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Feasibility Problem

e Givenclosed sets D;, i =1,...,m, find a point

m
X € ﬂ D,'.
i=1

e Example: Finding a solution of Ax = b with ||x]jp < r.
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Feasibility Problem

Given closed sets D;, i = 1,..., m, find a point

m
X € ﬂ D,'.
i=1
Example: Finding a solution of Ax = b with ||x||o < r.
The general problem can be reformulated as finding a point in
{(X1,...,Xm)2 X =~ :Xm}ﬁ(D1 X Do x v+ x Dm)

Only need to consider the intersection of a closed convex set C
and a closed set D.



When D is convex

e Alternating projection:
XH1 = PD(Pc(Xt)).
e Douglas-Rachford (DR) splitting:
yH! = argmin {|ly — x|},
yeC
z'" = argmin {| 2y — x' — 2|},
zeD

X = xt (21— ),



When D is convex

e Alternating projection:
XH1 = PD(Pc(Xt)).
e Douglas-Rachford (DR) splitting:
yH! = argmin {|ly — x|},
yeC
z'" = argmin {| 2y — x' — 2|},
zeD
Xt = xt 4 (21 =yt

Empirically, DR splitting is usually faster.



When D is nonconvex

For the convergence of DR splitting:
e Mainly local convergence results.
e Require various regularity conditions on the sets.

e Local convergence for finding intersection of Ax = b and
|x]lo < r. (Hesse, Luke, Neumann '13).



When D is nonconvex

For the convergence of DR splitting:
e Mainly local convergence results.
e Require various regularity conditions on the sets.
e Local convergence for finding intersection of Ax = b and
|x]lo < r. (Hesse, Luke, Neumann '13).
e Global convergence shown for the intersection of a circle and a
straight line in R?. (Artacho, Borwein '12)



Our approach

e DR splitting: (v > 0)
Y™ = argmin { L02(y) + - |ly - x'|
y l2°° 2y ’
Z'"1 € Argmin { |2y — x' — z||?},
zeD
Xt+1 — Xt + (Zt+1 7yf+1)'

e The y-update is = (X' +vPc(x")).
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Our approach

e DR splitting: (v > 0)
yt = argmin { L6(y) + o-lly - x|
y o 12°° 2y ’
Z'"1 € Argmin { |2y — x' — z||?},
zeD
Xt+1 — Xt + (Zt+1 7yf+1)'

e The y-update is = (X' +vPc(x")).
« DR splitting applied to minimizing a2 + dp.



Convergence result |

Fact 1 (Li, P '14): [Global convergence]

Suppose that 0 < v < \@ — 1, and either C or D is compact.

Then {(y!, z!, x!)} is bounded, and any cluster point (y*, z*, x*)
satisfies z* = y*. Moreover, y* is a stationary point of

i.e., 0 €y*— Pc(y*)+ No(y*).



Convergence result |

Fact 1 (Li, P '14): [Global convergence]

Suppose that 0 < v < \@ — 1, and either C or D is compact.
Then {(y!, z!, x!)} is bounded, and any cluster point (y*, z*, x*)
satisfies z* = y*. Moreover, y* is a stationary point of

i.e., 0€y*— Po(y*) + Np(y*).
e Clearly, if do(y*) = 0, then y* solves the feasibility problem.



Convergence result Il

Fact 2 (Li, P '14): [Convergence of the whole sequence]
Suppose that 0 < v < \/g —1, C and D are semi-algebraic, and one

of them is compact.

Then {(y, 2!, x")} is bounded, and is convergent to some (y*, z*, x*)
satisfying z* = y*, with y* being a stationary point of the problem
minyep 3d(u). Furthermore,

o0

Sy =y < .

t=1



Convergence result Il

Fact 3 (Li, P '14): [Local convergence]
Let C = {x: Ax = b} and D be a closed semi-algebraic set,

0<y< \/g— 1 and lim(y!, z', xt) = (y*, z*, x*).
Suppose that z* € C N D with

Nc(Z*) N —ND(Z*) = {0}
Then there exist n € (0,1) and x > 0 such that for all large t,

dist (0, z'— Po(zh) + ND(Zt)) <kn'.
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Our DR vs classical DR

Example that the classical DR diverges: for 5 € (0, 1] (Bauschke,
Doll ’14)

C={xeR®: x, =0}
D = {(0,0),(7 +n,7),(7,—n)}

Initialized at x° = (7, 7), the classical DR exhibits a discrete limit
cycle.



