with  $\alpha = \min\{1, p-1\}$ . Indeed, if we let  $G(x, r) := \|x\|_p - r$ , then  $\nabla G(x, r)$  is

$$||x||_{\rho}^{1-\rho} \cdot \left[\operatorname{sgn}(x_1)|x_1|^{\rho-1} \quad \cdots \quad \operatorname{sgn}(x_n)|x_n|^{\rho-1} \quad -||x||_{\rho}^{\rho-1}\right]^{I}$$

which is nonzero at any nonzero boundary points, and is  $min\{1, p-1\}$ - Hölder continuous.

• Let  $p \in (1, \infty)$  and let  $C = \{x \in \mathbb{R}^n : ||x||_p \le 1\}$ . Then C is  $C^{1,\alpha}$ -cone reducible with  $\alpha = \min\{1, p-1\}$ .



### Error bound

Theorem 1. (Wang, P. '22)

For the best approximation problem

$$\underset{x \in \mathbb{R}^n}{\text{Minimize}} \ \ 0.5 \|x - \bar{v}\|^2 \ \ \text{subject to} \ \ x \in \cap_{i=1}^{\ell} A_i^{-1} C_i,$$

### suppose that

- (i) Each  $C_i$  is  $C^{1,\alpha}$ -cone reducible with  $\alpha \in (0,1]$ , closed & convex;
- (ii)  $\cap_{i=1}^{\ell} A_i^{-1} \operatorname{ri} C_i \neq \emptyset$ ;
- (iii)  $0 \in X^* \bar{v} + \text{ri } \partial(\sum_{i=1}^{\ell} \delta_{A_i^{-1}C_i})(X^*)$ , where  $X^* = \text{Proj}_{\bigcap_{i=1}^{\ell} A_i^{-1}C_i}(\bar{v})$ .

Then there exist  $\epsilon > 0$  and c > 0 such that

$$\operatorname{dist}(\boldsymbol{y},\operatorname{Arg\,min}\,d) \leq c\,(d(\boldsymbol{y})-\inf d)^{1-\frac{1}{1+\alpha}}$$

whenever y satisfies  $dist(y, Arg min d) \le \epsilon \& inf <math>d \le d(y) \le inf d + \epsilon$ .

### Example: tightness of exponent

Example: Let  $\bar{v} = (2,0)$  and consider

$$\underset{x \in \mathbb{R}^2}{\text{Minimize}} \|x - \bar{v}\|^2/2 \text{ subject to } A_1 x \in C_1,$$

where 
$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
,  $C_1 = \{x \in \mathbb{R}^2 : ||x||_p \le 1\}$  and  $p \in (1, 2]$ .

# Example: tightness of exponent

Example: Let  $\bar{v} = (2,0)$  and consider

$$\underset{x \in \mathbb{R}^2}{\text{Minimize}} \ \|x - \overline{v}\|^2/2 \ \text{subject to} \ A_1 x \in C_1,$$

where 
$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
,  $C_1 = \{x \in \mathbb{R}^2 : ||x||_p \le 1\}$  and  $p \in (1, 2]$ .

The feasible region is  $[-1,1] \times \mathbb{R}$ , hence the solution is  $x^* = (1,0)$ .

Also,  $C_1$  is  $C^{1,p-1}$ -cone reducible,  $A_1^{-1}$  ri  $C_1 \neq \emptyset$  and

$$\begin{bmatrix} 1 & 0 \end{bmatrix}^T = \bar{v} - x^* \in \{ \begin{bmatrix} t & 0 \end{bmatrix}^T : t > 0 \} = \operatorname{ri} \mathcal{N}_{A_1^{-1}C_1}(x^*).$$

Then  $1 - \frac{1}{1+\alpha} = 1 - \frac{1}{\rho} =: \frac{1}{q}$ , and **Theorem 1** shows that

$$\operatorname{dist}(y_1,\operatorname{Arg\,min} d) \leq c \left(d(y_1) - \inf d\right)^{\frac{1}{q}}$$

whenever  $y_1$  satisfies  $\operatorname{dist}(y_1, \operatorname{Arg\,min} d) \le \epsilon \& \inf d \le d(y_1) \le \inf d + \epsilon$ .



