Convergence rate analysis of a Dykstra-type projection algorithm

Ting Kei Pong Department of Applied Mathematics The Hong Kong Polytechnic University Hong Kong

ICIAM Waseda University August 2023 (Joint work with Xiaozhou Wang)

Motivating applications

Nearest correlation matrices: (Higham '02)

$$\begin{array}{l} \underset{x \in S^n}{\text{Minimize}} \|x - \bar{v}\|_{F}^{2} \text{ subject to } x \in \cap_{i=1}^{3} C_{i},\\ \text{where } \bar{v} \in S^{n}, \ C_{1} = S_{+}^{n}, \ C_{2} = \{x \in S^{n}: \ L_{ij} \leq x_{ij} \leq U_{ij} \ \forall i, j\} \text{ and}\\ C_{3} := \{x \in S^{n}: \ x_{ii} = 1 \ \forall i\}. \end{array}$$

• System identification: (Liu et al. '20)

 $\underset{x_1,\ldots,x_m\in\mathbb{R}^n}{\text{Minimize}} \sum_{i=1}^m \|x_i-\bar{v}_i\|^2 \text{ subject to } x:=(x_1,\ldots,x_m)\in D_1\cap D_2,$

where \bar{v} is given, and

$$D_{1} := \{ x \in \mathbb{R}^{mn} : \|\mathcal{H}_{r_{i+1}}(x_{i})\|_{*} \le k_{i}, i = 1, \dots, m \}, \\ D_{2} := \{ x \in \mathbb{R}^{mn} : \|[\mathcal{H}_{r+1}(x_{1}) \cdots \mathcal{H}_{r+1}(x_{m})]\|_{*} \le k \},$$

with \mathcal{H}_s being a linear map that returns a suitable Hankel matrix, $\|\cdot\|_*$ is the nuclear norm, r_i , $r \in \mathbb{N}$, and k_i , k > 0.

Best approximation problems

Consider the following best approximation problem:

$$\underset{x \in \mathbb{R}^n}{\text{Minimize}} \ \frac{1}{2} \|x - \bar{v}\|^2 \ \text{subject to} \ x \in \bigcap_{i=1}^{\ell} A_i^{-1} C_i,$$

where

- $A_i : \mathbb{R}^n \to \mathbb{R}^{m_i}$ is linear and nonzero;
- each $C_i \subseteq \mathbb{R}^{m_i}$ is closed and convex;
- projection onto C_i can be computed more efficiently than projection onto A_i⁻¹C_i;
- For technical succintness:

$$\bigcap_{i=1}^{\ell} A_i^{-1} C_i \neq \emptyset.$$

When $A_i = I$

Dykstra's projection algorithm: (Boyle, Dykstra '86, Han '88) Set $x_{\ell}^0 = \bar{v}$, $y_1^0 = \cdots = y_{\ell}^0 = 0$. For each $t \ge 0$, set $x_0^{t+1} = x_{\ell}^t$ and compute $x_i^{t+1} = \operatorname{Proj}_{C_i}(y_i^t + x_{i-1}^{t+1})$, $y_i^{t+1} = y_i^t + x_{i-1}^{t+1} - x_i^{t+1}$ for $i = 1, \dots, \ell$.

When $A_i = I$

Dykstra's projection algorithm: (Boyle, Dykstra '86, Han '88) Set $x_{\ell}^0 = \bar{v}$, $y_1^0 = \cdots = y_{\ell}^0 = 0$. For each $t \ge 0$, set $x_0^{t+1} = x_{\ell}^t$ and compute $x_i^{t+1} = \operatorname{Proj}_{C_i}(y_i^t + x_{i-1}^{t+1})$, $y_i^{t+1} = y_i^t + x_{i-1}^{t+1} - x_i^{t+1}$ for $i = 1, \dots, \ell$.

