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Feasibility Problem

e Givenclosed sets D;, i =1,...,m, find a point

m
X € ﬂ D,'.
i=1

e Example: Finding a solution of Ax = b with ||x]jp < r.
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Feasibility Problem

Given closed sets D;, i = 1,..., m, find a point

m
X € ﬂ D,'.
i=1
Example: Finding a solution of Ax = b with ||x||o < r.
The general problem can be reformulated as finding a point in
{(X1,...,Xm)2 X =~ :Xm}ﬁ(D1 X Do x v+ x Dm)

Only need to consider the intersection of a closed convex set C
and a closed set D.



When D is convex

e Alternating projection:
Xil+1 = PD(Pc(Xt)).
e Splitting methods (0 < « < 2):
y"! = argmin {|ly — x|},
yeC
z"*1 = argmin {szm —x'— z||},
zeD

X = xt (2 =y,



When D is convex

Alternating projection:
x*1 = Pp(Pe(xh)).
Splitting methods (0 < a < 2):
y"! = argmin {|ly — x|},
yeC
z"*1 = argmin {szm —x'— z||},
zeD
X = x! a2t =yt

Douglas-Rachford (DR): o = 1.
Peaceman-Rachford (PR): o = 2.



Behavior in convex case: AP
Finding the intersection of the axes, starting from (0.5, 0.5).

One iteration of altermating projection
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Behavior in convex case: DR
Showing the x-iterates: average after two successive reflections.
Pc(xt) will converge to the intersection.

One iteration of DR splitting
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Behavior in convex case: PR
Showing the x-iterate; not convergent.

One iteration of PR splitting
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When D is nonconvex

For the convergence of DR splitting:
e Mainly local convergence results.
e Require various regularity conditions on the sets.

e Local convergence for finding intersection of Ax = b and
lIX|lo < r. (Hesse, Luke, Neumann ’13).



When D is nonconvex

For the convergence of DR splitting:
Mainly local convergence results.
Require various regularity conditions on the sets.

Local convergence for finding intersection of Ax = b and

lIX|lo < r. (Hesse, Luke, Neumann ’13).

Global convergence shown for the intersection of a circle and a
hyperplane/line. (Artacho, Borwein '12, Benoist '15)

Global convergence shown for the intersection of a halfspace
and a compact set. (Artacho, Borwein, Tam '15)
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Our DR splitting

e DR splitting: (v > 0)
Y™ = argmin { L02(y) + - |ly - x'|
y l2°° 2y ’
Z'"1 € Argmin { |2y — x' — z||?},
zeD
Xt+1 — Xt + (Zt+1 7yf+1)'

e The y-update is = (X' +vPc(x")).

7117



Our DR splitting

e DR splitting: (v > 0)
yt = argmin { L6(y) + o-lly - x|
y o 12°° 2y ’
Z'"1 € Argmin { |2y — x' — z||?},
zeD
Xt+1 — Xt + (Zt+1 7yf+1)'

e The y-update is = (X' +vPc(x")).
« DR splitting applied to minimizing a2 + dp.



DR Convergence result |

Fact 1 (Li, P 15): [Global convergence]
Suppose that 0 < v < \g — 1, and either C or D is compact.

Then the sequence {(y!, z!, x!)} generated from DR splitting is
bounded, and any cluster point (y*, z*, x*) satisfies z* = y*.
Moreover, y* is a stationary point of

15
min 39c(v).

i.e., 0 €y* — Po(y*)+ No(y*).



DR Convergence result |

Fact 1 (Li, P 15): [Global convergence]
Suppose that 0 < v < \g — 1, and either C or D is compact.

Then the sequence {(y!, z!, x!)} generated from DR splitting is
bounded, and any cluster point (y*, z*, x*) satisfies z* = y*.
Moreover, y* is a stationary point of

15
min 39c(v).

i.e.,0 ¢ y* — Pc(y*) + ND(y*)
e Clearly, if do(y*) = 0, then y* solves the feasibility problem.



DR Convergence result Il

Fact 2 (Li, P '15): [Convergence of the whole sequence]

Suppose that 0 < v < \@ —1, C and D are semi-algebraic, and one
of them is compact.

Then the sequence {(y!, z!, x!)} generated from DR splitting is
bounded, and is convergent to some (y*, z*, x*) satisfying z* = y*,
with y* being a stationary point of the problem min,p %dé(u).
Furthermore,

o0

Sy =y < .

t=1



DR Convergence result Il

Fact 3 (Li, P '15): [Local convergence]
Let C = {x: Ax = b} and D be a closed semi-algebraic set,

0<y< \/g— 1 and lim(y!, z', xt) = (y*, z*, x*).
Suppose that z* € C N D with

Nc(Z*) N —ND(Z*) = {0}
Then there exist n € (0,1) and x > 0 such that for all large t,

dist (0, z'— Po(zh) + ND(Zt)) <kn'.
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For PR splitting

e Does not converge in general even if D is convex.

e Modifying as follows also cannot guarantee convergence even if
both sets are convex:

1 1
tH1 S B LT Y-
! = argmin { 5 oB(y) + -l 12}

z'"1 e Argmin { |2y — x' — z||?},
zeD

Xt+1 _ Xt +2(Zl‘+1 7yt+1).
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For PR splitting

e Does not converge in general even if D is convex.

