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Motivating example

Minimum norm solutions:
e In sparse optimization:

min || x]|4
st ||b—Ax| <o,

where A€ R™" be R™and o < ||b]|.



Motivating example

Minimum norm solutions:
e In sparse optimization:

min || x]|4
st ||b—Ax| <o,

where A€ R™" be R™and o < ||b]|.
e More generally, minimization of atomic norm (Chandrasekaran et
al. "12)
x4 =inf{fA >0: x € Aconv A},

where A is a set of “atoms” characterizing the notion of sparsity:
x* A={xe: i=1,...,n} = |x]la=>",]|xl
* A = unit norm rank 1 matrices = || X|la = >, oi(X).



Gauges

e Gauges are generalizations of norms: nonnegative convex
positively homogeneous functions that are zero at the origin.

e k(x) =inf{A >0: x € AU} for some convex set U.
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Gauges

Gauges are generalizations of norms: nonnegative convex
positively homogeneous functions that are zero at the origin.

k(x) =inf{fA > 0: x € AU} for some convex set U.
Polar gauge generalizes dual norm:

k°(y) =inf{A > 0: (x,y) < Ak(x) ¥Vx}
= sup{(x,y) : r(x) <1}

Generalized Cauchy inequality: for all x € domx and y € dom °,

(x,y) < w(X)E°(y).
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Further example of gauge

Conic gauge optimization:
e In conic optimization:

min (¢, X)
st. Ax=b, xek.

If c € K*, then (c,-) + 0x(-) is a gauge.

e Examples: SDP relaxation of max-cut, phase retrieval...



Further example of gauge

Conic gauge optimization:
e In conic optimization:

min (¢, X)
st. Ax=b, xek.

If c € K*, then (c,-) + 0x(-) is a gauge.
e Examples: SDP relaxation of max-cut, phase retrieval...

e More generally, if there exists j so that c — A*y € K*, then
¢:=c— A*y e K*and (¢,-) + dx(-) is a gauge.



Gauge optimization
Vp :=min  k(X)
st pb—Ax)<o.

e xS agauge.

e pis a closed gauge with p='(0) = {0}, 0 < & < p(b).
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Gauge optimization

Vp :=min  k(X) P.)
st p(b— Ax) <o. P
K IS a gauge.
pis a closed gauge with p='(0) = {0}, 0 < o < p(b).
Lagrange and gauge dual problems:

Ve :=max (b,y) —op°(y) Vg :=min  k°(A*y)
st k°(A*y) <1. st. (b,y)—op°(y) >1.

The role of objective and constraint is reversed in the gauge dual.

14



Outline

e Gauge duality: general framework.
e Gauge duality: structured problem.
e Smoothing technique: polar envelope.



Gauge duality framework

Let C be a nonempty closed convex set not containing the origin, and
define its anti-polar

C'={u: (u,x)>1 vVxecC}.
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Gauge duality framework

Let C be a nonempty closed convex set not containing the origin, and
define its anti-polar

C'={u: (u,x) >1 vx ecC}.
Freund (’87) defined the following primal-dual gauge pairs:

Vp :=min  k(X)
st xeld,

Vg :=min  x°(U)
st. uel.



Gauge duality framework

Let C be a nonempty closed convex set not containing the origin, and
define its anti-polar

C'={u: (u,x)>1 vVxecC}.

Freund (’87) defined the following primal-dual gauge pairs:

Vp :=min  k(X)

st xeld, (P)
Vg :=min  x°(U)

st uecd. (D)

Theorem 1. [Strong duality] (Freund '87)
Suppose that « is closed, ridom x° NriC’ # ) and ridomx N riC # 0.
Then v,vy, = 1 and both values are attained.



Anti-polar calculus

LetD:={u: p(b—u)<oc}. Then
C={x: pb—Ax)<o}=A"D.
How do we compute C'?

Fact 2.
D' ={y: (by)—op°(y) = 1}.
Proposition 1. (Friedlander, Macédo, P.’'14)

(A7'D) = cl(A*D).
If, in addition, ri D N Range A # (), then

(A'DY = A"D' = {Ay : (b.y) — op°(y) = 1}.
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Strong duality

Consider the following primal-dual gauge pairs:

Vp :=min  k(X)
st p(b— Ax) <o,

Vg :=min  k°(A*y)

st. (b,y)—op°(y) >1.



Strong duality

Consider the following primal-dual gauge pairs:

Vp :=min  k(X) P.)
st p(b— Ax) <o, P
Vg :=min  k°(A*y)
st (by)—op°(y) 2 1.
Let D := {u: p(b— u) < o} so that primal feasible setis A~'D.
Theorem 2. (Friedlander, Macédo, P.'14)

Suppose that « is closed, ridom x° N1i A*D’ # () and
ridomk N A~'riD # (. Then v,v, = 1 and both values are attained.



Strong duality

Consider the following primal-dual gauge pairs:

Vp :=min  k(x)
"7 st plb—Ax) <o, (Po)

Vg :=min  k°(A*y) D,)
st (by)—op°(y) 2 1. ’
Let D := {u: p(b— u) < o} so that primal feasible setis A~'D.
Theorem 2. (Friedlander, Macédo, P.'14)

Suppose that « is closed, ridom x° N1i A*D’ # () and
ridomk N A~'riD # (. Then v,v, = 1 and both values are attained.

Unlike the Lagrange dual, the gauge dual (D,) has a complicated objective and simple constraint.