Known facts:

•
$$x_{\ell}^t =: x^t \to \operatorname{Proj}_{\bigcap_{i=1}^{\ell} C_i}(\bar{v}).$$

- Reduces to cyclic projection when each *C_i* is affine. (Gaffke, Mathar '89).
- Equivalent to CGD applied to

$$\begin{array}{l} \underset{y_1,\ldots,y_{\ell}}{\text{Minimize}} \quad \frac{1}{2} \left\| \sum_{i=1}^{\ell} y_i - \bar{v} \right\|^2 - \frac{1}{2} \|\bar{v}\|^2 + \sum_{i=1}^{\ell} \sigma_{C_i}(y_i) \\ \text{starting from } y_1^0 = \cdots = y_{\ell}^0 = 0. \end{array}$$

When $A_i = I$ cont.

Dykstra's projection algorithm: (Boyle, Dykstra '86, Han '88) Set $x_{\ell}^0 = \bar{v}$, $y_1^0 = \cdots = y_{\ell}^0 = 0$. For each $t \ge 0$, set $x_0^{t+1} = x_{\ell}^t$ and compute $x_i^{t+1} = \operatorname{Proj}_{C_i}(y_i^t + x_{i-1}^{t+1})$, $y_i^{t+1} = y_i^t + x_{i-1}^{t+1} - x_i^{t+1}$ for $i = 1, \dots, \ell$.

Known facts cont.:

- Local linear convergence of {x^t_ℓ} and all {y^t_i} when each C_i is polyhedral. (Luo, Tseng '93)
- Convergence rate unknown for general C_i.

When $A_i = I$ cont.

Dykstra's projection algorithm: (Boyle, Dykstra '86, Han '88) Set $x_{\ell}^0 = \bar{v}$, $y_1^0 = \cdots = y_{\ell}^0 = 0$. For each $t \ge 0$, set $x_0^{t+1} = x_{\ell}^t$ and compute $x_i^{t+1} = \operatorname{Proj}_{C_i}(y_i^t + x_{i-1}^{t+1})$, $y_i^{t+1} = y_i^t + x_{i-1}^{t+1} - x_i^{t+1}$ for $i = 1, \dots, \ell$.

Known facts cont .:

- Local linear convergence of {x^t_ℓ} and all {y^t_i} when each C_i is polyhedral. (Luo, Tseng '93)
- Convergence rate unknown for general C_i.

Outline:

- Develop Dykstra-type projection algorithm when $A_i \neq I$.
- Identify a class of sets C_i for convergence rate analysis.
- Explicit error bounds and convergence rate.

A Dykstra-type algorithm

Dykstra-type projection algorithm: Set $y_i^0 = 0 \in \mathbb{R}^{m_i}$ and $\gamma_i := \lambda_{\max}(A_i^T A_i)$ for all $i, x_\ell^0 = \bar{v} \in \mathbb{R}^n$. For each $t \ge 0$, set $x_0^{t+1} = x_\ell^t$ and $x^t = x_\ell^t$. Compute, for $i = 1, ..., \ell$, $x_i^{t+1} = (I - \gamma_i^{-1} A_i^T A_i) x_{i+1}^{t+1} + \gamma_i^{-1} A_i^T \operatorname{Proj}_C(\gamma_i y_i^t + A_i x_{i+1}^{t+1})$,

$$y_i^{t+1} = y_i^t + \gamma_i^{-1} A_i x_{i-1}^{t+1} - \gamma_i^{-1} \operatorname{Proj}_{C_i}(\gamma_i y_i^t + A_i x_{i-1}^{t+1}).$$

