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Motivating applications
• Nearest correlation matrices: (Higham ’02)

Minimize
x∈Sn

‖x − v̄‖2
F subject to x ∈ ∩3

i=1Ci ,

where v̄ ∈ Sn, C1 = Sn
+, C2 = {x ∈ Sn : Lij ≤ xij ≤ Uij ∀i , j} and

C3 := {x ∈ Sn : xii = 1 ∀i}.

• System identification: (Liu et al. ’20)

Minimize
x1,...,xm∈IRn

m∑
i=1

‖xi − v̄i‖2 subject to x := (x1, . . . , xm) ∈ D1 ∩ D2,

where v̄ is given, and

D1 := {x ∈ IRmn : ‖Hri+1 (xi )‖∗ ≤ ki , i = 1, . . . ,m},
D2 := {x ∈ IRmn : ‖[Hr+1(x1) · · · Hr+1(xm)]‖∗ ≤ k},

with Hs being a linear map that returns a suitable Hankel matrix,
‖ · ‖∗ is the nuclear norm, ri , r ∈ N, and ki , k > 0.
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Best approximation problems

Consider the following best approximation problem:

Minimize
x∈IRn

1
2
‖x − v̄‖2 subject to x ∈

⋂̀
i=1

A−1
i Ci ,

where
• Ai : IRn → IRmi is linear and nonzero;
• each Ci ⊆ IRmi is closed and convex;
• projection onto Ci can be computed more efficiently than

projection onto A−1
i Ci ;

• For technical succintness:⋂̀
i=1

A−1
i Ci 6= ∅.
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When Ai = I

Dykstra’s projection algorithm: (Boyle, Dykstra ’86, Han ’88)

Set x0
` = v̄ , y0

1 = · · ·=y0
` =0. For each t ≥ 0, set x t+1

0 =x t
` and compute

x t+1
i = ProjCi

(y t
i + x t+1

i−1 ), y t+1
i = y t

i + x t+1
i−1 − x t+1

i for i = 1, . . . , `.

Known facts:
• x t

` =: x t → Proj∩`i=1Ci
(v̄).

• Reduces to cyclic projection when each Ci is affine. (Gaffke,
Mathar ’89).

• Equivalent to CGD applied to

Minimize
y1,...,y`

1
2

∥∥∥∥∥∑̀
i=1

yi − v̄

∥∥∥∥∥
2

− 1
2
‖v̄‖2 +

∑̀
i=1

σCi (yi )

starting from y0
1 = · · ·=y0

` =0.
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When Ai = I cont.

Dykstra’s projection algorithm: (Boyle, Dykstra ’86, Han ’88)

Set x0
` = v̄ , y0

1 = · · ·=y0
` =0. For each t ≥ 0, set x t+1

0 =x t
` and compute

x t+1
i = ProjCi

(y t
i + x t+1

i−1 ), y t+1
i = y t

i + x t+1
i−1 − x t+1

i for i = 1, . . . , `.

Known facts cont.:
• Local linear convergence of {x t

`} and all {y t
i } when each Ci is

polyhedral. (Luo, Tseng ’93)

• Convergence rate unknown for general Ci .

Outline:
• Develop Dykstra-type projection algorithm when Ai 6= I.
• Identify a class of sets Ci for convergence rate analysis.
• Explicit error bounds and convergence rate.
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A Dykstra-type algorithm

Dykstra-type projection algorithm:
Set y0

i = 0 ∈ IRmi and γi := λmax(AT
i Ai ) for all i , x0

` = v̄ ∈ IRn.
For each t ≥ 0, set x t+1

0 = x t
` and x t = x t

`. Compute, for i = 1, . . . , `,

x t+1
i = (I − γ−1

i AT
i Ai )x t+1

i−1 + γ−1
i AT

i ProjCi
(γiy t

i + Aix t+1
i−1 ),

y t+1
i = y t

i + γ−1
i Aix t+1

i−1 − γ
−1
i ProjCi

(γiy t
i + Aix t+1

i−1 ).

For notational simplicity, write y t := (y t
1, . . . , y

t
`) for all t .

• The algorithm is equivalent to a proximal CGD applied to

Minimize
y1,...,y`

d(y) :=
1
2

∥∥∥∥∥∑̀
i=1

AT
i yi − v̄

∥∥∥∥∥
2

− 1
2
‖v̄‖2 +

∑̀
i=1

σCi (yi )

starting from y0
i = 0 for all i .
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A Dykstra-type algorithm cont.

Key facts:
• It holds that

− inf
y

d(y) = inf
x

{
1
2
‖x − v̄‖2 : x ∈ ∩`i=1A−1

i Ci

}
.

• ‖y t+1 − y t‖ → 0 and dist(0, ∂d(y t ))→ 0.
• Every accumulation point of {y t} minimizes d .

• If y∗ ∈ Arg min d , then Proj∩`i=1A−1
i Ci

(v̄) = v̄ −
∑`

i=1 AT
i y∗i .

