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Abstract

In this work we study finite element methods for two-dimensional Maxwell’s equa-

tions and their solutions by multigrid algorithms. We begin with a brief survey of

finite element methods for Maxwell’s equations. Then we review the related fun-

damentals, such as Sobolev spaces, elliptic regularity results, graded meshes, finite

element methods for second order problems, and multigrid algorithms. In Chapter

3, we study two types of nonconforming finite element methods on graded meshes

for a two-dimensional curl-curl and grad-div problem that appears in electromag-

netics. The first method is based on a discretization using weakly continuous P1

vector fields. The second method uses discontinuous P1 vector fields. Optimal con-

vergence rates (up to an arbitrary positive ε) in the energy norm and the L2 norm

are established for both methods on graded meshes. In Chapter 4, we consider a

class of symmetric discontinuous Galerkin methods for a model Poisson problem

on graded meshes that share many techniques with the nonconforming methods

in Chapter 3. Optimal order error estimates are derived in both the energy norm

and the L2 norm. Then we establish the uniform convergence of W -cycle, V -cycle

and F -cycle multigrid algorithms for the resulting discrete problems. In Chapter

5, we propose a new numerical approach for two-dimensional Maxwell’s equations

that is based on the Hodge decomposition for divergence-free vector fields. In this

approach, an approximate solution for Maxwell’s equations can be obtained by

solving standard second order scalar elliptic boundary value problems. We illus-

trate this new approach by a P1 finite element method. In Chapter 6, we first

report numerical results for multigrid algorithms applied to the discretized curl-

curl and grad-div problem using nonconforming finite element methods. Then we

present multigrid results for Maxwell’s equations based on the approach introduced

viii



in Chapter 5. All the theoretical results obtained in this dissertation are confirmed

by numerical experiments.
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Chapter 1
Introduction

1.1 Maxwell’s Equations

Maxwell’s equations consist of two pairs of coupled partial differential equations

relating four fields, two of which model the sources of electromagnetism. These

equations characterize the fundamental relations between electric field and mag-

netic field. James Clerk Maxwell (1831–1879) is recognized as the founder of the

modern theory of electromagnetism.

There are two fundamental field vectors functions E(x, t) and H(x, t) in the

classical electromagnetic field, with space variable x ∈ R3 and time variable t ∈ R.

The distribution of electric charges is given by a scalar charge density function

ρ(x, t), and the current is described by the current density function J(x, t).

Maxwell’s equations are stated as the following equations in a region of space in

R3 occupied by the electromagnetic field:

∇× E = −µ
∂H

∂t
, (1.1.1a)

∇ · E =
ρ

ε
, (1.1.1b)

∇× H = ε
∂E

∂t
+ J, (1.1.1c)

∇ · H = 0, (1.1.1d)

where ε is the electric permittivity, and µ is the magnetic permeability.

Equation (1.1.1a) is called Faraday’s law and describes how the changing of

magnetic field affects the electric field. The equation (1.1.1c) is referred as Ampère’s

law. The divergence conditions (1.1.1b) and (1.1.1d) are Gauss’ Laws of electric

displacement and magnetic induction respectively.
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When the radiation has a frequency ω > 0, we want to find solutions of the

Maxwell’s equations of the form E(x, t) = e−iωtÊ(x),H(x, t) = e−iωtĤ(x),J(x, t) =

e−iωtĴ(x), and ρ(x, t) = e−iωtρ̂(x). By substituting these relations into (1.1.1) or

using Fourier transforms in the time variable, the time-dependent problem (1.1.1)

can be reduced to the time-harmonic Maxwell’s equations:

∇× Ê = iωµĤ, (1.1.2a)

∇ · Ê =
ρ̂

ε
, (1.1.2b)

∇× Ĥ = − iωεÊ + Ĵ, (1.1.2c)

∇ · Ĥ = 0. (1.1.2d)

It can be shown that when the charge is conserved, the divergence conditions

(1.1.2b) and (1.1.2d) are always satisfied, provided that the equations (1.1.2a) and

(1.1.2c) hold. Then by combining the equations (1.1.2a) and (1.1.2c), we have

∇×∇× Ê − ω2µεÊ =iωµĴ, (1.1.3a)

∇×∇× Ĥ− ω2µεĤ =∇× Ĵ. (1.1.3b)

Hence we consider an equation of the following form with perfectly conducting

boundary condition for the curl-curl problem (1.1.3):

∇×∇× u+ αu = f in Ω, (1.1.4a)

n× u = 0 on ∂Ω, (1.1.4b)

where Ω ⊂ R2 is a bounded polygonal domain, α ∈ R is a constant, and f ∈

[L2(Ω)]2.

The curl-curl problem (1.1.4) appears in the semi-discretization of electric fields

in the time-dependent (time-domain) Maxwell’s equations when α > 0 and the
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time-harmonic (frequency-domain) Maxwell’s equations when α ≤ 0. When α = 0,

it is also related to electrostatic problems.

1.2 A Brief History of Finite Element Methods

for Maxwell’s Equations

We consider the following weak form for the curl-curl problem (1.1.4):

Find u ∈ H0(curl; Ω) such that

(∇× u,∇× v) + α(u, v) = (f , v) (1.2.1)

for all v ∈ H0(curl; Ω), where (·, ·) denotes the inner product of [L2(Ω)]2. Here the

space H0(curl; Ω) is defined as follows:

H(curl; Ω) = {v =



v1

v2


 ∈ [L2(Ω)]2 : ∇× v =

∂v2

∂x1
−
∂v1

∂x2
∈ L2(Ω)

}
, (1.2.2)

H0(curl; Ω) = {v ∈ H(curl; Ω) : n×v = 0 on ∂Ω}, (1.2.3)

where n is the unit outer normal. Note that n × v = 0 on ∂Ω is equivalent to

τ · v = 0 on ∂Ω, where τ is the unit tangent vector along ∂Ω.

The curl-curl problem (1.2.1) is usually solved directly using H(curl) conforming

vector finite elements [83, 84, 75, 80, 62, 24]. However, this problem is non-elliptic

when the H0(curl) formulation is used, and hence the convergence analysis of both

the numerical scheme and its fast solvers more complicated.

For any u ∈ H0(curl; Ω), due to the well-known Helmholtz decomposition [68,

80], we have the following orthogonal decomposition:

u = ů+ ∇φ, (1.2.4)
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where ů ∈ H0(curl; Ω) ∩H(div0; Ω) and φ ∈ H1
0 (Ω). Here the space H(div0; Ω) is

defined as follows:

H(div; Ω) =
{
v ∈ [L2(Ω)]2 : ∇ · v =

∂v1

∂x1
+
∂v2

∂x2
∈ L2(Ω)

}
, (1.2.5)

H(div0; Ω) =
{
v ∈ H(div; Ω) : ∇ · v = 0

}
. (1.2.6)

It is easy to show that φ ∈ H1
0 (Ω) satisfies

α(∇φ,∇η) = (f ,∇η) (1.2.7)

for all η ∈ H1
0 (Ω), which is the variational form of the Poisson problem. Many

successful schemes have been developed for solving this problem. We can also show

that ů is the weak solution of the following reduced curl-curl problem (RCCP cf.

[39]), on which we are more interested:

Find ů ∈ H0(curl; Ω) ∩H(div0; Ω) such that

(∇× ů,∇× v) + α(ů, v) = (f , v) (1.2.8)

for all v ∈ H0(curl; Ω) ∩H(div0; Ω).

Unlike the non-elliptic curl-curl problem (1.2.1), the reduced problem (1.2.8)

is an elliptic problem. In particular, the solution ů has elliptic regularity under

the assumption that f ∈ [L2(Ω)]2, which greatly simplifies the analysis. On the

other hand, it is difficult to construct finite element subspaces for H0(curl; Ω) ∩

H(div0; Ω). This difficulty can be overcome by using nonconforming methods [40,

38, 39].

It is known that the zero divergence condition in the reduced problem (1.2.8)

leads to a large condition number for the discrete problem, which behaves like

a fourth order problem. Hence we consider the following curl-curl and grad-div

(CCGD) problem:
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Find u ∈ H0(curl; Ω) ∩H(div; Ω) such that

(∇× u,∇× v) + γ(∇ · u,∇ · v) + α(u, v) = (f , v) (1.2.9)

for all v ∈ H0(curl; Ω) ∩ H(div; Ω), where α ∈ R and γ > 0 are constants, f ∈

[L2(Ω)]2. Note that the condition number of the resulting discrete problem behaves

like a second order problem.

For α > 0, the problem (1.2.9) is uniquely solvable by the Riesz representation

theorem applied to the Hilbert space

XN = H0(curl; Ω) ∩H(div; Ω)

with the inner product

(v,w)XN
= (∇× v,∇×w) + (∇ · v,∇ ·w) + (v,w).

Due to the fact that H0(curl; Ω)∩H(div; Ω) is compactly embedded in [L2(Ω)]2

(cf. [77, 93, 54, 97, 80]), there exists a sequence of nonnegative numbers 0 ≤ λγ,1 ≤

λγ,2 ≤ · · · → ∞ such that the following eigenproblem has a nontrivial solution

w ∈ H0(curl; Ω) ∩H(div; Ω):

(∇×w,∇× v) + γ(∇ ·w,∇ · v) = λγ,j(w, v) (1.2.10)

for all v ∈ H0(curl; Ω) ∩H(div; Ω).

For α ≤ 0, the problem (1.2.9) is well-posed as long as α 6= −λγ,j for j ≥ 1. In

particular, when α = 0 and Ω is simply connected, the problem (1.2.9) is uniquely

solvable due to Friedrichs’ inequality [80]:

‖v‖L2(Ω) ≤ C
(
‖∇ × v‖L2(Ω) + ‖∇ · v‖L2(Ω)

)
, ∀ v ∈ H0(curl; Ω) ∩H(div; Ω).

When ∇ · f = 0 and (1.2.9) is well-posed, the solution u of (1.2.9) belongs to

the space H(div0; Ω), and the solution of the non-elliptic curl-curl problem (1.2.1)

can be obtained by solving the elliptic problem (1.2.9) [85, 53, 87, 94].
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The problem (1.2.9) was discretized by H1 conforming vector nodal finite ele-

ments in [53]. However, the space [H1(Ω)]2 ∩XN turns out to be a closed subspace

of XN [21, 55]. Therefore any H1 conforming finite element method for (1.2.9)

must fail if the solution u does not belong to [H1(Ω)]2, which happens when Ω is

non-convex [10, 21, 57]. Even worse, the solutions obtained by H1 conforming finite

element methods in such situations converge to the wrong solution (the projection

of u in [H1(Ω)]2 ∩ XN). Consequently the idea of solving (1.2.1) through (1.2.9)

was abandoned.

Nevertheless, the elliptic problem (1.2.9) remains an attractive alternative ap-

proach and successful schemes have been discovered in recent years that either

solve (1.2.9) using nodal H1 vector finite elements complemented by singular vec-

tor fields [23, 8, 74, 9, 7], or solve a regularized version of (1.2.9) using standard

nodal H1 vector finite elements [58, 59, 50].

1.3 Results Obtained in the Dissertation

There are two classes of results obtained in this dissertation. The first is for

Maxwell’s equations and the other is for discontinuous Galerkin methods [5].

In Chapter 3, we show that the elliptic curl-curl and grad-div problem (1.2.9)

can be solved by nonconforming methods. We first solve (1.2.9) by a classical

nonconforming method using Crouzeix-Raviart weakly continuous piecewise P1

vector fields [60] on graded meshes. Optimal convergence rates in both the energy

norm and the L2 norm are achieved on general polygonal domains, provided that

two consistency terms involving the jumps of the vector fields are included in the

discretization and properly graded meshes are used. We also solve (1.2.9) by using

an interior penalty method. Discontinuous piecewise P1 functions are used and

two additional over-penalized terms are added to the scheme. Similar convergence
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results are established on nonconforming meshes. We present numerical results for

both approaches.

In Chapter 5, we propose a new numerical approach for the reduced curl-curl

problem (1.2.8) that is based on the Hodge decomposition for divergence-free vector

fields. In this approach an approximate solution for the two-dimensional Maxwell’s

equations can be obtained by solving standard second order scalar elliptic boundary

value problems. We illustrate this new approach by a P1 finite element method.

In Chapter 6, we first introduce the W -cycle multigrid algorithm for the dis-

cretized curl-curl and grad-div problem. The discrete problems are obtained by

using nonconforming finite element methods, which are developed in Chapter 3.

