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Motivating applications
e Nearest correlation matrices: (Higham '02)

Minimize x — V|2 subjectto x € N}, C;,
xes"

where ve §", C; =81, Co={xeS": L; < x; < U;Vij}and
C3 = {XE S Xi =1 VI}

e System identification: (Liu et al. '20)
m
)l(\1/I|n|2n1|€zRe 21: |x; — Vi||? subjectto x := (Xi,...,Xn) € Dy N Dy,
=

where Vv is given, and
Dy = {X eR™: HHFM (X,)H* <kj,i=1,..., m},
Do :={x e R™ : [[Hrs1(x1) -+ Hrpa(Xm)lll« < K},

with Hs being a linear map that returns a suitable Hankel matrix,
Il - ||« is the nuclear norm, r;, r € N, and k;, k > 0.



Best approximation problems

Consider the following best approximation problem:
1 4
Minimize =||x — V||> subjectto x € (A7'C;
nimize 1 — 7||° subj nAo.
where
e A :IR" — R™ is linear and nonzero;
e each C; C R™ is closed and convex;
e projection onto C; can be computed more efficiently than
projection onto A" C;;
e For technical succintness:

L
ﬂAi_1Ci # 0.

i=1



When A; =/

Dykstra’s projection algorithm: (Boyle, Dykstra 86, Han '88)
Setx?=7v, y? =-..=y?=0. For each t > 0, set x;"'=x/ and compute

t+1 H t t+1 t+1 _ |t t+1 t+1 .
X =Proje(yi +x4), YT =yi+xy —x" fori=1,... L



When A; =/

Dykstra’s projection algorithm: (Boyle, Dykstra 86, Han '88)
Setx?=7v, y? =-..=y?=0. For each t > 0, set x;"'=x/ and compute
X =Proje (vf + xt), ¥y =yl xH =Xt fori=1,... L
Known facts:
o x;=:x" = Proj ¢ (V).

e Reduces to cyclic projection when each C; is affine. (Gaffke,
Mathar '89).

e Equivalent to CGD applied to

¢
> yi—v
p

starting from y? =-..=y?=0.

2
¢
1 1
Minimize — e (vi
ViseerVe 2 2” || +§UCI(yI)




When A; = | cont.

Dykstra’s projection algorithm: (Boyle, Dykstra 86, Han '88)
Setx?=7, y? =-..=y?=0. For each t > 0, set x;"'=x/ and compute

t+1 _ H t t+1 t+1 _ |t t+1 t+1 P
X =Proje(yi +x4), YT =yi+xy —x" fori=1,... L

Known facts cont.:

e Local linear convergence of {x{} and all {y/} when each C; is
polyhedral. (Luo, Tseng '93)

e Convergence rate unknown for general C;.



When A; = | cont.

Dykstra’s projection algorithm: (Boyle, Dykstra 86, Han '88)
Setx?=7, y? =-..=y?=0. For each t > 0, set x;"'=x/ and compute

t+1 _ H t t+1 t+1 _ |t t+1 t+1 P
X =Proje(yi +x4), YT =yi+xy —x" fori=1,... L

Known facts cont.:

e Local linear convergence of {x{} and all {y/} when each C; is
polyhedral. (Luo, Tseng '93)

e Convergence rate unknown for general C;.

Outline:
e Develop Dykstra-type projection algorithm when A; # /.

o |dentify a class of sets C; for convergence rate analysis.
e Explicit error bounds and convergence rate.




A Dykstra-type algorithm

Dykstra-type projection algorithm:
Set y? =0 € R™ and v; := Amax(A] Aj) for all i, x) = v € R".
For each t > 0, set x{*' = x{ and x' = x/. Compute, fori =1,...,¢,

X = (1=~ TAT AX + 47 AT Proje (viy! + AixE),

1
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Dykstra-type projection algorithm:
Set y? =0 € R™ and v; := Amax(A] Aj) for all i, x) = v € R".
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For notational simplicity, write y' := (y!,...,y}) for all t.



A Dykstra-type algorithm

Dykstra-type projection algorithm:
Set y? =0 € R™ and v; := Amax(A] Aj) for all i, x) = v € R".