# Example: tightness of exponent cont.

#### Example cont.: Now, note that

$$d(y_1) = (1/2)\|A_1y_1 - \bar{v}\|^2 - (1/2)\|\bar{v}\|^2 + \|y_1\|_q.$$

Moreover, from duality,

$$\begin{bmatrix} 1 & 0 \end{bmatrix}^T = \bar{v} - x^* = A_1 \hat{y}_1$$

whenever  $\hat{y}_1 \in \text{Arg min } d$ . Thus, the 1st coordinate of  $\hat{y}_1$  is 1. Moreover, the 2nd coordinate of  $\hat{y}_1$  is 0. Consequently,

Arg min 
$$d = \{(1,0)\}.$$

Now, let  $y_1^{\epsilon} = (1, \epsilon)$  for  $\epsilon \downarrow 0$ . Then we obtain as  $\epsilon \downarrow 0$  that

$$d(y_1^{\epsilon}) - d(\hat{y}_1) = (1 + \epsilon^q)^{\frac{1}{q}} - 1 = \Theta(\epsilon^q)$$
 and  $dist(y_1^{\epsilon}, Arg \min d) = \epsilon$ ,

Consequently, dist  $(y_1^{\epsilon}, \operatorname{Arg\,min} d) = \Theta([d(y_1^{\epsilon}) - \inf d]^{\frac{1}{q}})$  as  $\epsilon \downarrow 0$ .



### Convergence rate

#### Theorem 2. (Wang, P. '22)

For the best approximation problem, suppose that

- (i) Each  $C_i$  is  $C^{1,\alpha}$ -cone reducible with  $\alpha \in (0,1]$ , closed & convex;
- (ii)  $\cap_{i=1}^{\ell} A_i^{-1} \operatorname{ri} C_i \neq \emptyset$ ;
- (iii)  $0 \in x^* \overline{v} + \operatorname{ri} \partial(\sum_{i=1}^{\ell} \delta_{A_i^{-1}C_i})(x^*)$ , where  $x^* = \operatorname{Proj}_{\bigcap_{i=1}^{\ell} A_i^{-1}C_i}(\overline{v})$ .

Let  $\{x^t\}$  and  $\{y^t\}$  be generated by the Dykstra-type algorithm. Then there exist c>0 and  $\bar{t}\in\mathbb{N}$  such that

- If  $\alpha = 1$ , then  $\exists y^* \in \operatorname{Arg\,min} d$ ,  $\tau \in (0,1)$  such that for any  $t \geq \overline{t}$ ,
  - $\|\boldsymbol{x}^t \boldsymbol{x}^*\| \leq c \tau^t, \ \|\boldsymbol{y}^t \boldsymbol{y}^*\| \leq c \tau^t.$
- If  $\alpha \in (0,1)$ , then for any  $t \geq \overline{t}$ ,

$$\|x^t - x^*\| \le ct^{-\alpha^2/2}, \ \ d(y^t) - \inf d \le ct^{-\alpha}, \ \operatorname{dist}(y^t, \operatorname{Arg\,min} d) \le ct^{-\alpha^2/2}.$$

### Conclusion and future work

#### Conclusion:

- Explicit convergence rate of a Dykstra-type method is deduced for  $C^{1,\alpha}$ -cone reducible sets,  $\alpha \in (0,1]$ .
- An example was constructed to illustrate the tightness of an essential error bound condition.

#### Reference:

X. Wang and T. K. Pong.

Convergence rate analysis of a Dykstra-type projection algorithm.

Preprint. Available at https://arxiv.org/abs/2301.03026.

Thanks for coming!