Solution method: Smoothing

For proper closed convex functions f; and f,, with suitable CQ:

minimize /(@) + foe)  — iz (7, + 51 13)@) + fo(@)
gigil;;l z € 0f{ (y) NAf5(—y) Fenchel

duality l“b =V ﬁ“ . ”g)(y)
sum )
minimize [ (y) + f3(~y) < minimize (7 O 55 - 13)() + £ ()

Here, f;O5-| - || is the Moreau envelope of af;:

* L 2 . P * L _ 2
(505511 100 = it {0+ 5l - 12}

which is smooth.



Solution method: Smoothing

For proper closed convex functions f; and f,, with suitable CQ:

minimize fi(e) + fo(x) 0 minimize (f + - [B)(@) + fa(2)
gﬁiﬁ;l z € 0f{ (y) NAf5(—y) Fenchel

duality lz =V ﬁ“ . ”g)(y)
sum )
minimize f{(y)+ J3(~y) <R minimize (f7 O 55 - [5)) + /3 (<)

Here, ﬂ*D;—aH -||2 is the Moreau envelope of af;:

* L 2 . P * L _ 2
(505511 100 = it {0+ 5l - 12}

which is smooth. Does not preserve gauge structure!
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Polar envelope
Definition. (Friedlander, Macédo, P.'18)
Let x be a gauge, « > 0. The polar envelope and polar proximal
mapping are
. 1
() = inf max { (@) 7 - 21}

pprox,,,.(x) := Argzmin max {m(z), $||x - z} .
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Polar envelope

Definition. (Friedlander, Macédo, P.’18)
Let x be a gauge, « > 0. The polar envelope and polar proximal
mapping are

Ka(X) = igf max {m(z), é”x - z||} )

pprox,,,.(x) := Argzmin max {m(z), %Hx - z} .

Note:
e For proper convex functions f; and £, their max-convolution is

(fi o R)(x) := ir;f max {fi(z), b(x — 2)}
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Polar envelope

Definition. (Friedlander, Macédo, P.’18)
Let x be a gauge, « > 0. The polar envelope and polar proximal
mapping are

Ka(X) = igf max {m(z), %Hx — z||} ,

pprox,,,.(x) := Argzmin max {m(z), %Hx - z} .

Note:
e For proper convex functions f; and £, their max-convolution is

(fi o R)(x) := igf max {fi(z), b(x — 2)}

e For gauges k1 and k»: (Friedlander, Macédo, P. '18)

(k10 K2)° = K] + k3.
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Polar envelope

Definition. (Friedlander, Macédo, P. '18)
Let x be a gauge, « > 0. The polar envelope and polar proximal
mapping are

Ka(X) = igf max {m(z), %Hx — z||} ,

pprox,,,.(x) := Argzmin max {n(z), %Hx - z|} .

Note:
e For proper convex functions f; and £, their max-convolution is

(fi o R)(x) := igf max {fi(z), b(x — 2)}

e For gauges k1 and k»: (Friedlander, Macédo, P. '18)
(k10 K2)° = K] + k3.

Recall that for proper convex functions f; and f, (f0f)" = f;" + £.
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Polar envelope: Differential properties

Theorem 3. (Friedlander, Macédo, P. ’18)
Let x be a gauge and a > 0.
(i) If X € pprox,,.(x), then ||x — X|| > ax(X). If in addition « is
continuous, then ||x — X|| = ak(X).
(i) If » is closed, then pprox,,,.(x) is a singleton for all x, and
pprox,,. is continuous and positively homogeneous.

(iii) Suppose « is closed. Then &, is differentiable at all x such that
ka(X) > 0. Moreover, at these x, it holds that (x,x — x) > 0 and

[1x = X]|

V0T xR

(X - )_()a

where X = pprox,,,.(x).
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Polar envelope: Explicit example

Proposition 2. (Friedlander, Macédo, P.’18)
Let x be a continuous gauge. Then for any x satisfying x.(x) > 0, it
holds that

Ka(X) =T and pprox,,(x) = Proj, <z (x),
where T is the unique root satisfying

o’P = ||x — Proj[ngf](X)HZ' ()
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Polar envelope: Explicit example

Proposition 2. (Friedlander, Macédo, P. '18)
Let x be a continuous gauge. Then for any x satisfying x.(x) > 0, it
holds that

Ka(X) =T and pprox,,(x) = Proj, <z (x),
where T is the unique root satisfying
o’P = ||x — Proj[ngf](x)||2~ ()

Example: Consider x = || - [[o. For x # 0, (%) becomes

n n

QP =Y (x-P2 EE et =3 (el - 18

i=1 i=1

Solved by simple root-finding procedure.
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Solution method: Smoothing revisited

For closed gauges &, p satisfying x~'(0) = {0} and p~'(0) = {0},
C={x: p(b— Ax) <o} ando € [0, p(b)), with suitable CQ:

e . addition
minimize k(z)
zeC

minimize (k + | - ||]2)(x)
zeC

gauge

p Py gauge
duality | % € [clcone Ok° (y)] N B6E (—y)

duality | £ = (Theorem 6.2)(y)
max
inimi o convolution
minimize £°(y)
yec’

o 1y
minimize (k7o 21 12)(¥)

Here, “x = (Theorem 6.2)(y)” refers to (Friedlander, Macédo, P. '18)

_ r A T
X = _ — rox;,.(A*)),
~(prox,, (A 8)) + alfproxs, (A g A7)

where A*U solves the smoothed gauge dual with optimal value 7.
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Conclusion

e Gauge optimization framework captures many applications.

e Gauge strong duality holds under conditions similar to standard
CQ in Lagrange duality theory.

e Polar envelope and polar proximal mapping appear naturally in
dual smoothing and primal solution recovery.
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Thanks for coming! <
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