We report the numerical results on the unit square with uniform meshes. Then we

study multigrid methods for the P1 finite element method, which is proposed in

Chapter 5 for solving two-dimensional Maxwell’s equations. Numerical results on

graded meshes are reported.

Since there are many similarities between nonconforming finite element meth-

ods for Maxwell’s equations on graded meshes and discontinuous Galerkin (DG)

methods for the Poisson problem on graded meshes, we also investigate multigrid

algorithms for DG methods as a prelude to the study of multigrid algorithms for

Maxwell’s equations.

In Section 2.4, we study a class of symmetric, stable and consistent DG methods

for the Poisson problem on graded meshes. The elliptic regularity results in terms

of weighted Sobolev norms are used in the analysis. Optimal order error estimates

are derived in both the energy norm and the L2 norm.

In Chapter 4, we consider multigrid methods for the discrete problems result-

ing from DG methods in Section 2.4. We present the convergence analysis of W -

cycle, V -cycle and F -cycle multigrid algorithms on non-convex domains, where the

7



model problem has singularities. We show that the convergence of the multigrid

algorithms on non-convex domains with properly graded meshes is identical to the

convergence of multigrid methods on convex domains with quasi-uniform meshes.

Theoretical results are illustrated by numerical experiments.
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Chapter 2
Fundamentals

2.1 Sobolev Spaces

Let Ω be a domain in Rn. The locally integrable function space is defined by

L1
loc(Ω) :=

{
f : f ∈ L1(K) ∀ compact K ⊂ interior Ω

}
.

We say that a given function f ∈ L1
loc(Ω) has a weak derivative of order α if there

exists a function g ∈ L1
loc(Ω) such that

∫

Ω

g(x)φ(x)dx = (−1)|α|
∫

Ω

f(x)Dαφ(x)dx ∀φ ∈ C∞
0 (Ω), (2.1.1)

where the multi-index α is a vector (α1, α2, . . . αn) with length |α| :=
∑n

i=1 αi, and

Dαφ denotes the partial derivative ( ∂
∂x1

)α1 · · · ( ∂
∂xn

)αnφ. We then define the weak

derivative Dα
wf = g.

Let k be a non-negative integer, and let f ∈ L1
loc(Ω). Suppose the weak deriva-

tives Dα
wf exist for all |α| ≤ k. The Sobolev norm [1] of f is defined by

‖f‖W k
p (Ω) :=


 ∑

|α|≤k

‖Dα
wf‖

p
Lp(Ω)




1/p

, (2.1.2)

where 1 ≤ p <∞. In the case where p = ∞,

‖f‖W k
∞(Ω) := max

|α|≤k
‖Dα

wf‖L∞(Ω).

In either case, we define the Sobolev space [1] by

W k
p (Ω) :=

{
f ∈ L1

loc : ‖f‖W k
p (Ω) <∞

}
. (2.1.3)

Remark 2.1. The Sobolev space W k
p (Ω) is a Banach space.
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Remark 2.2. Let Ω be an open set. Then C∞(Ω)∩W k
p (Ω) is dense in W k

p (Ω) for

p <∞.

In particular, when p = 2, the Sobolev space W k
p (Ω) is also denoted by

Hk(Ω) :=
{
f ∈ L2(Ω) : f has weakL2 derivatives up to order k

}
, (2.1.4)

which is a Hilbert space for each k.

The next theorem, which is also known as the extension theorem, relates Sobolev

spaces on a given domain to those on Rn. The proof can be found in [90].

Theorem 2.3. Let Ω be a bounded open subset of Rn with a piecewise smooth

boundary. Then there is an extension mapping E : W k
p (Ω) → W k

p (Rn) defined for

all non-negative integers k and 1 ≤ p ≤ ∞ such that Ev|Ω = v for all v ∈ W k
p (Ω)

and

‖Ev‖W k
p (Rn) ≤ C‖v‖W k

p (Ω)

where the constant number C is independent of v.

Theorem 2.4. (Gagliardo-Nirenberg-Sobolev [67]) Suppose 1 ≤ p < n, then

W 1
p (Rn) ↪→ Lp∗(R

n),

where 1
p∗

= 1
p
− 1

n
. More precisely,

W 1
p (Rn) ⊆ Lp∗(R

n),

and

‖v‖Lp∗(Rn) ≤ C‖v‖W 1
p (Rn) ∀ v ∈ W 1

p (Rn).

Combining Theorem 2.3 and Theorem 2.4, we have the following theorem, which

is known as Sobolev embedding theorem [67].
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Theorem 2.5. Let Ω be a bounded open subset of Rn with a piecewise smooth

boundary. Suppose 1 ≤ p < n, then

W 1
p (Ω) ↪→ Lp∗(Ω),

where 1
p∗

= 1
p
− 1

n
.

Proof. Let v ∈ W 1
p (Ω). By Theorem 2.3, there is an extension mapping E :

W 1
p (Ω) → W 1

p (Rn) such that Ev ∈ W 1
p (Rn). Therefore Ev ∈ Lp∗(R

n) and hence

v = Ev|Ω ∈ LP∗(Ω). Moreover,

‖v‖LP∗(Ω) ≤ ‖Ev‖Lp∗(Rn) ≤ C‖Ev‖W 1
p (Rn) ≤ C‖v‖W 1

p (Ω).

Theorem 2.6. (Trace Theorem [67]) Let Ω be a bounded open subset of Rn with

a piecewise smooth boundary. There exists a unique linear map

Tr : H1(Ω) → L2(∂Ω)

such that for all u ∈ H1(Ω),

‖Tr(v)‖L2(∂Ω) ≤ C‖v‖H1(Ω).

We will use the notation H1
0 (Ω) to denote the subset of H1(Ω) that consists of

functions whose trace on ∂Ω is zero, i.e.,

H1
0 (Ω) :=

{
v ∈ H1(Ω) : Tr(v) = 0 on L2(∂Ω)

}
.

Details of the next theorem, which is sometimes called Poincaré-Friedrichs in-

equality, can be found in [67].
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Theorem 2.7. Let Ω be a bounded open subset of Rn. There exist positive constants

C1 and C2 such that

‖v‖L2(Ω) ≤C1(
∣∣
∫

Ω

vdx
∣∣ + |v|H1(Ω)) ∀ v ∈ H1(Ω), (2.1.5a)

‖v‖L2(Ω) ≤C2(
∣∣
∫

∂Ω

vds
∣∣ + |v|H1(Ω)) ∀ v ∈ H1(Ω). (2.1.5b)

Corollary 2.8. Under the conditions of Theorem 2.7, suppose v ∈ H 1
0 (Ω), then

‖v‖L2(Ω) ≤ C|v|H1(Ω).

2.2 Elliptic Regularity

In this section, we study the elliptic regularity results for both the Poisson problem

and the curl-curl and grad-div (CCGD) problem.

2.2.1 Regularity of the Poisson Problem

We first consider the Poisson problem with homogeneous Dirichlet boundary con-

dition:

−∆u+ αu = f in Ω, (2.2.1a)

u = 0 on ∂Ω, (2.2.1b)

where Ω ⊂ R2 is a bounded polygonal domain, α ∈ R and f ∈ L2(Ω) (or H1(Ω)).

The variational problem for (2.2.1) (cf. [43] ) is to find u ∈ H1
0 (Ω) such that

a(u, v) = F (v) ∀ v ∈ H1
0 (Ω), (2.2.2)

where

a(w, v) =

∫

Ω

∇w · ∇v dx+ α

∫

Ω

wv dx,

F (v) =

∫

Ω

fv dx.

We will briefly state the standard elliptic regularity results for the Poisson prob-

lem in the rest of this section. More details can be found in [70, 61, 81].
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Let ω1, . . . , ωL be the interior angles at the corners c1, . . . , cL of the bounded

polygonal domain Ω. Let δ > 0 be small enough so that the neighborhoods N`,δ =

{x ∈ Ω : |x − c`| < δ} around the corners c` for 1 ≤ ` ≤ L are disjoint. We then

define the singular function on N`,2δ by

S`(γ`, θ`) = χ`(γ`)γ
(π/ω`) sin((π/ω`)θ`), (2.2.4)

where (γ`, θ`) are the polar coordinates at the corner c` so that the two edges

emanating from c` are defined by θ = 0 and θ = ω`, χ`(t) is a C∞ cut-off function

that χ`(t) = 1 for t < δ, and χ`(t) = 0 for t > 2δ. For 1 ≤ ` ≤ L, the singular

function S` has the following properties:

(i) If ω` < π, S` ∈ H2(Ω).

(ii) If ω` > π, i.e., c` is a reentrant corner, S` ∈ Hs(N`,δ) for any 1 ≤ s < 1+ π
ω`

.

Theorem 2.9. Let u ∈ H1
0 (Ω) be the weak solution of the Dirichlet problem (2.2.1)

with f ∈ L2(Ω) on domain Ω, then

u = uR + uS, (2.2.5)

where the regular part uR ∈ H2(Ω) ∩ H1
0 (Ω), the singular part uS =

∑
ω`>π

κ`S`,

and the constants κ` are the generalized stress intensity factors. Moreover,

‖uR‖H2(Ω) +
∑

ω`>π

|κ`| ≤ C‖f‖L2(Ω).

Corollary 2.10. If Ω is convex, u ∈ H2(Ω) ∩H1
0(Ω) and

‖u‖H2(Ω) ≤ C‖f‖L2(Ω).

In the case where f ∈ H1(Ω), we define at each corner c` the singular function

S`,j(γ`, θ`) = χ`(γ`)γ
j(π/ω`) sin(j(π/ω`)θ`), j = 1, 2, · · · . (2.2.6)

Moreover, the singular function S`,j has the following properties:
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(i) If j π
ω`

∈ N, S`,j ∈ C∞(Ω̄).

(ii) If j π
ω`

6∈ N, S`,j ∈ Hs(N`,δ) for any 1 ≤ s < 1 + j π
ω`

.

Theorem 2.11. Let u ∈ H1
0 (Ω) be the weak solution of Dirichlet problem (2.2.1)

with f ∈ H1(Ω) on domain Ω, and Ωδ := {x ∈ Ω : |x− c`| > δ}. Then

u = uR + uS, (2.2.7)

where uR ∈ H3(Ωδ), uR ∈ H3−ε(N`,2δ) for any ε > 0, and

uS =
L∑

`=1

∑

j∈N
j(π/ω`)∈(0,2)\{1}

κ`,jS`,j.

Moreover,

‖uR‖H3(Ωδ) +

L∑

`=1

‖uR‖H3−ε(N`,2δ) +

L∑

`=1

∑

j∈N
j(π/ω`)∈(0,2)\{1}

|κ`,j| ≤ CΩ,ε‖f‖H1(Ω).

Next we consider the Poisson problem with homogeneous Neumann boundary

condition:

−∆u+ αu = f in Ω, (2.2.8a)

∂u

∂n
= 0 on ∂Ω, (2.2.8b)

where α ∈ R, f ∈ L2(Ω) (orH1(Ω)) and
∫
Ω
fdx = α

∫
Ω
udx. When α = 0, there

exists a solution u such that
∫
Ω
u dx = 0.

The variational problem for (2.2.8) is to find u ∈ H1(Ω) such that
∫

Ω

∇u · ∇v dx + α

∫

Ω

uv dx =

∫

Ω

fv dx ∀ v ∈ H1(Ω). (2.2.9)

Theorem 2.12. The regularity results stated in Theorem 2.9 and Theorem 2.11

are still valid for problem (2.2.8) provided that the singular functions (2.2.4) and

(2.2.6) are replaced by

S`(γ`, θ`) =χ`(γ`)γ
(π/ω`) cos((π/ω`)θ`),

S`,j(γ`, θ`) =χ`(γ`)γ
j(π/ω`) cos(j(π/ω`)θ`), j = 1, 2, · · · .
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2.2.2 Regularity of the Curl-Curl and Grad-Div Problem

Now we turn to the regularity of the solution u of the curl-curl and grad-div

problem (1.2.9), which is closely related to the regularity of the Laplace operator

with homogeneous Dirichlet and Neumann boundary conditions. Main results can

be found in [40, 37].

Since u ∈ H0(curl; Ω) ∩H(div; Ω), by the Helmholtz decomposition (1.2.4), we

have u = ů+ ∇φ, where ů ∈ H0(curl; Ω) ∩H(div0; Ω) and φ ∈ H1
0 (Ω).