• (Auslender, Cominetti, Crouziex ’93) Suppose that ∩`i=1A−1
i ri Ci 6= ∅.

Then Arg min d = E1 + E2 6= ∅, where E1 is compact and E2 is a
subspace. Moreover, we have

d(y t )→ inf d , dist(y t ,Arg min d)→ 0,

and d(y + u) = d(y) for all y ∈ IRm1 × · · · × IRm` and u ∈ E2.
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C1,α-cone reducibility

We use the typeface Z to denote a finite dimensional Hilbert space.

Definition: Let α ∈ (0,1]. A closed set Ω ⊆ X is said to be C1,α-cone
reducible at x̂ ∈ Ω if ∃ ρ > 0, a mapping Ξ : X→ Y that satisfies
Ξ(x̂) = 0 and is C1,α in B(x̂ , ρ) with DΞ(x̂) being surjective, and a
closed convex pointed cone K ⊆ Y such that

Ω ∩ B(x̂ , ρ) = {x : Ξ(x) ∈ K} ∩ B(x̂ , ρ).

We say that Ω is C1,α-cone reducible if it is so at each x ∈ Ω.

Examples:
• A set C is C1,1-cone reducible at any x ∈ int C: just take Y = {0}.

Note that C1,1-cone reducibility =⇒ C1,α-cone reducibility for any
α ∈ (0,1].

• A closed convex pointed cone is C1,1-cone reducible at the origin.
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C1,α-cone reducibility cont.
Examples cont.:
• Let C be closed and convex, and B be the unit ball, then for any
ε > 0, the set C + εB is C1,1-cone reducible.

Indeed,

C + εB = {x : dist(x ,C)2 − ε2 ≤ 0};

for boundary points, take K = IR− and Ξ(x) := dist(x ,C)2 − ε2.
• Let p ∈ (1,∞) and let C = {(x , r) ∈ IRn × IR : ‖x‖p ≤ r}. Then C

is C1,α-cone reducible with α = min{1,p − 1}. Indeed, if we let
G(x , r) := ‖x‖p − r , then ∇G(x , r) is

‖x‖1−p
p ·

[
sgn(x1)|x1|p−1 · · · sgn(xn)|xn|p−1 −‖x‖p−1

p

]T
,

which is nonzero at any nonzero boundary points, and is
min{1,p − 1}- Hölder continuous.

• Let p ∈ (1,∞) and let C = {x ∈ IRn : ‖x‖p ≤ 1}. Then C is
C1,α-cone reducible with α = min{1,p − 1}.
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Error bound

Theorem 1. (Wang, P. ’22)
For the best approximation problem

Minimize
x∈IRn

0.5‖x − v̄‖2 subject to x ∈ ∩`i=1A−1
i Ci ,

suppose that
(i) Each Ci is C1,α-cone reducible with α ∈ (0,1], closed & convex;

(ii) ∩`i=1A−1
i ri Ci 6= ∅;

(iii) 0 ∈ x∗ − v̄ + ri ∂(
∑`

i=1 δA−1
i Ci

)(x∗), where x∗ = Proj∩`i=1A−1
i Ci

(v̄).

Then there exist ε > 0 and c > 0 such that

dist(y ,Arg min d) ≤ c (d(y)− inf d)1− 1
1+α

whenever y satisfies dist(y ,Arg min d) ≤ ε & inf d ≤ d(y) ≤ inf d + ε.

Note: The exponent is the BEST possible.
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Convergence rate

Theorem 2. (Wang, P. ’22)
For the best approximation problem, suppose that

(i) Each Ci is C1,α-cone reducible with α ∈ (0,1], closed & convex;
(ii) ∩`i=1A−1

i ri Ci 6= ∅;

(iii) 0 ∈ x∗ − v̄ + ri ∂(
∑`

i=1 δA−1
i Ci

)(x∗), where x∗ = Proj∩`i=1A−1
i Ci

(v̄).

Let {x t} and {y t} be generated by the Dykstra-type algorithm. Then
there exist c > 0 and t̄ ∈ N such that
• If α = 1, then ∃y∗ ∈ Arg min d , τ ∈ (0,1) such that for any t ≥ t̄ ,

‖x t − x∗‖ ≤ cτ t , ‖y t − y∗‖ ≤ cτ t .

• If α ∈ (0,1), then for any t ≥ t̄ ,

‖x t−x∗‖≤ct−
α2

2(1−α) , d(y t )−inf d≤ct−
α

1−α , dist(y t ,Arg min d)≤ct−
α2

2(1−α) .
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Conclusion

Conclusion:
• Explicit convergence rate of a Dykstra-type method is deduced

for C1,α-cone reducible sets, α ∈ (0,1].
• An example was constructed to illustrate the tightness of an

essential error bound condition.
Reference:
• X. Wang and T. K. Pong.

Convergence rate analysis of a Dykstra-type projection
algorithm.
Preprint. Available at https://arxiv.org/abs/2301.03026.
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