A Dykstra-type algorithm

Dykstra-type projection algorithm: Set $y_i^0 = 0 \in \mathbb{R}^{m_i}$ and $\gamma_i := \lambda_{\max}(A_i^T A_i)$ for all $i, x_\ell^0 = \bar{v} \in \mathbb{R}^n$. For each $t \ge 0$, set $x_0^{t+1} = x_\ell^t$ and $x^t = x_\ell^t$. Compute, for $i = 1, ..., \ell$, $x_i^{t+1} = (I - \gamma_i^{-1} A_i^T A_i) x_{i-1}^{t+1} + \gamma_i^{-1} A_i^T \operatorname{Proj}_{C_i}(\gamma_i y_i^t + A_i x_{i-1}^{t+1}),$ $y_i^{t+1} = y_i^t + \gamma_i^{-1} A_i x_{i-1}^{t+1} - \gamma_i^{-1} \operatorname{Proj}_{C_i}(\gamma_i y_i^t + A_i x_{i-1}^{t+1}).$

For notational simplicity, write $\mathbf{y}^t := (\mathbf{y}_1^t, \dots, \mathbf{y}_\ell^t)$ for all t.

A Dykstra-type algorithm

Dykstra-type projection algorithm: Set $y_i^0 = 0 \in \mathbb{R}^{m_i}$ and $\gamma_i := \lambda_{\max}(A_i^T A_i)$ for all $i, x_\ell^0 = \bar{v} \in \mathbb{R}^n$. For each $t \ge 0$, set $x_0^{t+1} = x_\ell^t$ and $x^t = x_\ell^t$. Compute, for $i = 1, \dots, \ell$, $x_i^{t+1} = (I - \gamma_i^{-1} A_i^T A_i) x_{i-1}^{t+1} + \gamma_i^{-1} A_i^T \operatorname{Proj}_{C_i}(\gamma_i y_i^t + A_i x_{i-1}^{t+1}),$ $y_i^{t+1} = y_i^t + \gamma_i^{-1} A_i x_{i-1}^{t+1} - \gamma_i^{-1} \operatorname{Proj}_{C_i}(\gamma_i y_i^t + A_i x_{i-1}^{t+1}).$

For notational simplicity, write $\mathbf{y}^t := (\mathbf{y}_1^t, \dots, \mathbf{y}_\ell^t)$ for all t.

The algorithm is equivalent to a proximal CGD applied to

$$\underset{y_{1},...,y_{\ell}}{\text{Minimize}} \ d(\mathbf{y}) := \frac{1}{2} \left\| \sum_{i=1}^{\ell} A_{i}^{T} y_{i} - \bar{v} \right\|^{2} - \frac{1}{2} \|\bar{v}\|^{2} + \sum_{i=1}^{\ell} \sigma_{C_{i}}(y_{i})$$

starting from $y_i^0 = 0$ for all *i*.

Key facts:

It holds that

$$-\inf_{\boldsymbol{y}} d(\boldsymbol{y}) = \inf_{\boldsymbol{x}} \left\{ \frac{1}{2} \|\boldsymbol{x} - \bar{\boldsymbol{v}}\|^2 : \boldsymbol{x} \in \bigcap_{i=1}^{\ell} A_i^{-1} C_i \right\}.$$

Key facts:

It holds that

$$-\inf_{\boldsymbol{y}} d(\boldsymbol{y}) = \inf_{\boldsymbol{x}} \left\{ \frac{1}{2} \|\boldsymbol{x} - \bar{\boldsymbol{v}}\|^2 : \boldsymbol{x} \in \bigcap_{i=1}^{\ell} A_i^{-1} C_i \right\}.$$

•
$$\|\boldsymbol{y}^{t+1} - \boldsymbol{y}^t\| \to 0$$
 and dist $(\boldsymbol{0}, \partial d(\boldsymbol{y}^t)) \to 0$.

• Every accumulation point of {**y**^t} minimizes *d*.

Key facts:

It holds that

$$-\inf_{\boldsymbol{y}} d(\boldsymbol{y}) = \inf_{\boldsymbol{x}} \left\{ \frac{1}{2} \|\boldsymbol{x} - \bar{\boldsymbol{v}}\|^2 : \boldsymbol{x} \in \bigcap_{i=1}^{\ell} A_i^{-1} C_i \right\}.$$

•
$$\|\boldsymbol{y}^{t+1} - \boldsymbol{y}^t\| \to 0$$
 and dist $(\boldsymbol{0}, \partial d(\boldsymbol{y}^t)) \to 0$.