For simplicity, we first assume that Ω is simply connected. Hence there exists

ψ ∈ H1(Ω) (cf. [68]) such that

∇× ψ = ů and

∫

Ω

ψ dx = 0,

and we can rewrite (1.2.4) as

u = ∇× ψ + ∇φ. (2.2.10)

It is easy to check that the function φ ∈ H1
0 (Ω) in (2.2.10) is the variational

solution of the following Dirichlet boundary value problem:

∆φ = ∇ · u in Ω, (2.2.11a)

φ = 0 on ∂Ω, (2.2.11b)

and the function ψ is the unique variational solution with zero mean of the following

Neumann boundary value problem:

∆ψ = −∇× u in Ω, (2.2.12a)

∂ψ

∂n
= 0 on ∂Ω. (2.2.12b)

We first discuss the case where α > 0 in (1.2.9). It is clear that

‖u‖L2(Ω) ≤ α−1‖f‖L2(Ω), (2.2.13)

‖∇ × u‖2
L2(Ω) + γ‖∇ · u‖2

L2(Ω) ≤ α−1‖f‖2
L2(Ω). (2.2.14)
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In view of (1.2.9), the divergence free part ů in the Helmholtz decomposition

(1.2.4) satisfies

(∇× ů,∇× v) + α(ů, v) = (f , v) (2.2.15)

for all v ∈ H0(curl; Ω) ∩H(div0; Ω), which implies

∇× (∇× ů) + αů = Qf , (2.2.16)

where Q is the orthogonal projection from [L2(Ω)]2 ontoH(div0; Ω). Indeed, let ζ ∈

[C∞
0 (Ω)]2 be a test vector field. Then ζ ∈ H0(curl; Ω) and (ζ −Qζ) ∈ ∇H1

0 (Ω) ⊂

H0(curl; Ω), which imply that Qζ ∈ H0(curl; Ω)∩H(div0; Ω). Hence it follows from

(2.2.15) that

(∇× ů,∇× ζ) + α(ů, ζ) = (∇× ů,∇× [Qζ + (ζ −Qζ)]) + α(ů, Qζ + (ζ −Qζ))

= (∇× ů,∇×Qζ) + α(ů, Qζ) = (f , Qζ) = (Qf , ζ),

which yields (2.2.16).

It follows from (2.2.16) that ∇× (∇× ů) = Qf −αů ∈ [L2(Ω)]2, hence ∇× ů ∈

H1(Ω). Then we deduce from (1.2.4) and (2.2.13) that ∇× u = ∇× ů ∈ H1(Ω),

and

|∇ × u|H1(Ω) = |∇ × ů|H1(Ω) = ‖Qf − αu‖L2(Ω) ≤ 2‖f‖L2(Ω), (2.2.17)

which together with (1.2.9) implies that ∇ · u ∈ H1(Ω) and

|∇ · u|H1(Ω) ≤γ
−1‖f − αu−∇× (∇× u)‖L2(Ω) (2.2.18)

≤4γ−1‖f‖L2(Ω).

In particular, it follows from the regularity of ∇ × u and ∇ · u and the usual

variational argument that the boundary value problem corresponding to (1.2.9) is
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∇× (∇× u) − γ∇(∇ · u) + αu = f in Ω, (2.2.19a)

n× u = 0 on ∂Ω, (2.2.19b)

∇ · u = 0 on ∂Ω. (2.2.19c)

The regularity of u can then be derived through (2.2.10)–(2.2.12), Theorem 2.11

and Theorem 2.12.

Since ∇ · u ∈ H1(Ω), the elliptic regularity theory provides a decomposition

φ = φR + φS, (2.2.20)

such that the regular part φR ∈ H3(Ωδ), and φR ∈ H3−ε(N`,2δ) for any ε > 0,

1 ≤ ` ≤ L. The singular part φS is supported near the corners c1, . . . , cL of Ω.

More precisely, we can write

φS =
L∑

`=1

χ̄`(r`)
∑

j∈N
j(π/ω`)∈(0,2)\{1}

κ`,jr
j(π/ω`)
` sin

(
j(π/ω`)θ`

)
, (2.2.21)

where χ̄`(t) is a smooth cut-off function that equals 1 for t < δ and vanishes for

t > 3δ/2, and κ`,j are constants.

Furthermore, it follows from estimates (2.2.14) and (2.2.18) that

‖φR‖H3(Ωδ) ≤ C‖∇ · u‖H1(Ω) ≤ Cγ−1/2(γ−1/2 + α−1/2)‖f‖L2(Ω), (2.2.22a)

‖φR‖H3−ε(N`,2δ) ≤ Cε‖∇ · u‖H1(Ω) ≤ Cεγ
−1/2(γ−1/2 + α−1/2)‖f‖L2(Ω), (2.2.22b)

L∑

`=1

∑

j∈N
j(π/ω`)∈(0,2)\{1}

|κ`,j| ≤ C‖∇ · u‖H1(Ω) ≤ Cγ−1/2(γ−1/2 + α−1/2)‖f‖L2(Ω). (2.2.22c)

Similarly, the function ψ in (2.2.10) has the following decomposition:

ψ = ψR + ψS, (2.2.23)
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where the regular part ψR belongs to H3(Ωδ), and ψR ∈ H3−ε(N`,2δ) for any ε > 0,

1 ≤ ` ≤ L. The singular part ψS is given by

ψS =

L∑

`=1

χ̄`(r`)
∑

j∈N
j(π/ω`)∈(0,2)\{1}

%`,jr
j(π/ω`)
` cos

(
j(π/ω`)θ`

)
. (2.2.24)

Furthermore, the following analog of (2.2.22) holds:

‖ψR‖H3(Ωδ) ≤ C‖∇ × u‖H1(Ω) ≤ C(1 + α−1/2)‖f‖L2(Ω), (2.2.25a)

‖ψR‖H3−ε(N`,2δ) ≤ Cε‖∇ × u‖H1(Ω) ≤ Cε(1 + α−1/2)‖f‖L2(Ω), (2.2.25b)

L∑

`=1

∑

j∈N
j(π/ω`)∈(0,2)\{1}

|%`,j| ≤ C‖∇ × u‖H1(Ω) ≤ C(1 + α−1/2)‖f‖L2(Ω), (2.2.25c)

where we have used the estimates (2.2.14) and (2.2.17).

Combining (2.2.10), (2.2.20)–(2.2.25), we can describe the regularity of the so-

lution u of (1.2.9) as follows. We have u ∈ [H2(Ωδ)]
2 and the following estimate

is valid:

‖u‖H2(Ωδ) ≤ C(1 + γ−1 + α−1/2(1 + γ−1/2))‖f‖L2(Ω). (2.2.26)

In the neighborhood N`,3δ/2 of the corner c`, we have

u = uR + uS, (2.2.27)

such that the regular part uR ∈ [H2−ε(N`,3δ/2)]
2 for any ε > 0, and the singular

part

uS =
∑

j∈N
j(π/ω`)∈(0,2)\{1}

ν`,jψ`,j, (2.2.28)

where

ψ`,j = r
j(π/ω`)−1
`




sin
(
j(π/ω`) − 1

)
θ`

cos
(
j(π/ω`) − 1

)
θ`


 , (2.2.29a)

ν`,j = j(π/ω`)(κ`,j − %`,j). (2.2.29b)
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Moreover, the following corner regularity estimates hold:

L∑

`=1

‖uR‖H2−ε(N`,3δ/2) ≤ Cε(1 + γ−1 + α−1/2(1 + γ−1/2))‖f‖L2(Ω), (2.2.30a)

L∑

`=1

∑

j∈N
j(π/ω`)∈(0,2)\{1}

|ν`,j| ≤ C(1 + γ−1 + α−1/2(1 + γ−1/2))‖f‖L2(Ω). (2.2.30b)

Remark 2.13. Theorem 2.11 and the singular vector field representation (2.2.27)

imply that u ∈ [Hs(N`,δ)]
2 for any s < π

ω`
. Therefore u ∈ [Hs(Ω)]2 for any s <

min1≤`≤L
π
ω`

. In particular, we can choose s to be strictly greater than 1
2
.

So far the regularity results for u are derived under the assumption that Ω is

simply connected. A standard partition of unity argument yields the same results

for general polygonal domains.

For α ≤ 0, by replacing (2.2.13) and (2.2.14) with

‖∇ × u‖L2(Ω) + γ‖∇ · u‖L2(Ω) + ‖u‖L2(Ω) ≤ Cα‖f‖L2(Ω), (2.2.31)

we can show that results for α > 0 remain valid provided α 6= −λγ,j for j ≥ 1,

where 0 ≤ λγ,1 ≤ λγ,2 ≤ · · · → ∞ are the eigenvalues defined by (1.2.10).

2.2.3 Regularity Results in Terms of Weighted Sobolev
Spaces

In the remaining part of this section we briefly introduce the elliptic regularity

results in terms of weighted Sobolev spaces for the Poisson problem. More details

can be found in [76, 61, 81].

Let ω1, . . . , ωL be the interior angles at the corners c1, . . . , cL of the bounded

polygonal domain Ω. Let the parameters µ1, . . . , µ` be chosen according to

µ` = 1 if ω` ≤ π,

µ` <
π

ω`
if ω` > π,

(2.2.32)
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and the weight function φµ be defined by

φµ(x) =

L∏

`=1

|x− c`|
1−µ`. (2.2.33)

The weighted Sobolev space L2,µ(Ω) is defined by

L2,µ(Ω) = {f ∈ L2
loc(Ω) : ‖f‖2

L2,µ(Ω) =

∫

Ω

φ2
µ(x)f

2(x) dx <∞}. (2.2.34)

Note that L2(Ω) ⊂ L2,µ(Ω) and

‖f‖L2,µ(Ω) ≤ CΩ‖f‖L2(Ω) ∀ f ∈ L2(Ω). (2.2.35)

Lemma 2.14.

∫

Ω

|fv| dx ≤ CΩ‖f‖L2,µ(Ω)‖v‖H1(Ω) ∀ v ∈ H1(Ω). (2.2.36)

Proof. Note that φ−2
µ (x) ∈ L2(Ω). It follows from the Hölder inequality [67] and

the Sobolev embedding theorem (cf. Theorem 2.5) that

∫

Ω

|fv| dx =

∫

Ω

|φµf ||φ
−1
µ v| dx

≤(

∫

Ω

φ2
µf

2dx)1/2(

∫

Ω

φ−2
µ v2 dx)1/2

≤‖f‖L2,µ(Ω)‖φ
−2
µ ‖1/2

L2(Ω)‖v
2‖1/2
L2(Ω)

≤CΩ‖f‖L2,µ(Ω)‖v‖L4(Ω)

≤CΩ‖f‖L2,µ(Ω)‖v‖H1(Ω).

It follows from Lemma 2.14 that the model problem (2.2.2) has a unique solution

u for any f ∈ L2,µ(Ω). Moreover u has the following properties:

(i) The solution u belongs to the weighted Sobolev space H2
µ(Ω), i.e.,

γ|α|−2(∂αu/∂xα) ∈ L2,µ(Ω) for |α| ≤ 2,
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and the following regularity estimate holds:

‖u‖H2
µ(Ω) =

( ∑

|α|≤2

‖γ|α|−2(∂αu/∂xα)‖2
L2,µ(Ω)

)1/2

≤ CΩ‖f‖L2,µ(Ω), (2.2.37)

where the function γ(x) is defined by γ(x) =
∏L

`=1 |x− c`|.

(ii) At a reentrant corner c` where ω` > π, we have u ∈ H1+µ`(N`,δ) and

‖u‖H1+µ`(N`,δ)
≤ CΩ‖f‖L2,µ(Ω). (2.2.38)

(iii) u is continuous on Ω̄.

The regularity of u away from the corners follows from the standard elliptic

regularity theory. The elliptic regularity of u near a corner c` can be obtained

by the change of coordinates (x1, x2) = et(cos θ, sin θ) and the elliptic regularity

theory on the infinite strip R× (0, ω`), where the two edges emanating from c` are

represented by θ = 0 and θ = ω` (cf. [61, 81]). The continuity of u away from the

reentrant corners follows from the usual Sobolev inequality, while the continuity of

u at a reentrant corner c` follows from the Sobolev inequality on the infinite strip

R × (0, ω`) and a change of coordinates.