Our DR vs classical DR

e Example that the classical DR diverges: for n € (0, 1] (Bauschke,
Doll ’14)

C={xcR?: xo=0}
Initialized at x° = (7, 7), the classical DR exhibits a discrete limit
cycle.

e For our DR, with v € (0, \/g — 1), explicit computation shows that

y*=2z*=(7+n,n)and x* = (7 +n,(1 + ~)n) for this starting
point.
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More general settings

e Douglas-Rachford splitting for min, f(u) + g(u):
y € argmin {1(y) + 5 ly - X2}
y 2y

1

z*1 € Argmin {g(z) + 2y — xt — Z||2} ,
z 2y

Xt = xt g (2 =y,

e f has Lipschitz gradient whose continuity modulus is L, g is
proper closed; f + 5| - ||? is convex.



General convergence results

Fact 4 (Li, P '14): [Global convergence]
Suppose that (1 +yL)? + % — 2 < 0and a cluster point of
{(y, 2%, x")} exists.
Then any cluster point (y*, z*, x*) satisfies z* = y*. Moreover, y* is a
stationary point of
min f(u) + g(u),

i.e., 0 e VF(y*)+ 0g9(y*).

If, in addition, f and g are semi-algebraic, then the whole sequence is
convergent.
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General convergence results

Fact 4 (Li, P '14): [Global convergence]
Suppose that (1 +vL)? + %' — 3 < 0 and a cluster point of
{(y!, Z', x!)} exists.
Then any cluster point (y*, z*, x*) satisfies z* = y*. Moreover, y* is a
stationary point of
min f(u) + g(u),

i.e., 0 e VF(y*)+ 0g9(y*).

If, in addition, f and g are semi-algebraic, then the whole sequence is
convergent.
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Boundedness of sequence

Fact 5 (Li, P '15): [Boundedness]
Suppose that (1 +~L)2 + %/ — 3 <0.

Suppose in addition
e both functions f and g are bounded below; and
o at least one of them is coercive.

Then the sequence {(y!, z!, x!)} is bounded.
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Convergence proof?

e KEY: Makes use of
Dy, 2,X) = 1Y) +9(2) + o-lIx — VI — o-|Ix - 2|1
vy ya b T .y g 27 .y 27 .

e Can show that for some ky, ko > O:

@W(yt’ Zt,Xt) _ QV(y’“J'H,XM) > k1 HyI—H _ ytHZ;
dist(0, 0D, (¥, 2', x")) < ke|ly™" — y'|.

12/15



Numerical simulations

Find a point in Ax = b with ||x|jo < r, || X]ee < 108.

Consider random instances: generate an r-sparse vector X, an
m x n matrix A, and set b = AX.

Compare with alternating projection. Initialize both algorithms at
x% =0.

Terminate when successive changes are less than 108,
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Numerical simulations

Find a point in Ax = b with ||x|lo < r, ||X]lec < 108.

Consider random instances: generate an r-sparse vector X, an
m x n matrix A, and set b = AX.

Compare with alternating projection. Initialize both algorithms at
x% =0.

Terminate when successive changes are less than 108,

For DR splitting, start with a v > /2 — 1, decrease ~ if ||y!|| gets
too large or ||yt — y!|| does not deteriorate quickly enough.
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Numerical simulations

Over 50 trials for each m, n; sparsity is [2]; succ means fval < 1072,

Data DR: fval = Jd3(2") Alt Proj: fval = Jd&(x")

m n iter | fvalmax | fvalmin | Succ iter | fvalmax | fvalmin | Succ
100 | 4000 || 1967 | 3e-02 | 6e-17 30 || 1694 | 8e-02 | 4e-03 0
100 | 5000 || 2599 | 2e-02 | 2e-16 18 || 1978 | 7e-02 | 5e-03 0
100 | 6000 || 2046 | 1e-02 | 1e-16 12 || 2350 | 5e-02 | 4e-05 0
200 | 4000 836 | 2e-15 | 2e-16 50 || 1076 | 3e-01 | 3e-05 0
200 | 5000 || 1080 | 3e-15 | 2e-16 50 || 1223 | 2e-01 | 2e-03 0
200 | 6000 || 1279 | 7e-02 | 1e-16 43 || 1510 | 2e-01 | 1e-13 1
300 | 4000 600 | 3e-15 | 2e-16 50 872 | 4e-01 | 6e-14 3
300 | 5000 710 | 4e-15 | 4e-16 50 || 1068 | 3e-01 | 9e-14 3
300 | 6000 812 | 3e-15 | 2e-16 50 || 1252 | 3e-01 | 1e-13 1
400 | 4000 520 | 2e-15 | 3e-17 50 818 | 6e-01 | 7e-14 30
400 | 5000 579 | 3e-15 | 5e-16 50 946 | 4e-01 | 9e-14 12
400 | 6000 646 | 4e-15 | 6e-16 50 || 1108 | 3e-01 | 1e-13 4




Conclusion

e The DR splitting applied to min,cp 302 (u), with either C or D
being compact, can be shown to generate a bounded sequence
that clusters at a stationary point.

e Under semi-algebraicity assumption, the whole sequence can be
shown to be convergent.
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