• Every accumulation point of {**y**^t} minimizes *d*.

• If
$$\mathbf{y}^* \in \operatorname{Arg\,min} d$$
, then $\operatorname{Proj}_{\bigcap_{i=1}^{\ell} A_i^{-1} C_i}(\bar{\mathbf{v}}) = \bar{\mathbf{v}} - \sum_{i=1}^{\ell} A_i^T y_i^*$.

Key facts:

It holds that

$$-\inf_{\boldsymbol{y}} d(\boldsymbol{y}) = \inf_{\boldsymbol{x}} \left\{ \frac{1}{2} \|\boldsymbol{x} - \bar{\boldsymbol{v}}\|^2 : \boldsymbol{x} \in \bigcap_{i=1}^{\ell} A_i^{-1} C_i \right\}.$$

•
$$\|\boldsymbol{y}^{t+1} - \boldsymbol{y}^t\| \to 0$$
 and dist $(\boldsymbol{0}, \partial d(\boldsymbol{y}^t)) \to 0$.

- Every accumulation point of {y^t} minimizes d.
- If $\mathbf{y}^* \in \operatorname{Arg\,min} d$, then $\operatorname{Proj}_{\bigcap_{i=1}^{\ell} A_i^{-1} C_i}(\bar{\mathbf{v}}) = \bar{\mathbf{v}} \sum_{i=1}^{\ell} A_i^T y_i^*$.
- (Auslender, Cominetti, Crouziex '93) Suppose that ∩_{i=1}^ℓ A_i⁻¹ri C_i ≠ Ø. Then Arg min d = E₁ + E₂ ≠ Ø, where E₁ is compact and E₂ is a subspace. Moreover, we have

$$d(\mathbf{y}^t) \rightarrow \inf d, \quad \operatorname{dist}(\mathbf{y}^t, \operatorname{Arg\,min} d) \rightarrow 0,$$

and $d(\mathbf{y} + \mathbf{u}) = d(\mathbf{y})$ for all $\mathbf{y} \in \mathbb{R}^{m_1} \times \cdots \times \mathbb{R}^{m_\ell}$ and $\mathbf{u} \in E_2$.

We use the typeface \mathbb{Z} to denote a finite dimensional Hilbert space.

Definition: Let $\alpha \in (0, 1]$. A closed set $\Omega \subseteq \mathbb{X}$ is said to be $C^{1,\alpha}$ -cone reducible at $\hat{x} \in \Omega$ if $\exists \rho > 0$, a mapping $\Xi : \mathbb{X} \to \mathbb{Y}$ that satisfies $\Xi(\hat{x}) = 0$ and is $C^{1,\alpha}$ in $B(\hat{x}, \rho)$ with $D\Xi(\hat{x})$ being surjective, and a closed convex pointed cone $K \subseteq \mathbb{Y}$ such that

$$\Omega \cap B(\hat{x}, \rho) = \{x : \Xi(x) \in K\} \cap B(\hat{x}, \rho).$$

We say that Ω is $C^{1,\alpha}$ -cone reducible if it is so at each $x \in \Omega$.

We use the typeface \mathbb{Z} to denote a finite dimensional Hilbert space.

Definition: Let $\alpha \in (0, 1]$. A closed set $\Omega \subseteq \mathbb{X}$ is said to be $C^{1,\alpha}$ -cone reducible at $\hat{x} \in \Omega$ if $\exists \rho > 0$, a mapping $\Xi : \mathbb{X} \to \mathbb{Y}$ that satisfies $\Xi(\hat{x}) = 0$ and is $C^{1,\alpha}$ in $B(\hat{x}, \rho)$ with $D\Xi(\hat{x})$ being surjective, and a closed convex pointed cone $K \subseteq \mathbb{Y}$ such that

$$\Omega \cap B(\hat{x},\rho) = \{x : \Xi(x) \in K\} \cap B(\hat{x},\rho).$$

We say that Ω is $C^{1,\alpha}$ -cone reducible if it is so at each $x \in \Omega$.