Remark 2.15. For the curl-curl and grad-div problem (1.2.9), the parameters

µ1, . . . , µ` are chosen according to

µ` = 1 if ω` ≤
π

2
,

µ` <
π

2ω`
if ω` >

π

2
.

(2.2.39)

In the case where ω` >
π
2
, it follows from Remark 2.13 that the curl-curl and

grad-div problem (1.2.9) has a solution u ∈ [H2µ`(N`,δ)]
2, and in view of (2.2.27)–

(2.2.30), the following regularity estimate [40] is valid:

‖u‖H2µ` (N`,δ) ≤ C‖f‖L2(Ω). (2.2.40)
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2.3 Graded Meshes

In Section 2.2, we showed that the exact solution of the model problem (2.2.2)

(resp. (1.2.9)) has singularities when the bounded polygonal domain Ω is non-

convex (resp. Ω has corners with interior angle larger than π/2). To compensate

for the lack of full elliptic regularity, the meshes need to be graded properly. The

graded meshes also play a crucial role to recover optimal a priori error estimates

for nonconforming finite element methods and to prove uniform convergence of

multigrid methods.

We first consider a family of simplicial triangulations Th of Ω with mesh-parameter

h = maxT∈Th
hT , where hT is the diameter of the triangle T . The triangulation Th

is graded around the corners c1, . . . , cL of Ω with the property that

hT ≈ hΦµ(T ), (2.3.1)

where

Φµ(T ) =

L∏

`=1

|c` − cT |
1−µ` , (2.3.2)

and cT is the center of T . It can be observed that

Φµ(T ) . 1. (2.3.3)

Remark 2.16. From here on we will use the notation α . β to represent the

inequality α ≤ C × β, where the positive constant C is independent of h that

can take different values at different occurrences. The relation (2.3.1) means hT .

hΦµ(T ) and hΦµ(T ) . hT .

The construction of graded meshes Th is described for example in [2, 3, 32, 14,

28]. Note that Th satisfies the minimum angle condition for any given grading

parameters.

For the Poisson problem (2.2.2), the grading parameters µ1, . . . , µL are chosen

according to (2.2.32). In other words, grading is needed around reentrant corners.

22



However, the grading parameters for the curl-curl and grad-div problem (1.2.9) are

chosen according to (2.2.39). Grading is needed around corners with any interior

angle larger than π/2, which is different from the grading strategy for the Laplace

operator. This is due to the fact that the singularity of (1.2.9) is one order more

severe than the singularity of the Laplace operator.

We note that (2.3.1)–(2.3.3) imply

hT .h ∀ T ∈ Th, (2.3.4)

hT ≈h1/µ` if c` ∈ ∂T. (2.3.5)

An example of the construction of graded meshes for (2.2.2) is described as

follows (cf. [36]), where the refinement procedure is identical with the one in [28].

Let T0 be an initial triangulation of Ω. Given triangulation Tk (k ≥ 1), we divide

each triangle T ∈ Tk into four triangles according to the following rules to obtain

Tk+1.

(i) If none of vertices of T is a reentrant corner, we divide T uniformly by

connecting the three midpoints of the edges of T .

(ii) If a reentrant corner c` is a vertex of T and the other two vertices are denoted

by v1 and v2, then we divide T by connecting the points m, m1 and m2 (cf.

Figure 2.1). Here m is the midpoint of the edge v1v2 and m1 (resp. m2) is

the point on the edge c`v1 (resp. c`v2) such that

|c` −mi|

|c` − vi|
= 2−(1/µ`) for i = 1, 2, (2.3.6)

where µ` is the grading factor chosen according to (2.2.32).

The triangulations T0, T1 and T2 for an L-shaped domain are depicted in Fig-

ure 2.2, where the grading factor at the reentrant corner is taken to be 2/3.

23
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c`

v1

v2

m

m1

m2

FIGURE 2.1. Refinement of a triangle at a reentrant corner

FIGURE 2.2. The triangulations T0, T1 and T2 on the L-shaped domain

It is easy to check that the nested triangulations Tk constructed as above satisfy

(2.3.1), and

hk−1 ≈ hk for k ≥ 1, (2.3.7)

where hk = maxT∈Tk
hT .

2.4 Finite Element Methods for the Poisson

Problem

We will consider the finite element methods for the Poisson problem in this section.

2.4.1 Conforming Finite Element Methods

Suppose Th is a family of uniform triangulations of Ω. Let Vh be the space of

continuous P1 finite element functions defined by

Vh = {v ∈ C(Ω̄) : v = 0 on ∂Ω, vT = v
∣∣
T
∈ P1(T ) ∀ T ∈ Th}.

Remark 2.17. The finite element space Vh is a subspace of H1
0 (Ω), on which the

continuous problem (2.2.2) is posed.
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The discrete problem for model problem (2.2.2) is described as follows.

Find uh ∈ Vh such that

a(uh, v) = F (v) ∀ v ∈ Vh, (2.4.1)

where a(·, ·) and F (·) are taken as in (2.2.2) with f ∈ L2(Ω).

It is easy to show that F is a bounded linear functional on H1
0 (Ω). Moreover,

the bilinear form a(·, ·) is bounded on H1
0 (Ω), i.e.,

a(v, w) ≤ ‖v‖a‖w‖a ∀ v, w ∈ H1
0 (Ω), (2.4.2)

where

‖v‖a =
√
a(v, v). (2.4.3)

It follows from Corollary 2.8 that

‖v‖a ≈ ‖v‖H1(Ω) ∀ v ∈ H1
0 (Ω). (2.4.4)

Therefore a(·, ·) is coercive, i.e., there exists a positive constant Cc such that

|a(v, v)| ≥ Cc‖v‖
2
H1(Ω) ∀ v ∈ H1

0 (Ω). (2.4.5)

Hence the discrete problem (2.4.1) has a unique solution (cf. [43, Theorem 2.5.8]).

Let u be the solution of (2.2.2) and uh solve the discrete problem (2.4.1). By

subtracting (2.4.1) from (2.2.2), we arrive at the fundamental Galerkin orthogo-

nality:

a(u− uh, v) = 0 ∀ v ∈ Vh. (2.4.6)

Hence the following lemma (cf. [43, Theorem 2.8.1]) stating the abstract error

estimate is valid.

Lemma 2.18. (Céa) Let u solve (2.2.2) and uh solve the discrete problem (2.4.1).

Then we have

‖u− uh‖H1(Ω) . min
v∈Vh

‖u− v‖H1(Ω). (2.4.7)
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To turn the abstract error estimate (2.4.7) into a concrete estimate, we need an

interpolation operator. Let Πh : C(Ω̄) −→ Vh be the nodal interpolation operator

for the conforming P1 finite element. The following lemma provides a standard

interpolation error estimate (cf. [51, 43]).

Lemma 2.19. Let ω1, . . . , ωL be the interior angles at corners c1, . . . , cL of the

bounded polygonal domain Ω, f ∈ L2(Ω), and u = uR + uS solve (2.2.2), where uR

and uS are the regular part and singular part of u (cf. (2.2.5)). Then we have

‖uR − ΠhuR‖L2(Ω) + h|uR − ΠhuR|H1(Ω) ≤ Ch2|uR|H2(Ω). (2.4.8)

‖uS − ΠhuS‖L2(Ω) + h|uS − ΠhuS|H1(Ω) ≤ Ch
∑

ω`>π

(
|κ`|h

π/ω`
)
. (2.4.9)

The next theorem, which directly follows from Theorem 2.9, Lemma 2.18, Lemma 2.19

and a standard duality argument [43], provides the discrete error estimates for

scheme (2.4.1).

Theorem 2.20. Let Ω be a bounded polygonal domain, u solve (2.2.2) and uh solve

the discrete problem (2.4.1). Then under the assumptions of Lemma 2.19, we have

‖u− uh‖L2(Ω) + h|u− uh|H1(Ω) ≤ Ch1+β‖f‖L2(Ω), (2.4.10)

where the index β > 1
2

is defined by

β = min
(
1, min

1≤`≤L

π

ω`

)
. (2.4.11)

Note that β = 1 if Ω is convex.

Remark 2.21. The preceding discussion also holds for the conforming P1 finite

element method (2.4.1) for the Neumann problem (2.2.9). In this case the P1 finite

element space is defined by Vh = {v ∈ C(Ω̄) : vT = v
∣∣
T
∈ P1(T ) ∀ T ∈ Th},

which belongs to H1(Ω). The discrete error estimate (2.4.10) can be obtained.
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2.4.2 Nonconforming Finite Element Methods

In Section 2.4.1, we have considered the error estimates for conforming finite ele-

ments for (2.2.2) based on the fact that

Vh ⊂ H1
0 (Ω). (2.4.12)

In the other case, the condition (2.4.12) is violated because of the use of noncon-

forming finite elements, where Vh * H1
0 (Ω), i.e., the finite element functions are

not sufficiently smooth.

Suppose Ω is a convex polygonal domain and let Th be a family of uniform

triangulations on Ω. The nonconforming P1 finite element space is defined to be

Vh := {v : v
∣∣
T

is linear for all T in Th, v is continuous

at the midpoints of the edges ofTh, and v = 0

at the midpoints of the edges on ∂Ω}.

Note that Vh * H1
0 (Ω) since functions in Vh are no longer continuous. Hence we

must use ah(·, ·), which is a modification of a(·, ·) in the discrete problem for (2.2.2).

A typical nonconforming method for model problem (2.2.2) with α = 0 and

f ∈ L2(Ω) is defined as follows:

Find uh ∈ Vh such that

ah(uh, v) = F (v) ∀ v ∈ Vh, (2.4.13)

where

ah(v, w) =
∑

T∈Th

∫

T

∇v · ∇wdx ∀ v, w ∈ Vh.

The following lemma (cf. [43, Theorem 10.1.9]) gives the abstract error estimate

for scheme (2.4.13).
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Lemma 2.22. Let u ∈ H1
0 (Ω) solve (2.2.2) (α = 0) and uh ∈ Vh solve (2.4.13).

Then

‖u− uh‖ah
≤ inf

w∈Vh

‖u− w‖ah
+ sup

w∈Vh/{0}

|ah(u− uh, w)|

‖w‖ah

, (2.4.14)

where ‖v‖ah
=

√
ah(v, v) ∀ v ∈ Vh.

Proof. Let ũh ∈ Vh satisfy

ah(ũh, v) = ah(u, v) v ∈ Vh. (2.4.15)

In view of the triangle inequality,

‖u− uh‖ah
≤ ‖u− ũh‖ah

+ ‖ũh − uh‖ah
. (2.4.16)

For any v ∈ Vh, it follows from (2.4.15) that

‖u− v‖2
ah

=ah(u− v, u− v)

=ah(u− ũh + ũh − v, u− ũh + ũh − v)

=ah(u− ũh, u− ũh) + ah(ũh − v, ũh − v) (2.4.17)

≥ah(u− ũh, u− ũh)

=‖u− ũh‖
2
ah
.

Hence the first term on the right-hand side of (2.4.16) can be estimated by

‖u− ũh‖ah
≤ inf

v∈Vh

‖u− v‖ah
. (2.4.18)

It remains to estimate the second term on the right-hand side of (2.4.16). Com-

bining (2.4.15) and a duality formula, we arrive at

‖ũh − uh‖ah
= sup

w∈Vh/{0}

|ah(ũh − uh, w)|

‖w‖ah

= sup
w∈Vh/{0}

|ah(u− uh, w)|

‖w‖ah

. (2.4.19)

The estimate (2.4.14) the follows from (2.4.16), (2.4.18) and (2.4.19).
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Remark 2.23. The first term on the right-hand side of (2.4.14) describes the

approximation property of the space Vh, while the second term measures the non-

conforming consistency error.

Let Πhu ∈ Vh be the nodal interpolant of u, i.e., Πhu agrees with u at the

midpoints of the edges of Th. Since u ∈ H2(Ω) ∩ H1
0 (Ω) when Ω is convex, a

standard interpolation error estimate (cf. [51, 43]) yields:

inf
v∈Vh

‖u− v‖ah
≤ ‖u− Πhu‖ah

≤ Ch|u|H2(Ω). (2.4.20)

For the second term on the right-hand side of (2.4.14), we have

|ah(u− uu, w)| ≤ Ch|u|H2(Ω)‖w‖ah
. (2.4.21)

The next theorem provides the discrete error estimate for scheme (2.4.13) in the

energy norm, whose proof uses Corollary 2.10, Lemma 2.22, (2.4.20) and (2.4.21).