e Modifying as follows also cannot guarantee convergence even if
both sets are convex:

1 1
tH1 _ e LTS
! = argmin { 5 oB(y) + -l 12}
z'"1 e Argmin { |2y — x' — z||?},

zeD

Xt+1 _ Xt +2(Zl‘+1 7yt+1).

e Indeed, PR splitting applied to minimizing sum of convex
functions f + g converges when f is continuous and strictly
convex. (Lions, Mercier '79)

11/17



Our PR splitting

e PR splitting: (v > 0)
y™ = argmin { LcB(y) + 2|1y + o lly — x|
y l27°¢ 2 2 ’
z!"*1 € Argmin 7§HZ||2 + lHZyt+1 —x'—z|?
2 2y ’

zeD
Xt = xt 4 2(zt+1 _yt+1).
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Our PR splitting

e PR splitting: (v > 0)

1 5 1

t1 _ L Ouo2 L Ve 2

et —argmin { J6E() + GlyI°+ 5Ly = ¥}

z!"*1 € Argmin {SZH2 + lHZyt+1 —x' - Z||2} ,
zeD 2 2y

X1 = xt (1 — yt+hy,

o Closed form updates for v € (0, 1):

1 x! 2yttt — xt
t+1 t P t+1 P
Y 6y + 1 [X 7 C<57+1)]’ 2 € D( 1— 54 )
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PR Convergence result |

Fact 4 (Li, P '15): [GIobaI convergence]
Suppose that 0 < v < 12, and either C or D is compact.

Then the sequence {(y!, 2!, x!)} generated from PR splitting is
bounded, and any cluster point (y*, z*, x*) satisfies z* = y*.
Moreover, y* is a stationary point of

min fd2( u),

ueD 2

i.e., 0 € y* — Po(y*) + Np(y*).
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PR Convergence result |

Fact 4 (Li, P '15): [GIobaI convergence]
Suppose that 0 < v < 12, and either C or D is compact.

Then the sequence {(y!, 2!, x!)} generated from PR splitting is
bounded, and any cluster point (y*, z*, x*) satisfies z* = y*.
Moreover, y* is a stationary point of

72
min 59c(v);

i.e., 0 € y* — Po(y*) + Np(y*).

If both sets are in addition semi-algebraic, then the whole sequence
is convergent.



Convergence proof?

KEY: Makes use of B, (y, z, x) defined as
L2 +00(2)+ 21y IR - 11212) + o flx — 22— - x—22 4 y|?
2°C b 2 2 2 '

Can show that for some ky, ko > 0:

Po (v 2, x) — Py (v, 2 X > k|t -y
dist(0, 0%, (', 2, x")) < ke|ly™' — y'||.
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Numerical simulations

Find a point in Ax = b with ||x|jo < r and ||x||e < 10°.

Consider random instances: generate an r-sparse vector X, an
m x n matrix A, and set b = AX.

Compare with alternating projection. Initialize all three algorithms
at x° =0.

Terminate when successive changes are less than 108,
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Numerical simulations

Find a point in Ax = b with ||x||o < r and || x|/, < 10°.

Consider random instances: generate an r-sparse vector X, an
m x n matrix A, and set b = AX.

Compare with alternating projection. Initialize all three algorithms
at x° =0.

Terminate when successive changes are less than 108,

For the splitting methods, start with a « larger than the threshold,
decrease v if [|y!*! — y!|| does not deteriorate quickly enough or
|ly!|| becomes too large.
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Over 50 trials for each m, n; sparsity is [2]; succ means fval < 1072,

Numerical simulations

Data DR: fval = Jd5(2") PR: fval = 1d&(z") || Alt Proj: fval = JdZ(x")

m,n iter | fvalmax | succ iter | fvalmax | succ iter | fvalmax succ
100, 4000 || 1967 | 3e-02 30 || 491 7e-2 0 || 1694 8e-2 0
100, 5000 || 2599 | 2e-02 18 || 586 7e-2 0| 1978 7e-2 0
100, 6000 || 2046 | 1e-02 12 || 684 5e-2 0 || 2350 5e-2 0
200, 4000 836 | 2e-15 50 || 310 2e-1 14 || 1076 3e-1 0
200, 5000 || 1080 | 3e-15 50 || 364 1e-1 2 || 1223 2e-1 0
200, 6000 || 1279 | 7e-02 43 || 431 1e-1 5| 1510 2e-1 1
300, 4000 600 | 3e-15 50 || 223 2e-1 35 872 4e-1 3
300, 5000 710 | 4e-15 50 || 295 2e-1 25 || 1068 3e-1 3
300, 6000 812 | 3e-15 50 || 350 2e-1 21 1252 3e-1 1
400, 4000 520 | 2e-15 50 || 156 3e-1 47 818 6e-1 30
400, 5000 579 | 3e-15 50 || 213 3e-1 42 946 4e-1 12
400, 6000 646 | 4e-15 50 || 288 2e-1 38 || 1108 3e-1 4




Conclusion
e The DR splitting applied to mig 1§d§(u) with a compact C or D
ue

generates a sequence that clusters at a stationary point.
e The PR splitting suitably applied to miB $d%(u) with a compact C
ue

or D generates a sequence that clusters at a stationary point.
¢ Under semi-algebraicity assumption, the whole sequence
converges.
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