Foreach t > 0, set x,™' = x! and x' = x/. Compute, fori=1,...,

X = (1=~ TAT AX + 47 AT Proje (viy! + AixE),

Y =yl A — A TProjg (iyf + Aixi).

For notational simplicity, write y' := (y!,...,y}) for all t.

e The algorithm is equivalent to a proximal CGD applied to

Minimize d(y
Yiseens Ye

i Yi—

starting from y? = 0 for all .

J4
1,
— S+ Y o6 )
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A Dykstra-type algorithm cont.

Key facts:
e |t holds that
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Key facts:
e |t holds that

. . 1 - _
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o |y — y!|| — 0 and dist(0, 9d(y")) — 0.
e Every accumulation point of {y'} minimizes d.



A Dykstra-type algorithm cont.

Key facts:
e |t holds that

- ir;f d(y) = inf {;|x —V|?: xe mff_1A,1c,} :
o |y — y!|| — 0 and dist(0, 9d(y")) — 0.

e Every accumulation point of {y'} minimizes d.
e If y* € Argmind, then Proij‘AﬂC{(V) =V- ZL Aly:.



A Dykstra-type algorithm cont.

Key facts:

It holds that
. . 1 - _
- w;fd(y) = inf {2|x — V| x €N A; 10,} :

|y — y!|| — 0 and dist(0, d(y")) — 0.

Every accumulation point of {y*} minimizes d.

If y* € Argmind, then ProjmfﬂA/ﬂC{(V) =V- ZL Aly:.
(Auslender, Cominetti, Crouziex '93) Suppose that ﬁf:1Ai_1 ri C; # 0.

Then Argmind = E; + E> # 0, where E; is compact and E; is a
subspace. Moreover, we have

d(y') —infd, dist(y’,Argmind) — 0,
andd(y +u)=d(y)forally e R™ x --- x R™ and u € E;.



C">-cone reducibility

We use the typeface Z to denote a finite dimensional Hilbert space.

Definition: Let o« € (0, 1]. A closed set Q C X is said to be C'“-cone
reducible at X € Qif 3 p > 0, a mapping = : X — Y that satisfies
=(%) = 0andis C" in B(X, p) with D=(X) being surjective, and a
closed convex pointed cone K C Y such that

QN B(X,p) ={x:=(x) € K} nB(X,p).

We say that Q is C"**-cone reducible if it is so at each x € Q.
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Examples:

e Aset Cis C'"'-cone reducible at any x € int C: just take Y = {0}.
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C">-cone reducibility

We use the typeface Z to denote a finite dimensional Hilbert space.

Definition: Let o« € (0, 1]. A closed set Q C X is said to be C'“-cone
reducible at X € Q if 3 p > 0, a mapping = : X — Y that satisfies
=(%) = 0andis C" in B(X, p) with D=(X) being surjective, and a
closed convex pointed cone K C Y such that

QN B(X,p) ={x:=(x) € K} nB(X,p).
We say that Q is C"**-cone reducible if it is so at each x € Q.

Examples:

e Aset Cis C'"'-cone reducible at any x € int C: just take Y = {0}.
Note that C"-'-cone reducibility = C'-*-cone reducibility for any
a € (0,1].

e A closed convex pointed cone is C'-'-cone reducible at the origin.



C"-cone reducibility cont.

Examples cont.:

e Let C be closed and convex, and B be the unit ball, then for any
e >0, the set C + eBis C'"'-cone reducible.
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Examples cont.:

e Let C be closed and convex, and B be the unit ball, then for any
e >0, the set C + eBis C'"'-cone reducible. Indeed,

C +eB={x: dist(x, C)? — € < 0};
for boundary points, take K = R_ and =(x) := dist(x, C)? — 2.



C"-cone reducibility cont.

Examples cont.:
e Let C be closed and convex, and B be the unit ball, then for any
e > 0, the set C + eBis C''-cone reducible. Indeed,
C +eB={x: dist(x, C)? — € < 0};
for boundary points, take K = R_ and =(x) := dist(x, C)? — 2.

e Letpe (1,0)andlet C={(x,r) e R"xR: ||x|p <r}. Then C
is C"-cone reducible with o = min{1,p — 1}.



C"-cone reducibility cont.