Theorem 2.24. Let Ω be a convex polygonal domain, u solve (2.2.2) and uh solve

the discrete problem (2.4.13). Then

‖u− uh‖ah
≤ Ch‖f‖L2(Ω). (2.4.22)

Details of (2.4.21), (2.4.22) and the L2 error estimate can be found in [43, Sec-

tion 10.3].

2.4.3 A Class of Symmetric, Stable and Consistent

Discontinuous Galerkin Methods

The discontinuous Galerkin (DG) methods are nonconforming finite element meth-

ods. In this section, we will carry out the analysis of a class of symmetric, stable

and consistent DG methods for (2.2.2) with α = 0 and f ∈ L2,µ(Ω) on a gen-

eral polygonal domain Ω with graded meshes. The results reported in this section,

including the numerical experiments, are presented in [36, 34].
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Let the family of triangulations Th be chosen to satisfy (2.3.1)–(2.3.3). Let Vh

be the space of discontinuous P1 functions defined by

Vh = {v : vT = v
∣∣
T
∈ P1(T ) ∀ T ∈ Th}.

We first recall the concepts of the jumps and means over the edges of Th.

Let Hθ(Ω, Th) (θ ≥ 1) be the space of piecewise Sobolev functions defined by

Hθ(Ω, Th) = {v ∈ L2(T ) : vT = v
∣∣
T
∈ Hθ(T ) ∀T ∈ Th}. (2.4.23)

Let e be an interior edge of Th shared by two triangles T1, T2. We define on e

[[v]] = v1n1 + v2n2 ∀ v ∈ H1(Ω, Th), (2.4.24)

where v1 = v
∣∣
T1

, v2 = v
∣∣
T2

and n1 (resp. n2) is the unit normal of e pointing

outside of T1 (resp. T2), and

{{∇v}} =
1

2
(∇v1 + ∇v2) ∀ v ∈ Hθ(Ω, Th), θ > 3/2,

{{w}} =
1

2
(w1 +w2) ∀w ∈ H1(Ω, Th) ×H1(Ω, Th),

where w1 = w
∣∣
T1

, w2 = w
∣∣
T2

.

e

T

T

1

2

n1

n2

FIGURE 2.3. Triangles and normals in the definitions of [[v]] and {{∇v}}

Let e be a boundary edge of Th. Then e ⊂ ∂T for some T ∈ Th. We define on e

[[v]] = vTn ∀ v ∈ H1(Ω, Th),

{{w}} = wT ∀w ∈ H1(Ω, Th) ×H1(Ω, Th),
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where n is the unit normal of e pointing towards the outside of Ω.

Next we define for any edge e of Th the lifting operator `e : L2(e) × L2(e) −→

Vh × Vh by

∫

Ω

`e(v) ·w dx = −

∫

e

v · {{w}} ds ∀w ∈ Vh × Vh. (2.4.25)

Let Eh be the set of the edges of Th. The global lifting `h : L2(Eh) × L2(Eh) −→

Vh × Vh is defined by

`h(v) =
∑

e∈Eh

`e(v). (2.4.26)

We can now introduce the DG methods to be studied in this section:

Find uh ∈ Vh such that

ah(uh, v) =

∫

Ω

fv dx ∀ v ∈ Vh, (2.4.27)

where

ah(v, w) =
∑

T∈Th

∫

T

∇v · ∇w dx−
∑

e∈Eh

∫

e

{{∇v}} · [[w]] ds−
∑

e∈Eh

∫

e

{{∇w}} · [[v]] ds

(2.4.28)

+ δ

∫

Ω

`h
(
[[v]]

)
· `h

(
[[w]]

)
dx+Rh(v, w) ∀ v, w ∈ Vh,

δ = 1 or 0, and Rh = Rj or Rr. The jump terms Rj and Rr are defined by

Rj(v, w) = η
∑

e∈Eh

1

|e|

∫

e

[[v]] · [[w]] ds ∀ v, w ∈ Vh, (2.4.29)

Rr(v, w) = η
∑

e∈Eh

∫

Ω

`e
(
[[v]]

)
· `e

(
[[w]]

)
ds ∀ v, w ∈ Vh, (2.4.30)

where |e| is the length of the edge e and η > 0 is a penalty parameter.

The different choices for δ and Rh lead to four different DG methods (cf. Ta-

ble 2.1), where η∗ is a sufficiently large positive number that depends only on the

shape regularity of Th.
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TABLE 2.1. Discontinuous Galerkin methods

Method [Ref.] δ Rh η

Brezzi et al. [48] 1 Rr η > 0
LDG [52, 49] 1 Rj η > 0
Bassi et al. [18] 0 Rr η > 3
SIP [64, 95, 4] 0 Rj η > η∗

Note that the weighted Sobolev space H2
µ(Ω) (cf. (2.2.37)) is embedded in the

Sobolev space Hs(Ω), where

s = min
ω`>π

(1 + µ`) > 3/2.

Hence the bilinear form ah(·, ·) in (2.4.27) is well defined on H2
µ(Ω)+Vh by the trace

theorem (cf. Theorem 2.6). These four DG methods are symmetric and consistent

in the sense that the solution u of (2.2.2) satisfies

ah(u, v) =

∫

Ω

fv dx ∀ v ∈ Vh. (2.4.31)

Let the mesh-dependent energy norm ‖ · ‖h on H2
µ(Ω) + Vh be defined by

‖v‖2
h =

∑

T∈Th

‖∇v‖2
L2(T ) + η−1

∑

e∈Eh

|e| ‖{{∇v}}‖2
L2(e)

+ η
∑

e∈Eh

|e|−1‖[[v]]‖2
L2(e)

. (2.4.32)

The next lemma states the boundedness of DG methods.

Lemma 2.25. The bilinear form ah(·, ·) for all four DG methods is bounded by

the ‖ · ‖h norm:

ah(w, v) ≤ Cb‖w‖h‖v‖h ∀ v, w ∈ H2
µ(Ω) + Vh, (2.4.33)

where the positive constant Cb is independent of the penalty parameter η as long

as η is bounded away from 0.
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Proof. It follows from the Cauchy-Schwarz inequality that

∣∣∣
∑

e∈Eh

∫

e

{{∇v}} · [[w]] ds
∣∣∣ +

∣∣∣
∑

e∈Eh

∫

e

{{∇w}} · [[v]] ds
∣∣∣

≤
(
η−1

∑

e∈Eh

|e|‖{{∇v}}‖2
L2(e) + η

∑

e∈Eh

|e|−1‖[[v]]‖2
L2(e)

)1/2

(2.4.34)

×
(
η−1

∑

e∈Eh

|e|‖{{∇w}}‖2
L2(e) + η

∑

e∈Eh

|e|−1‖[[w]]‖2
L2(e)

)1/2

for all v, w ∈ H2
µ(Ω) + Vh, which immediately implies (2.4.33) for the SIP method.

The boundedness estimates for the other three DG methods follow from (2.4.34)

and the two estimates below [48, 5]:

‖`e([[v]])‖
2
L2(Ω) . |e|−1‖[[v]]‖2

L2(e) ∀ v ∈ H2
µ(Ω) + Vh, (2.4.35)

‖`h([[v]])‖
2
L2(Ω) .

∑

e∈Eh

|e|−1‖[[v]]‖2
L2(e)

∀ v ∈ H2
µ(Ω) + Vh, (2.4.36)

where the positive constant C depends only on the shape regularity of Th.

Lemma 2.26. The bilinear form ah(·, ·) is coercive for all four DG methods:

ah(v, v) ≥ C‖v‖2
h ∀ v ∈ Vh, (2.4.37)

where the positive constant C is independent of the penalty parameter η as long as

η is bounded away from 0.

Proof. Let ||| · |||h be defined by

|||v|||2h =
∑

T∈Th

‖∇v‖2
L2(T ) + η

∑

e∈Eh

|e|−1‖[[v]]‖2
L2(e)

.

Since the two norms ‖ · ‖h and ||| · |||h are equivalent on Vh (cf. for example [43,

Section 10.5]), it suffices to establish the coercivity of ah(·, ·) with respect to ||| · |||h.

From [5] we have the estimate

ah(v, v) ≥ C
( ∑

T∈Th

‖∇v‖2
L2(T ) + η

∑

e∈Eh

‖re([[v]]‖
2
L2(e)

)
∀ v ∈ Vh, (2.4.38)
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for all four DG methods under the restrictions on η as stated in Table 2.1, where

the positive constant C is independent of η as long as it is bounded away from 0.

The coercivity with respect to ||| · |||h then follows from the estimate [48, 5]

|e|−1‖[[v]]‖2
L2(e)

≤ C‖re([[v]])‖
2
L2(e)

∀ v ∈ Vh.

Combining (2.4.31), (2.4.33) and (2.4.37), we have a quasi-optimal error estimate

for all four DG methods:

‖u− uh‖h ≤ C inf
v∈Vh

‖u− v‖h, (2.4.39)

where the positive constant C is independent of the penalty parameter η as long

as η is bounded away from 0. Refer to [43, Section 10.5] for more details.

Note that Lemma 2.25 and Lemma 2.26 imply

ah(v, v) ≈ ‖v‖2
h ∀ v ∈ Vh, (2.4.40)

and ah(·, ·) is an inner product on Vh.

Let Πh : C(Ω̄) −→ Vh be the nodal interpolation operator for the conforming P1

finite element, which is the same one used in Section 2.4.1. The following lemma

provides an interpolation error estimate.

Lemma 2.27. Let f ∈ L2,µ(Ω) and u ∈ H1
0 (Ω) satisfy (2.2.2) (α = 0). Then

‖u− Πhu‖h ≤ Ch‖f‖L2,µ(Ω). (2.4.41)

Proof. It follows from (2.4.24) and (2.4.32) that

‖u− Πhu‖
2
h =

∑

T∈Th

|u− Πhu|
2
H1(T ) + η−1

∑

e∈Eh

|e| ‖{{∇(u− Πhu)}}‖
2
L2(e)

(2.4.42)

≤ C
∑

T∈Th

(
|u− Πhu|

2
H1(T ) + |∂T | ‖∇(u− Πhu)‖

2
L2(∂T )

)
.
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Let Th,` be the collection of triangles in Th that touch a corner c` of Ω. We assume

that h� δ and hence T ⊂ N`,δ for all T ∈ Th,`, where N`,δ = {x ∈ Ω : |x−c`| < δ}

are the neighborhoods of the corners c` for 1 ≤ ` ≤ L. We can divide the triangles

in Th into two disjoint families T ′
h and T ′′

h where

T ′
h =

⋃

ω`>π

Th,` and T ′′
h = Th \ T

′
h.

For the triangles away from the reentrant corners, we derive from (2.2.33),

(2.2.37), (2.3.1), (2.3.2), a standard interpolation error estimate [51, 43] and the

trace theorem with scaling that

∑

T∈T ′′
h

(
|u− Πhu|

2
H1(T ) + |∂T | ‖∇(u− Πhu)‖

2
L2(∂T )

)
≤ C

∑

T∈T ′′
h

h2
T |u|

2
H2(T )

≤ C
∑

T∈T ′′
h

h2[Φµ(T )]2
∑

|α|=2

‖∂αu/∂xα‖2
L2(T ) (2.4.43)

≤ Ch2
∑

|α|=2

∑

T∈T ′′
h

‖φ2
µ(∂

αu/∂xα)‖2
L2(T ) ≤ Ch2‖f‖2

L2,µ(Ω).

For the triangles touching a reentrant corner, we apply an interpolation error

estimate for fractional order Sobolev spaces [65] together with (2.2.38), (2.3.5) and

the trace theorem with scaling to obtain

∑

T∈T ′
h

(
|u− Πhu|

2
H1(T ) + |∂T | ‖∇(u− Πhu)‖

2
L2(∂T )

)

≤ C
∑

ω`>π

∑

T∈Th,`

h2µ`
T |u|2H1+µ`(T ) (2.4.44)

≤ Ch2
∑

ω`>π

|u|2H1+µ`(N`,δ) ≤ Ch2‖f‖2
L2,µ(Ω).

The estimate (2.4.41) follows from (2.4.42)–(2.4.44).

By using (2.4.39) and (2.4.41), we can immediately establish the error estimate

for all four DG methods.