Examples:

• A set *C* is $C^{1,1}$ -cone reducible at any $x \in \text{int } C$: just take $\mathbb{Y} = \{0\}$.

We use the typeface \mathbb{Z} to denote a finite dimensional Hilbert space.

Definition: Let $\alpha \in (0, 1]$. A closed set $\Omega \subseteq \mathbb{X}$ is said to be $C^{1,\alpha}$ -cone reducible at $\hat{x} \in \Omega$ if $\exists \rho > 0$, a mapping $\Xi : \mathbb{X} \to \mathbb{Y}$ that satisfies $\Xi(\hat{x}) = 0$ and is $C^{1,\alpha}$ in $B(\hat{x}, \rho)$ with $D\Xi(\hat{x})$ being surjective, and a closed convex pointed cone $K \subseteq \mathbb{Y}$ such that

$$\Omega \cap B(\hat{x},\rho) = \{x : \Xi(x) \in K\} \cap B(\hat{x},\rho).$$

We say that Ω is $C^{1,\alpha}$ -cone reducible if it is so at each $x \in \Omega$.

Examples:

 A set C is C^{1,1}-cone reducible at any x ∈ int C: just take 𝔅 = {0}. Note that C^{1,1}-cone reducibility ⇒ C^{1,α}-cone reducibility for any α ∈ (0, 1].

We use the typeface \mathbb{Z} to denote a finite dimensional Hilbert space.

Definition: Let $\alpha \in (0, 1]$. A closed set $\Omega \subseteq \mathbb{X}$ is said to be $C^{1,\alpha}$ -cone reducible at $\hat{x} \in \Omega$ if $\exists \rho > 0$, a mapping $\Xi : \mathbb{X} \to \mathbb{Y}$ that satisfies $\Xi(\hat{x}) = 0$ and is $C^{1,\alpha}$ in $B(\hat{x}, \rho)$ with $D\Xi(\hat{x})$ being surjective, and a closed convex pointed cone $K \subseteq \mathbb{Y}$ such that

$$\Omega \cap B(\hat{x}, \rho) = \{x : \Xi(x) \in K\} \cap B(\hat{x}, \rho).$$

We say that Ω is $C^{1,\alpha}$ -cone reducible if it is so at each $x \in \Omega$.

Examples:

- A set C is C^{1,1}-cone reducible at any x ∈ int C: just take 𝔅 = {0}. Note that C^{1,1}-cone reducibility ⇒ C^{1,α}-cone reducibility for any α ∈ (0, 1].
- A closed convex pointed cone is C^{1,1}-cone reducible at the origin.

Examples cont.:

• Let *C* be closed and convex, and *B* be the unit ball, then for any $\epsilon > 0$, the set $C + \epsilon B$ is $C^{1,1}$ -cone reducible.

Examples cont.:

• Let *C* be closed and convex, and *B* be the unit ball, then for any $\epsilon > 0$, the set $C + \epsilon B$ is $C^{1,1}$ -cone reducible. Indeed,

 $C + \epsilon B = \{x : \operatorname{dist}(x, C)^2 - \epsilon^2 \leq 0\};$

for boundary points, take $K = \mathbb{R}_-$ and $\Xi(x) := \text{dist}(x, C)^2 - \epsilon^2$.

Examples cont.:

• Let *C* be closed and convex, and *B* be the unit ball, then for any $\epsilon > 0$, the set $C + \epsilon B$ is $C^{1,1}$ -cone reducible. Indeed,

$$C + \epsilon B = \{x : \operatorname{dist}(x, C)^2 - \epsilon^2 \leq 0\};$$

for boundary points, take $K = \mathbb{R}_-$ and $\Xi(x) := \text{dist}(x, C)^2 - \epsilon^2$.

