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Feasibility Problem

e Givenclosed sets D;, i =1,...,m, find a point

m
X € ﬂ D,'.
i=1

e Example: Finding a solution of Ax = b with ||x]jp < r.
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Given closed sets D;, i = 1,..., m, find a point

m
X € ﬂ D,'.
i=1
Example: Finding a solution of Ax = b with ||x||o < r.
The general problem can be reformulated as finding a point in
{(X1,...,Xm)2 X =~ :Xm}ﬁ(D1 X Do x v+ x Dm)

Only need to consider the intersection of a closed convex set C
and a closed set D.



When D is convex

e Alternating projection:
XH1 = PD(Pc(Xt)).
e Douglas-Rachford (DR) splitting:
yH! = argmin {|ly — x|},
yeC
z'" = argmin {| 2y — x' — 2|},
zeD

X = xt (21— ),
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Empirically, DR splitting is usually faster.



When D is nonconvex

For the convergence of DR splitting:
e Mainly local convergence results.
e Require various regularity conditions on the sets.

e Local convergence for finding intersection of Ax = b and
|x]lo < r. (Hesse, Luke, Neumann '13).



When D is nonconvex

For the convergence of DR splitting:
e Mainly local convergence results.
e Require various regularity conditions on the sets.
e Local convergence for finding intersection of Ax = b and
|x]lo < r. (Hesse, Luke, Neumann '13).
e Global convergence shown for the intersection of a circle and a
straight line in R?. (Artacho, Borwein '12)



Our approach

e DR splitting: (v > 0)
Y™ = argmin { L02(y) + - |ly - x'|
y l2°° 2y ’
Z'"1 € Argmin { |2y — x' — z||?},
zeD
Xt+1 — Xt + (Zt+1 7yf+1)'

e The y-update is = (X' +vPc(x")).



Our approach

e DR splitting: (v > 0)
yt = argmin { L6(y) + o-lly - x|
y o 12°° 2y ’
Z'"1 € Argmin { |2y — x' — z||?},
zeD
Xt+1 — Xt + (Zt+1 7yf+1)'

e The y-update is = (X' +vPc(x")).
« DR splitting applied to minimizing a2 + dp.



Convergence result |

Fact 1 (Li, P '14): [Global convergence]

Suppose that 0 < v < \@ — 1, and either C or D is compact.

Then {(y!, z!, x!)} is bounded, and any cluster point (y*, z*, x*)
satisfies z* = y*. Moreover, y* is a stationary point of

i.e., 0 €y*— Pc(y*)+ No(y*).



Convergence result |

Fact 1 (Li, P '14): [Global convergence]

Suppose that 0 < v < \@ — 1, and either C or D is compact.
Then {(y!, z!, x!)} is bounded, and any cluster point (y*, z*, x*)
satisfies z* = y*. Moreover, y* is a stationary point of

i.e., 0€y*— Po(y*) + Np(y*).
e Clearly, if do(y*) = 0, then y* solves the feasibility problem.



Convergence result Il

Fact 2 (Li, P '14): [Convergence of the whole sequence]
Suppose that 0 < v < \/g —1, C and D are semi-algebraic, and one

of them is compact.

Then {(y, 2!, x")} is bounded, and is convergent to some (y*, z*, x*)
satisfying z* = y*, with y* being a stationary point of the problem
minyep 3d(u). Furthermore,

o0

Sy =y < .

t=1



Convergence result Il

Fact 3 (Li, P '14): [Local convergence]
Let C = {x: Ax = b} and D be a closed semi-algebraic set,

0<y< \/g— 1 and lim(y!, z', xt) = (y*, z*, x*).
Suppose that z* € C N D with

Nc(Z*) N —ND(Z*) = {0}
Then there exist n € (0,1) and x > 0 such that for all large t,

dist (0, z'— Po(zh) + ND(Zt)) <kn'.



Convergence proof?

o KEY: Makes use of
__ 1 2 l _ 2_l _ 712
D,(y,2z,x) = 2dc(}’)+5o(z)+ zvllx vl 27“’( z||°.

e Can show that for some ky, ko > O:

@W(yt’ Zt,Xt) _ QV(y’“J'H,XM) > k1 HyI—H _ ytHZ;
dist(0, 0D, (¥, 2', x")) < ke|ly™" — y'|.



Numerical simulations

Find a point in Ax = b with ||x]|jo < r.

Consider random instances: generate an r-sparse vector X, an
m x n matrix A, and set b = AX.

Compare with alternating projection. Initialize both algorithms at
x% =0.

Terminate when successive changes are less than 108,



Numerical simulations

Find a point in Ax = b with ||x]|jo < r.

Consider random instances: generate an r-sparse vector X, an
m x n matrix A, and set b = AX.

Compare with alternating projection. Initialize both algorithms at
x0=0.

Terminate when successive changes are less than 108,

For DR splitting, start with a v > \/g — 1, decrease ~ if

ly™" — y!|| does not deteriorate quickly enough.



Numerical simulations

Over 50 trials for each m, n; sparsity is [Z]; succ means fval < 10712,

Data DR: fval = Jd5(Z' Alt Proj: fval = JdZ(x")

m n iter | fvalmax | fvalmn | sSucc iter | fvalmax | fvalmn | succ
300 | 4000 || 600 | 3e-15 | 2e-16 50 872 | 4e-01 | 6e-14 3
300 | 5000 || 710 | 4e-15 | 4e-16 50 || 1068 | 3e-01 | 9e-14 3
300 | 6000 || 812 | 3e-15 | 2e-16 50 || 1252 | 3e-01 | 1e-13 1
400 | 4000 || 520 | 2e-15 | 3e-17 50 818 | 6e-01 | 8e-14 30
400 | 5000 || 579 | 3e-15 | 5e-16 50 946 | 4e-01 | 9e-14 12
400 | 6000 || 646 | 4e-15 | 6e-16 50 || 1108 | 3e-01 | 1e-13 4
500 | 4000 || 499 | 1e-16 | 1e-18 50 640 | 4e-01 | 6e-14 38
500 | 5000 || 519 | 1e-15 | 4e-17 50 846 | 4e-01 | 9e-14 37
500 | 6000 || 556 | 3e-15 | 3e-16 50 || 1071 5e-01 | 1e-13 22




Conclusion

e The DR splitting applied to min,cp 302 (u), with either C or D
being compact, can be shown to generate a bounded sequence
that clusters at a stationary point.

e Under semi-algebraicity assumption, the whole sequence can be
shown to be convergent.
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