35



Theorem 2.28. Let f ∈ L2,µ(Ω), u be the solution of (2.2.2) (α = 0), and uh be

the solution of one of the four DG methods associated with a triangulation Th that

satisfies (2.3.1). We have the following error estimate:

‖u− uh‖h ≤ Ch‖f‖L2,µ(Ω), (2.4.45)

where the positive constant C is independent of the penalty parameter η as long as

η is bounded away from 0.

We can also establish an error estimate for the DG methods in the norm

‖ξ‖2
L2,−µ(Ω) =

∫

Ω

φ−2
µ (x)ξ2(x) dx, (2.4.46)

which is the norm for L2,−µ(Ω), the dual space of L2,µ(Ω).

Theorem 2.29. Under the assumptions of Theorem 2.28, we have

‖u− uh‖L2,−µ(Ω) ≤ Ch2‖f‖L2,µ(Ω), (2.4.47)

where the positive constant C is independent of the penalty parameter η as long as

η is bounded away from 0.

Proof. Observe that (2.4.27) and (2.4.31) imply the following Galerkin orthogo-

nality:

ah(u− uh, v) = 0 ∀ v ∈ Vh. (2.4.48)

Let χ = φ−2
µ (u− uh). Then χ ∈ L2,µ(Ω) and

‖χ‖L2,µ(Ω) = ‖u− uh‖L2,−µ(Ω). (2.4.49)

Let ζ ∈ H1
0 (Ω) satisfy

∫

Ω

∇v · ∇ζ dx =

∫

Ω

vχ dx ∀ v ∈ H1
0 (Ω). (2.4.50)
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It follows from (2.4.49) and Lemma 2.27 (applied to ζ) that

‖ζ − Πhζ‖h ≤ Ch‖u− uh‖L2,−µ(Ω). (2.4.51)

Note that we can rewrite (2.4.50) as

ah(v, ζ) =

∫

Ω

vχ dx ∀ v ∈ H1
0 (Ω), (2.4.52)

and the consistency of the DG methods implies

ah(v, ζ) =

∫

Ω

vχ dx ∀ v ∈ Vh. (2.4.53)

Hence we have, by (2.4.33), (2.4.45), (2.4.51) and (2.4.53).

‖u− uh‖
2
L2,−µ(Ω) =

∫

Ω

(u− uh)χ dx

= ah(u− uh, ζ)

= ah(u− uh, ζ − Πhζ)

≤ ‖u− uh‖h‖ζ − Πhζ‖h ≤ Ch2‖f‖L2,µ(Ω)‖u− uh‖L2,−µ(Ω),

which implies (2.4.47).

The following corollary is immediate.

Corollary 2.30. Under the assumptions of Theorem 2.28, we have

‖u− uh‖L2(Ω) ≤ Ch2‖f‖L2,µ(Ω).

Next, we report results of several numerical experiments for model problem

(2.2.2) on the L-shaped domain (−1, 1)2 \ ([0, 1] × [−1, 0]) (cf. Figure 2.2). The

triangulations T0, T1, . . . are created by the refinement procedure described in Sec-

tion 2.3. The grading parameter at the reentrant corner is taken to be 2/3 and the

mesh parameter of Tk is hk = 2−k.
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We take the exact solution to be

u(x, y) = (1 − x2)(1 − y2)r2/3 sin
(
2θ/3

)
,

where (r, θ) are the polar coordinates at the origin. We computed the energy error

and L2 error for the solution uk of the method of Brezzi et al. (resp. the LDG

method, the method of Bassi et al. and the SIPG method) with η = 1 (resp. η = 1,

η = 4 and η = 10) for 0 ≤ k ≤ 7. The results are plotted against the mesh size in

log-log scale and presented in Figure 2.4 and Figure 2.5.
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FIGURE 2.4. Energy errors and L2 errors for the method of Brezzi et al. (left, η = 1)
and for the LDG method (right, η = 1)

2.5 Multigrid Algorithms

Let T0, T1, . . . be a sequence of triangulations generated by the refinement procedure

that was described in Section 2.3, hk be the mesh size of Tk, Vk be the corresponding

discontinuous P1 finite element space associated with Tk and ak(·, ·) be the analog

of ah(·, ·) that is defined by (2.4.27). The k-th level discrete problem for (2.2.2)

(α = 0) is (cf. [34]):

Find uk ∈ Vk such that

ak(uk, v) =

∫

Ω

fv dx ∀ v ∈ Vk. (2.5.1)
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FIGURE 2.5. Energy errors and L2 errors for the method of Bassi et al. (left, η = 4)
and for the SIPG method (right, η = 10)

The analog of ‖ · ‖h is denoted by ‖ · ‖k, i.e.,

‖v‖2
k =

∑

T∈Tk

|v|2H1(T ) + η−1
∑

e∈Ek

|e| ‖{{∇v}}‖2
L2(e)

+ η
∑

e∈Ek

|e|−1‖[[v]]‖2
L2(e)

. (2.5.2)

Note that (2.4.40) becomes

ak(v, v) ≈ ‖v‖2
k ∀ v ∈ Vk, (2.5.3)

and (2.4.41) is translated into

‖u− Πku‖k ≤ Chk‖f‖L2,µ(Ω), (2.5.4)

where Πk : C(Ω̄) −→ Vk is the nodal interpolation operator for the conforming P1

element. Furthermore, the norms ‖ · ‖k and ‖ · ‖k−1 are equivalent for functions

that are piecewise smooth on Tk−1, i.e.,

‖w‖k ≈ ‖w‖k−1 ∀w ∈ Hs(Ω) ∩ Vk−1, (2.5.5)

where s > 3/2.

We can rewrite (2.5.1) as

Akuk = fk, (2.5.6)

39



where Ak : Vk −→ V ′
k and fk ∈ V ′

k are defined by

〈Akw, v〉 = ak(w, v) ∀ v, w ∈ Vk, (2.5.7)

〈fk, v〉 =

∫

Ω

fv dx ∀ v ∈ Vk. (2.5.8)

Here 〈·, ·〉 is the canonical bilinear form on V ′
k × Vk.

Let the operator Bk : Vk −→ V ′
k be defined by

〈Bkw, v〉 = h2
k

∑

T∈Tk

∑

m∈MT

w(m)v(m) ∀ v, w ∈ Vk, (2.5.9)

where MT is the set of the midpoints of the three edges of T . The operator Bk

will be used later to define a smoother for multigrid algorithms.

Remark 2.31. The weighted norm ‖ · ‖L2,−µ(Ω) is connected to the operator Bk

through the relation

〈Bkv, v〉 = h2
k

∑

T∈Tk

∑

m∈MT

[v(m)]2 ≈ ‖v‖2
L2,−µ(Ω) ∀ v ∈ Vk, (2.5.10)

which follows from (2.3.1), (2.3.2) and (2.4.46).

In order to define W -cycle, V -cycle and F -cycle multigrid algorithms [71, 79,

27, 91, 43] for equation (2.5.6), we need intergrid transfer operators that move

functions between grids. Since the finite element spaces are nested, we can take

the coarse-to-fine intergrid transfer operator Ikk−1 : Vk−1 −→ Vk to be the natural

injection and define the fine-to-coarse intergrid transfer operator Ik−1
k : V ′

k −→ V ′
k−1

to be the transpose of Ikk−1 with respect to the canonical bilinear forms, i.e.,

〈Ik−1
k α, v〉 = 〈α, Ikk−1v〉 ∀α ∈ V ′

k, v ∈ Vk−1. (2.5.11)

We are now ready to define the W -cycle algorithm for the equation

Akz = g, (2.5.12)

where g ∈ V ′
k.
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Algorithm 2.32. W -cycle Algorithm for (2.5.12)

The output of the algorithm is denoted by MGW (k, g, z0, m1, m2), where z0 ∈ Vk

is the initial guess and m1 (resp. m2) is the number of pre-smoothing (resp. post-

smoothing) steps.

For k = 0, we take the output to be the exact solution, i.e.,MGW (0, g, z0, m1, m2) =

A−1
0 g.

For k > 0, we proceed in three steps.

Pre-Smoothing. Compute zl ∈ Vk for 1 ≤ l ≤ m1 recursively by

zl = zl−1 + (λh2
k)B

−1
k (g − Akzl−1), (2.5.13)

where λ is a (constant) damping factor such that the spectral radius ρ(λh2
kB

−1
k Ak)

satisfies

ρ(λh2
kB

−1
k Ak) < 1 for k ≥ 0. (2.5.14)

Coarse-Grid Correction. Compute q ∈ Vk−1 by

ḡ =Ik−1
k (g − Akzm1),

q∗ =MGW (k − 1, ḡ, 0, m1, m2), (2.5.15)

q =MGW (k − 1, ḡ, q∗, m1, m2), (2.5.16)

and take

zm1+1 = zm1 + Ikk−1q. (2.5.17)

Post-Smoothing. Compute zl ∈ Vk for m1 + 2 ≤ l ≤ m1 +m2 + 1 recursively by

zl = zl−1 + (λh2
k)B

−1
k (g − Akzl−1). (2.5.18)

The final output is

MGW (k, g, z0, m1, m2) = zm1+m2+1.
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We need the following operators for the analysis of Algorithm 2.32. The operator

Rk : Vk −→ Vk which measures the effect of one smoothing step is defined by

Rk = Idk − (λh2
k)B

−1
k Ak, (2.5.19)

where Idk is the identity operator on Vk. Clearly we have

ak(Rkv, w) = ak(v, Rkw) ∀ v, w ∈ Vk. (2.5.20)

The operator P k−1
k : Vk −→ Vk−1 is the transpose of Ikk−1 with respect to the

variational forms, i.e.,

ak−1(P
k−1
k w, v) = ak(w, I

k
k−1v) ∀ v ∈ Vk−1, w ∈ Vk. (2.5.21)

We denote the k-th level error propagation operator for Algorithm 2.32 by Ek :

Vk −→ Vk, i.e.,

Ek(z − z0) = z −MGW (k, g, z0, m1, m2). (2.5.22)

The next lemma states the well-known recursive relation among operators Ek

[71, 43].

Lemma 2.33. The following recursive relation is valid

Ek = Rm2

k [(Idk − Ikk−1P
k−1
k ) + Ikk−1E

2
k−1P

k−1
k ]Rm1

k for k ≥ 1. (2.5.23)

Proof. Observe that

em1 =z − zm1

=z − (zm1−1 + λB−1
k (g − Akzm1−1)) (2.5.24)

=em1−1 − λB−1
k Akem1−1 = Rm1

k e0.

Similarly, we have

em1+m2+1 = Rm2
k em1+1. (2.5.25)
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We proceed by induction on k. Since MGW (0, g, z0, m1, m2) = A−1
0 z = g, it is

clear that E0 = 0. We assume (2.5.23) holds for k − 1. Let ρ satisfy Ak−1ρ = ḡ.

Then the induction hypothesis implies that

ρ− q =Ek−1(ρ− q∗) (2.5.26)

=Ek−1(ρ− (ρ− Ek−1ρ)) = E2
k−1ρ,

where q and q∗ are defined by (2.5.15) and (2.5.16). Also for any w ∈ Vk−1, we

have

ak−1(ρ, w) =〈Ak−1ρ, w〉

=〈ḡ, w〉

=〈Ik−1
k (g − Akzm1), w〉

=〈Ak(z − zm1), I
k
k−1w〉 = ak(z − zm1 , I

k
k−1w),

which together with (2.5.21) implies

ρ = P k−1
k em1 . (2.5.27)

From (2.5.24)-(2.5.27), we obtain (2.5.23) in the following way:

Ek(z − z0) =z −MGW (k, g, z0, m1, m2)

=Rm2
k (z − zm1 − Ikk−1q)

=Rm2
k (em1 − Ikk−1(ρ− E2

k−1ρ))

=Rm2
k (em1 − Ikk−1(P

k−1
k em1 − E2

k−1P
k−1
k em1))

=Rm2

k (Idk − Ikk−1P
k−1
k + Ikk−1E

2
k−1P

k−1
k )Rm1

k e0.

Corollary 2.34. The error propagation operator Ẽk for the two-grid algorithm is

given by

Ẽk = Rm2
k (Idk − Ikk−1P

k−1
k )Rm1

k . (2.5.28)
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Next, we introduce the V -cycle and F -cycle algorithms.

Algorithm 2.35. V -cycle Algorithm for (2.5.12)

The output of the algorithm is denoted by MGV (k, g, z0, m1, m2), where z0 ∈ Vk

is the initial guess and m1 (resp. m2) is the number of pre-smoothing (resp. post-

smoothing) steps.