• Let $p \in (1, \infty)$ and let $C = \{(x, r) \in \mathbb{R}^n \times \mathbb{R} : ||x||_p \le r\}$. Then C is $C^{1,\alpha}$ -cone reducible with $\alpha = \min\{1, p-1\}$.

Examples cont.:

• Let *C* be closed and convex, and *B* be the unit ball, then for any $\epsilon > 0$, the set $C + \epsilon B$ is $C^{1,1}$ -cone reducible. Indeed,

$$C + \epsilon B = \{x : \operatorname{dist}(x, C)^2 - \epsilon^2 \leq 0\};$$

for boundary points, take $K = \mathbb{R}_-$ and $\Xi(x) := \text{dist}(x, C)^2 - \epsilon^2$.

• Let $p \in (1, \infty)$ and let $C = \{(x, r) \in \mathbb{R}^n \times \mathbb{R} : ||x||_p \le r\}$. Then C is $C^{1,\alpha}$ -cone reducible with $\alpha = \min\{1, p-1\}$. Indeed, if we let $G(x, r) := ||x||_p - r$, then $\nabla G(x, r)$ is

$$\|x\|_{p}^{1-p} \cdot \left[\operatorname{sgn}(x_{1})|x_{1}|^{p-1} \cdots \operatorname{sgn}(x_{n})|x_{n}|^{p-1} - \|x\|_{p}^{p-1}\right]^{T}$$

which is nonzero at any nonzero boundary points, and is $\min\{1, p-1\}$ - Hölder continuous.

Examples cont.:

• Let *C* be closed and convex, and *B* be the unit ball, then for any $\epsilon > 0$, the set $C + \epsilon B$ is $C^{1,1}$ -cone reducible. Indeed,

$$C + \epsilon B = \{x : \operatorname{dist}(x, C)^2 - \epsilon^2 \leq 0\};$$

for boundary points, take $K = \mathbb{R}_-$ and $\Xi(x) := \text{dist}(x, C)^2 - \epsilon^2$.

• Let $p \in (1, \infty)$ and let $C = \{(x, r) \in \mathbb{R}^n \times \mathbb{R} : ||x||_p \le r\}$. Then C is $C^{1,\alpha}$ -cone reducible with $\alpha = \min\{1, p-1\}$. Indeed, if we let $G(x, r) := ||x||_p - r$, then $\nabla G(x, r)$ is

$$\|x\|_{p}^{1-p} \cdot \left[\operatorname{sgn}(x_{1})|x_{1}|^{p-1} \cdots \operatorname{sgn}(x_{n})|x_{n}|^{p-1} - \|x\|_{p}^{p-1}\right]^{T}$$

which is nonzero at any nonzero boundary points, and is $\min\{1, p-1\}$ - Hölder continuous.

• Let $p \in (1, \infty)$ and let $C = \{x \in \mathbb{R}^n : ||x||_p \le 1\}$. Then *C* is $C^{1,\alpha}$ -cone reducible with $\alpha = \min\{1, p-1\}$.

Error bound

Theorem 1. (Wang, P. '22) For the best approximation problem $\underset{x \in \mathbb{R}^n}{\text{Minimize } 0.5} \|x - \bar{v}\|^2 \text{ subject to } x \in \cap_{i=1}^{\ell} A_i^{-1} C_i,$ suppose that (i) Each C_i is $C^{1,\alpha}$ -cone reducible with $\alpha \in (0, 1]$, closed & convex; (ii) $\cap_{i=1}^{\ell} A_i^{-1} \operatorname{ri} C_i \neq \emptyset;$ (iii) $0 \in x^* - \bar{v} + \operatorname{ri} \partial(\sum_{i=1}^{\ell} \delta_{A_i^{-1}C_i})(x^*)$, where $x^* = \operatorname{Proj}_{\cap_{i=1}^{\ell} A_i^{-1}C_i}(\bar{v})$. Then there exist $\epsilon > 0$ and c > 0 such that dist(\boldsymbol{v} , Arg min d) < $c(d(\boldsymbol{v}) - \inf d)^{1-\frac{1}{1+\alpha}}$

whenever **y** satisfies dist(**y**, Arg min d) $\leq \epsilon$ & inf $d \leq d(\mathbf{y}) \leq \inf d + \epsilon$.