Examples cont.:
e Let C be closed and convex, and B be the unit ball, then for any
e > 0, the set C + eBis C''-cone reducible. Indeed,
C +eB={x: dist(x, C)? — € < 0};
for boundary points, take K = R_ and =(x) := dist(x, C)? — 2.

e Letpe (1,0)andlet C={(x,r) e R"xR: ||x|p <r}. Then C
is C':-cone reducible with o« = min{1, p — 1}. Indeed, if we let
G(x,r) :== || x||p — r, then VG(x,r) is

)
1— _ _ —1
X157 [san0x)lxiP~" - san(xn)lxalP~ —lx[57]

which is nonzero at any nonzero boundary points, and is
min{1, p — 1}- H6lder continuous.



C"-cone reducibility cont.

Examples cont.:
e Let C be closed and convex, and B be the unit ball, then for any
e > 0, the set C + eBis C''-cone reducible. Indeed,
C +eB={x: dist(x, C)? — € < 0};
for boundary points, take K = R_ and =(x) := dist(x, C)? — 2.

e Letpe (1,0)andlet C={(x,r) e R"xR: ||x|p <r}. Then C
is C':-cone reducible with o« = min{1, p — 1}. Indeed, if we let
G(x,r) :== || x||p — r, then VG(x,r) is

)
1— _ _ —1
X157 [san0x)lxiP~" - san(xn)lxalP~ —lx[57]

which is nonzero at any nonzero boundary points, and is
min{1, p — 1}- H6lder continuous.

e Letpe (1,0)andlet C={x € R": ||x|[p <1}. Then Cis
C'-~-cone reducible with « = min{1,p — 1}.



Error bound

Theorem 1. (Wang, P. 22)
For the best approximation problem

Minimize 0.5]x — V| subjectto x € n{_;A~"C;,
suppose that
(i) Each C;is C'“-cone reducible with a € (0, 1], closed & convex;
(i) N_ A7 G # 0
(iii) 0 € X* =V +ri 8(Zf:1 64-1¢,)(X*), where x* = Projm{_;ﬁA_in(V).
Then there existe > 0 and ¢ > 0 such that o
dist(y, Argmind) < c(d(y) — inf d)“ﬁ

whenever y satisfies dist(y, Argmind) < e &infd < d(y) < infd +e.



Error bound

Theorem 1. (Wang, P. 22)
For the best approximation problem

Minimize 0.5]x — V| subjectto x € n{_;A~"C;,
suppose that
(i) Each C;is C'“-cone reducible with a € (0, 1], closed & convex;
(i) N_ A7 G # 0
(iii) 0 € X* =V +ri 8(Zf:1 64-1¢,)(X*), where x* = Projm{_;ﬁA_in(V).
Then there existe > 0 and ¢ > 0 such that o
dist(y, Argmind) < c(d(y) — inf d)“ﬁ

whenever y satisfies dist(y, Argmind) < e &infd < d(y) < infd +e.
Note: The exponent is the BEST possible.



Convergence rate

Theorem 2. (Wang, P. 22)
For the best approximation problem, suppose that

(i) Each C;is C"“-cone reducible with a € (0, 1], closed & convex;
(i) N, A C # 0;
mﬂOeﬂ—V+HdE£JNGXWLWMmXﬂ:Mmﬁﬁﬁdw.

Let {x'} and {y'} be generated by the Dykstra-type algorithm. Then
there exist ¢ > 0 and f € N such that

e If o = 1, then 3y* € Argmind, 7 € (0, 1) such that for any t > i,
Ix' = x| < er', [ly' =yl <er'.

e If o€ (0,1), then forany t > t,

a? el . . __o?
[X'—x*|| <ct @1, d(y")—infd<ct ™=, dist(y', Argmind)<ct 2.
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Conclusion

Conclusion:
e Explicit convergence rate of a Dykstra-type method is deduced
for C':“-cone reducible sets, o € (0, 1].
e An example was constructed to illustrate the tightness of an
essential error bound condition.
Reference:
e X. Wang and T. K. Pong.
Convergence rate analysis of a Dykstra-type projection
algorithm.
Preprint. Available at https://arxiv.org/abs/2301.03026.

Thanks for coming! <
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