For k = 0, we take the output to be the exact solution, i.e., MGV (0, g, z0, m1, m2) =

A−1
0 g.

For k > 0, we proceed in three steps.

Pre-Smoothing Compute zl ∈ Vk for 1 ≤ l ≤ m1 recursively by

zl = zl−1 + (λh2
k)B

−1
k (g − Akzl−1), (2.5.29)

where λ is a (constant) damping factor chosen to satisfy (2.5.14).

Coarse-Grid Correction Compute q ∈ Vk−1 by

ḡ =Ik−1
k (g − Akzm1),

q =MGV (k − 1, ḡ, 0, m1, m2), (2.5.30)

and take

zm1+1 = zm1 + Ikk−1q. (2.5.31)

Post-Smoothing Compute zl ∈ Vk for m1 + 2 ≤ l ≤ m1 +m2 + 1 recursively by

zl = zl−1 + (λh2
k)B

−1
k (g − Akzl−1). (2.5.32)

The final output is

MGV (k, g, z0, m1, m2) = zm1+m2+1.

Let Ek : Vk −→ Vk be the k-th level error propagation operator for Algo-

rithm 2.35, i.e.,

Ek(z − z0) = z −MGV (k, g, z0, m1, m2). (2.5.33)
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The following recursive relation is well known [71, 43]:

Ek = Rm2
k [(Idk − Ikk−1P

k−1
k ) + Ikk−1Ek−1P

k−1
k ]Rm1

k for k ≥ 1. (2.5.34)

Algorithm 2.36. F -cycle Algorithm for (2.5.12)

The output of the algorithm is denoted by MGF (k, g, z0, m1, m2), where z0 ∈ Vk

is the initial guess and m1 (resp. m2) is the number of pre-smoothing (resp. post-

smoothing) steps.

For k = 0, we take the output to be the exact solution, i.e., MGF (0, g, z0, m1, m2) =

A−1
0 g.

For k > 0, we proceed in three steps.

Pre-Smoothing Compute zl ∈ Vk for 1 ≤ l ≤ m1 recursively by

zl = zl−1 + (λh2
k)B

−1
k (g − Akzl−1), (2.5.35)

where λ is a (constant) damping factor to be chosen in (2.5.14).

Coarse-Grid Correction Compute q ∈ Vk−1 by

ḡ =Ik−1
k (g − Akzm1)

q∗ =MFF (k − 1, ḡ, 0, m1, m2) (2.5.36)

q =MGV (k − 1, ḡ, q∗, m1, m2)

and take

zm1+1 = zm1 + Ikk−1q. (2.5.37)

Post-Smoothing Compute zl ∈ Vk for m1 + 2 ≤ k ≤ m1 +m2 + 1 recursively by

zl = zl−1 + (λh2
k)B

−1
k (g − Akzl−1). (2.5.38)

The final output is

MGF (k, g, z0, m1, m2) = zm1+m2+1.
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Let Ẽk : Vk −→ Vk be the operator relating the initial error and the final error

of Algorithm 2.36 applied to the equation (2.5.12), i.e.,

Ẽk(z − z0) = z −MGF (k, g, z0, m1, m2). (2.5.39)

The following recursive relation is well known [91]:

Ẽk = Rm2
k [(Idk − Ikk−1P

k−1
k ) + Ikk−1Ek−1Ẽk−1P

k−1
k ]Rm1

k for k ≥ 1. (2.5.40)

Remark 2.37. Note that the only differences between the W -cycle, V -cycle and

F -cycle algorithms are at the coarse-grid correction step. The W -cycle algorithm

corrects error on coarser grid twice and both with another W -cycle algorithm, while

there is only one error correction in the V -cycle algorithm. On the other hand,

the F -cycle algorithm corrects error first with another F -cycle algorithm and then

with a V -cycle algorithm. We can observe that the W -cycle algorithm is the most

expensive in terms of computation, followed by the F -cycle algorithm, then the

V -cycle algorithm.

The convergence analysis of W -cycle, V -cycle and F -cycle multigrid algorithms

for the discrete problem (2.5.6) obtained from DG methods on graded meshes will

be presented in Chapter 4.
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Chapter 3
Nonconforming Finite Element Methods
for the Curl-Curl and Grad-Div Problem

3.1 The Curl-Curl and Grad-Div Problem

In Chapter 1 we showed that the Maxwell’s equations (1.1.1) and (1.1.2) can be

reduced to the equation of the following form with perfectly conducting boundary

condition:

∇×∇× u+ αu = f in Ω, (3.1.1a)

n× u = 0 on ∂Ω, (3.1.1b)

where Ω ⊂ R2 is a bounded polygonal domain, α ∈ R is a constant, and f ∈

[L2(Ω)]2.

We can derive the non-elliptic weak form for (3.1.1) as follows:

Find u ∈ H0(curl; Ω) such that

(∇× u,∇× v) + α(u, v) = (f , v) (3.1.2)

for all v ∈ H0(curl; Ω), where the space H0(curl; Ω) is defined by (1.2.3).

For any u ∈ H0(curl; Ω), from the Helmholtz decomposition [68, 80], we have

u = ů+ ∇φ, (3.1.3)

where ů ∈ H0(curl; Ω)∩H(div0; Ω), φ ∈ H1
0(Ω), and the space H(div0; Ω) is defined

by (1.2.6).

Let η ∈ H1
0 (Ω), by taking v = ∇η ∈ H0(curl; Ω) and u = ů + ∇φ in (3.1.2) we

have,

(∇× u,∇× (∇η)) + α(ů+ ∇φ,∇η) = (f ,∇η). (3.1.4)
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Note that ∇× (∇η) = 0, the integration by parts formula implies

α(∇ · ů, η) + α(∇φ,∇η) = (f ,∇η). (3.1.5)

Since ů ∈ H(div0; Ω), then φ ∈ H1
0 (Ω) satisfies

α(∇φ,∇η) = (f ,∇η) (3.1.6)

for all η ∈ H1
0 (Ω), which is the variational form of the Poisson problem.

Since the Poisson problem (3.1.6) (when α 6= 0) can be solved by many standard

methods under the assumption that f ∈ H(div; Ω), we will focus on the divergence

free part ů. We take v ∈ H0(curl; Ω)∩H(div0; Ω) and u = ů+∇φ in (3.1.2), then

(∇× (ů+ ∇φ),∇× v) + α(ů+ ∇φ, v) =(f , v). (3.1.7)

Note that ∇× (∇φ) = 0, it follows from the integration by parts formula that ů

is the weak solution of the following reduced curl-curl problem (cf. (1.2.8)):

Find ů ∈ H0(curl; Ω) ∩H(div0; Ω) such that

(∇× ů,∇× v) + α(ů, v) = (f , v) (3.1.8)

for all v ∈ H0(curl; Ω) ∩H(div0; Ω).

Since the condition number for the discrete problem of (3.1.8) behaves like a

fourth order problem, we turn to consider the following curl-curl and grad-div

problem (cf. (1.2.9)):

Find u ∈ H0(curl; Ω) ∩H(div; Ω) such that

(∇× u,∇× v) + γ(∇ · u,∇ · v) + α(u, v) = (f , v) (3.1.9)

for all v ∈ H0(curl; Ω) ∩ H(div; Ω), where α ∈ R and γ > 0 are constants, f ∈

[L2(Ω)]2.
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3.2 A Nonconforming Finite Element Method

for the Curl-Curl and Grad-Div Problem

In this section we solve (1.2.9) by using a classical nonconforming finite element

method on graded meshes. The numerical scheme can also be found in [37].

3.2.1 Discretization

Let Th be a family of triangulations of Ω that satisfies the property (2.3.1), where

the grading parameters µ are chosen according to (2.2.39). Let Vh be the space of

weakly continuous P1 vector fields associated with Th whose tangential components

vanish at the midpoints of the boundary edges in Th. More precisely, let Eh (resp.

E bh and E ih) be the set of the edges (resp. boundary edges and interior edges) of Th.

Then

Vh = {v ∈ [L2(Ω)]2 : vT = v
∣∣
T
∈ [P1(T )]2 ∀T ∈ Th,

v is continuous at the midpoint of any e ∈ Eh,

n× v vanishes at the midpoint of any e ∈ E bh}.

For any s > 1/2, we define a weak interpolation operator ΠT : [Hs(T )]2 −→

[P1(T )]2 by

(ΠTv)(mej
) =

1

|ej|

∫

ej

v ds for 1 ≤ j ≤ 3, (3.2.1)

where e1, e2 and e3 are the edges of T , me and |e| denote the midpoint and length

of the edge e respectively. The operator ΠT satisfies a standard error estimate [60]:

‖ζ − ΠTζ‖L2(T ) + h
min(s,1)
T |ζ − ΠTζ|Hmin(s,1)(T ) ≤ CTh

s
T |ζ|Hs(T ) (3.2.2)

for all ζ ∈ [Hs(T )]2 and s ∈ (1/2, 2], where the positive constant CT depends on

the minimum angle of T .
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Lemma 3.1. The operator ΠT has the following properties [40, 37]:

∫

T

∇× (ΠTu)dx =

∫

T

∇× u dx, (3.2.3)

∫

T

∇ · (ΠTu)dx =

∫

T

∇ · u dx. (3.2.4)

Proof. It follows from (3.2.1), Green’s Theorem and midpoint rule that

∫

T

∇× (ΠTu)dx =
∑

e⊂∂T

∫

e

n× (ΠTu)dx

=
∑

e⊂∂T

[n× (ΠTu)](me)|e| (3.2.5)

=
∑

e⊂∂T

n×

∫

e

u dx

=

∫

T

∇× u dx.

Similarly, we can also prove (3.2.4).

Since H0(curl; Ω) ∩ H(div; Ω) ⊂ [Hs(Ω)]2 for some s > 1/2 (cf. [37]), we can

define a global interpolation operator Πh : H0(curl; Ω) ∩ H(div; Ω) −→ Vh by

piecing together the local interpolation operators:

(Πhv)T = ΠTvT ∀ T ∈ Th. (3.2.6)

Let ∇h× and ∇h· be defined by

(∇h × v)T = ∇× (vT ) ∀T ∈ Th, v ∈ Vh, (3.2.7)

(∇h · v)T = ∇ · (vT ) ∀T ∈ Th, v ∈ Vh. (3.2.8)
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In view of (3.2.3) and (3.2.6)–(3.2.8), we can show that for any piecewise constant

function P ,

∫

Ω

[∇h × (Πhv)]P dx =
∑

T∈Th

∫

T

[∇× (ΠTv)]PT dx

=
∑

T∈Th

PT

∫

T

∇× (ΠTv) dx (3.2.9)

=
∑

T∈Th

PT

∫

T

∇× v dx

=

∫

Ω

(∇× v)P dx,

which implies

∇h × (Πhv) = Πh
0(∇× v) ∀ v ∈ H0(curl; Ω) ∩H(div; Ω), (3.2.10)

where Πh
0 is the orthogonal projection from L2(Ω) onto the space of piecewise

constant functions associated with Th. Similarly

∇h · (Πhv) = Πh
0(∇ · v) ∀ v ∈ H0(curl; Ω) ∩H(div; Ω). (3.2.11)

The commutative relations (3.2.10) and (3.2.11) indicate that we have good con-

trol over ∇h × (Πhu) and ∇h · (Πhu) simultaneously, which explains why weakly

continuous P1 vector fields can be used to solve problems involving the space

H(curl; Ω) ∩H(div; Ω).

Let e ∈ E ih be shared by the two triangles T1, T2 ∈ Th (cf. Figure 2.3) and n1

(resp. n2) be the unit normal of e pointing towards the outside of T1 (resp. T2).

We define, on e,

[[n× v]] = n1 × vT1

∣∣
e
+ n2 × vT2

∣∣
e
, (3.2.12a)

[[n · v]] = n1 · vT1

∣∣
e
+ n2 · vT2

∣∣
e
. (3.2.12b)
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For an edge e ∈ E bh, we take ne to be the unit normal of e pointing towards the

outside of Ω and define

[[n× v]] = ne × v
∣∣
e
. (3.2.13)

A nonconforming finite element method for (1.2.9) is:

Find uh ∈ Vh such that

ah(uh, v) = (f , v) ∀ v ∈ Vh, (3.2.14)

where

ah(w, v) = (∇h ×w,∇h × v) + γ(∇h ·w,∇h · v) + α(w, v)

+
∑

e∈Eh

[Φµ(e)]
2

|e|

∫

e

[[n×w]] [[n× v]] ds (3.2.15)

+
∑

e∈Ei
h

[Φµ(e)]
2

|e|

∫

e

[[n ·w]][[n · v]]ds,

and the edge weight Φµ(e) is defined by

Φµ(e) = ΠL
`=1|c` −me|

1−µ` . (3.2.16)

Here the grading parameters µ are chosen according to (2.2.39).