Error bound

Theorem 1. (Wang, P. '22) For the best approximation problem Minimize $0.5 ||x - \overline{v}||^2$ subject to $x \in \bigcap_{i=1}^{\ell} A_i^{-1} C_i$, $\mathbf{x} \in \mathbb{R}^n$ suppose that (i) Each C_i is $C^{1,\alpha}$ -cone reducible with $\alpha \in (0, 1]$, closed & convex; (ii) $\cap_{i=1}^{\ell} A_i^{-1} \operatorname{ri} C_i \neq \emptyset;$ (iii) $0 \in x^* - \bar{\nu} + \operatorname{ri} \partial(\sum_{i=1}^{\ell} \delta_{A_i^{-1}C_i})(x^*)$, where $x^* = \operatorname{Proj}_{\cap_{i=1}^{\ell} A_i^{-1}C_i}(\bar{\nu})$. Then there exist $\epsilon > 0$ and c > 0 such that dist(\boldsymbol{v} , Arg min d) < $c(d(\boldsymbol{v}) - \inf d)^{1-\frac{1}{1+\alpha}}$

whenever y satisfies dist $(y, \text{Arg min } d) \le \epsilon$ & $\inf d \le d(y) \le \inf d + \epsilon$. Note: The exponent is the BEST possible.

Convergence rate

Theorem 2. (Wang, P. '22) For the best approximation problem, suppose that

(i) Each C_i is $C^{1,\alpha}$ -cone reducible with $\alpha \in (0, 1]$, closed & convex; (ii) $\bigcap_{i=1}^{\ell} A_i^{-1}$ ri $C_i \neq \emptyset$;

(iii)
$$0 \in x^* - \bar{v} + \operatorname{ri} \partial(\sum_{i=1}^{\ell} \delta_{A_i^{-1}C_i})(x^*)$$
, where $x^* = \operatorname{Proj}_{\cap_{i=1}^{\ell} A_i^{-1}C_i}(\bar{v})$.

Let $\{x^t\}$ and $\{y^t\}$ be generated by the Dykstra-type algorithm. Then there exist c > 0 and $\overline{t} \in \mathbb{N}$ such that

• If $\alpha = 1$, then $\exists y^* \in \operatorname{Arg\,min} d, \tau \in (0, 1)$ such that for any $t \geq \overline{t}$,

$$\|\boldsymbol{x}^t - \boldsymbol{x}^*\| \leq \boldsymbol{c}\tau^t, \|\boldsymbol{y}^t - \boldsymbol{y}^*\| \leq \boldsymbol{c}\tau^t.$$

• If $\alpha \in (0, 1)$, then for any $t \geq \overline{t}$,

$$\|x^t - x^*\| \le ct^{-\frac{\alpha^2}{2(1-\alpha)}}, \ d(y^t) - \inf d \le ct^{-\frac{\alpha}{1-\alpha}}, \ \operatorname{dist}(y^t, \operatorname{Arg\,min} d) \le ct^{-\frac{\alpha^2}{2(1-\alpha)}}$$

Conclusion

Conclusion:

- Explicit convergence rate of a Dykstra-type method is deduced for C^{1,α}-cone reducible sets, α ∈ (0, 1].
- An example was constructed to illustrate the tightness of an essential error bound condition.

Reference:

 X. Wang and T. K. Pong. Convergence rate analysis of a Dykstra-type projection algorithm.

Preprint. Available at https://arxiv.org/abs/2301.03026.

Thanks for coming!