By comparing (2.3.2) and (3.2.16), we have

Φµ(e) ≈ Φµ(T ) if e ⊂ ∂T. (3.2.17)

Remark 3.2. The last two terms on the right-hand side of (3.2.15) involving the

tangential and normal jumps of the weakly continuous P1 vector fields are crucial

for the convergence of the scheme. A naive discretization of (1.2.9) with only the

first three terms does not converge. The crucial difference is that the piecewise

H(curl; Ω)∩H(div; Ω) semi-norm, unlike the piecewise H1 semi-norm, is too weak

to control the jumps even with the weak continuity of the vector fields in Vh. Hence

the last two terms involving the jumps must be included in the discretization to

control the consistency error.
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3.2.2 Error Analysis

In this section we first establish the abstract error estimate and some preliminary

estimates for the scheme (3.2.14), then the convergence analysis will follow. More

details can be found in [37].

We will measure the discretization error in both the L2 norm and the mesh-

dependent energy norm ‖ · ‖h defined by

‖v‖2
h = ‖∇h × v‖

2
L2(Ω) + γ‖∇h · v‖

2
L2(Ω) + ‖v‖2

L2(Ω)

+
∑

e∈Eh

[Φµ(e)]
2

|e|
‖[[n× v]]‖2

L2(Ω) (3.2.18)

+
∑

e∈Ei
h

[Φµ(e)]
2

|e|
‖[[n · v]]‖2

L2(Ω).

Note that

‖v‖L2(Ω) ≤ ‖v‖h ∀ v ∈ H0(curl; Ω) ∩H(div; Ω) + Vh. (3.2.19)

It is easy to check that ah(·, ·) is bounded with respect to ‖ · ‖h, i.e.,

|ah(w, v)| ≤ (|α| + 1)‖w‖h‖v‖h (3.2.20)

for all v,w ∈ H0(curl; Ω) ∩H(div; Ω) + Vh.

For α > 0, ah(·, ·) is also coercive with respect to ‖ · ‖h, i.e.,

ah(v, v) ≥ min(1, α)‖v‖2
h (3.2.21)

for all v ∈ H0(curl; Ω) ∩H(div; Ω) + Vh. In this case the discrete problem is well-

posed and we have following abstract error estimate, whose proof is identical with

proof of Lemma 3.5 in [39].
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Lemma 3.3. Let α be positive, β = min(1, α), u ∈ H0(curl; Ω)∩H(div; Ω) be the

solution of (1.2.9), and uh satisfy discrete problem (3.2.14), it holds that

‖u− uh‖h ≤ (
1 + α + β

β
) inf

v∈Vh

‖u− v‖h

+
1

β
sup

w∈Vh\{0}

ah(u− uh,w)

‖w‖h
. (3.2.22)

Proof. Let v ∈ Vh be arbitrary. It follows from (3.2.20), (3.2.21) and the triangle

inequality that

‖u− uh‖h ≤‖u− v‖h + ‖v − uh‖h

≤‖u− v‖h +
1

β
sup

w∈Vh\{0}

ah(v − uh,w)

‖w‖h

≤(
1 + α + β

β
) inf

v∈Vh

‖u− v‖h +
1

β
sup

w∈Vh\{0}

ah(u− uh,w)

‖w‖h
,

which implies (3.2.22).

For α ≤ 0, we have a G̊arding (in)equality:

ah(v, v) + (|α| + 1)(v, v) = ‖v‖2
h (3.2.23)

for all v ∈ H0(curl; Ω)∩H(div; Ω)+Vh. In this case the discrete problem is indefinite

and the following lemma provides an abstract error estimate for the scheme (3.2.14)

under the assumption that it has solution. Details of the proof can be found in [39,

Lemma 3.6]

Lemma 3.4. Let u ∈ H0(curl; Ω)∩H(div; Ω) satisfy (1.2.9) and uh be the solution

of (3.2.14). It holds that

‖u− uh‖h ≤ (2|α| + 3) inf
v∈Vh

‖u− v‖h + sup
w∈Vh\{0}

ah(u− uh,w)

‖w‖h
(3.2.24)

+(|α| + 1)‖u− uh‖L2(Ω).
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Proof. It follows from (3.2.19) and (3.2.23) that for any v ∈ Vh \ {0},

‖v‖h ≤
ah(v, v)

‖v‖h
+ (|α| + 1)

(v, v)

‖v‖h
(3.2.25)

≤ sup
w∈Vh\{0}

ah(v,w)

‖w‖h
+ (|α| + 1)‖v‖L2(Ω).

Let v ∈ Vh be arbitrary. By using (3.2.19), (3.2.20), (3.2.25) and the triangle

inequality, we find

‖u− uh‖h ≤‖u− v‖h + ‖v − uh‖h

≤‖u− v‖h + sup
w∈Vh\{0}

ah(v − uh,w)

‖w‖h
+ (|α| + 1)‖v − uh‖L2(Ω)

≤(2|α| + 3)‖u− v‖h + sup
w∈Vh\{0}

ah(u− uh,w)

‖w‖h
+ (|α| + 1)‖u− uh‖L2(Ω),

which implies (3.2.24).

From here on we consider α and γ to be fixed and drop the dependence on these

constants in our estimates.

Remark 3.5. The first term on the right-hand side of (3.2.22) and (3.2.24) mea-

sures the approximation property of Vh with respect to the energy norm. The sec-

ond term measures the consistency error. The third term on the right-hand side of

(3.2.24) addresses the indefiniteness of the problem when α < 0.

Let Th,` be the set of the triangles in Th that share the corner cl as a common

vertex. We assume that h � δ and hence T ⊂ N`,δ for all T ∈ Th,`, where N`,δ =

{x ∈ Ω : |x − c`| < δ} are the neighborhoods of the corners c` for 1 ≤ ` ≤ L. We

will use the notation T ′
h =

⋃L
`=1 Th,` and T ′′

h = Th \ T ′
h in the proof of the following

lemma, whose proof is identical to the proof of Lemma 5.1 in [40].

Lemma 3.6. Let u ∈ H0(curl; Ω) ∩H(div; Ω) be the solution of (1.2.9). For any

ε > 0 there exists a positive constant Cε independent of h and f such that

‖u− Πhu‖L2(Ω) ≤ Cεh
2−ε‖f‖L2(Ω). (3.2.26)
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Proof. We can write

‖u− Πhu‖
2
L2(Ω) =

∑

T∈T ′′
h

‖u− ΠTu‖
2
L2(T ) +

∑

T∈T ′
h

‖u− ΠTu‖
2
L2(T ). (3.2.27)

Then we have, by (2.2.26), (2.3.4) and (3.2.2) (with s = 2),

∑

T∈T ′′
h ,T*

⋃L
`=1 N`,δ

‖u− ΠTu‖
2
L2(T ) . h4‖f‖2

L2(Ω). (3.2.28)

On the other hand, near a corner c` of Ω we can use (2.2.27) and (2.2.28) to get

∑

T∈T ′′
h ,T⊂

⋃L
`=1 N`,δ

‖u− ΠTu‖
2
L2(T ) .

∑

T∈T ′′
h ,T⊂

⋃L
`=1 N`,δ

[‖uR − ΠTuR‖
2
L2(T )

+
∑

j∈N
j(π/ω`)∈(0,2)\{1}

|ν`,j|
2‖ψ`,j − ΠTψ`,j‖

2
L2(T )]. (3.2.29)

where ψ`,j and ν`,j are defined by (2.2.29).

The estimates (2.2.30a), (2.3.4) and (3.2.2) (with s = 2 − ε) imply

∑

T∈T ′′
h ,T⊂

⋃L
`=1 N`,δ

‖uR − ΠTuR‖
2
L2(T ) ≤ Cεh

4−ε‖f‖2
L2(Ω) (3.2.30)

for any ε > 0.

Note that (2.3.1) and the regularity of Th imply that

|c` − cT | ≈ |c` − x| ∀ x ∈ T ∈ T ′′
h and T ⊂ N`,δ, (3.2.31)

and hence

Φµ(T ) ≈ |c` − x|1−µ` ∀ x ∈ T ∈ T ′′
h and T ⊂ N`,δ. (3.2.32)

For ω` >
π
2
, we can show that (2.2.29a) and (2.2.39) imply (cf. [40])

∑

T∈Th,T⊂N`,δ

∫

T

|c` − x|4(1−µ`)|D2ψ`,j|
2 dx <∞, (3.2.33)

where |D2υ|2 =
∑2

i,j,k=1(
∂2υi

∂xj∂xk
)2, because

∫ 1

0

r4(1−µ`)r2((π/ω`)−3)r dr <∞, if µ` <
π

2ω`
.
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Then by using (2.3.1), (3.2.2) (with s = 2), (3.2.32) and (3.2.33) we obtain the

following estimate for the term involving the singular vector fields:

∑

T∈T ′′
h ,T⊂

⋃L
`=1 N`,δ

‖ψ`,j − ΠTψ`,j‖
2
L2(T ) .

∑

T∈T ′′
h ,T⊂

⋃L
`=1 N`,δ

h4
T |ψ`,j|

2
H2(T )

≈h4
∑

T∈T ′′
h ,T⊂

⋃L
`=1 N`,δ

[Φµ(T )]4|ψ`,j|
2
H2(T ) (3.2.34)

≈h4
∑

T∈T ′′
h ,T⊂

⋃L
`=1 N`,δ

∫

T

|c` − x|4(1−µ`)|D2ψ`,j|
2dx . h4.

Combining (2.2.30), (3.2.28)–(3.2.34), we get

∑

T∈T ′′
h

‖u− ΠTu‖
2
L2(T ) ≤ Cεh

4−ε‖f‖2
L2(Ω) for any ε > 0. (3.2.35)

It remains to estimate the second term on the right-hand side of (3.2.27).

In the case where ωl ≤
π
2
, it follows from (2.2.27)–(2.2.30), (2.3.1) and (3.2.2)

(with s = 2 − ε) that

∑

T∈Th,`

‖u− ΠTu‖
2
L2(T ) ≤ Cεh

4−ε‖f‖2
L2(Ω). (3.2.36)

In the case where ωl >
π
2
, since u ∈ [H2µ`(Ω)]2 (cf. Remark 2.15), we obtain

from (2.2.40), (2.3.5) and (3.2.2) (with s = 2µ`) that

∑

T∈Th,`

‖u− ΠTu‖
2
L2(T ) . h4µ`

T ‖f‖2
L2(Ω) ≈ h4‖f‖2

L2(Ω). (3.2.37)

Combining (3.2.36) and (3.2.37), we have

∑

T∈T ′
h

‖u− ΠTu‖
2
L2(T ) ≤ Cεh

4−ε‖f‖2
L2(Ω) for any ε > 0. (3.2.38)

The estimate (3.2.26) follows from (3.2.27), (3.2.35) and (3.2.38).

Lemma 3.7. Let u ∈ H0(curl; Ω) ∩ H(div; Ω) be the solution of (1.2.9). It holds

that
∑

e∈Eh

[Φµ(e)]
2

|e|
‖[[u− Πhu]]‖2

L2(e) ≤ Cεh
2−ε‖f‖2

L2(Ω) (3.2.39)

for any ε > 0.
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Proof. The proof is identical with the proof of Lemma 5.2 in [40], which is obtained

by using (2.2.26)–(2.2.30), (2.3.1), (2.3.3), (2.3.4) and (3.2.2).

Lemma 3.8. Let u ∈ H0(curl; Ω) ∩ H(div; Ω) be the solution of (1.2.9). It holds

that

inf
v∈Vh

‖u− v‖h ≤ ‖u− Πhu‖h < Cεh
1−ε‖f‖L2(Ω) (3.2.40)

for any ε > 0.

Proof. According to (3.2.18), we have

‖u− Πhu‖
2
h = ‖∇h×(u− Πhu)‖2

L2(Ω)

+γ‖∇h·(u− Πhu)‖2
L2(Ω) + ‖u− Πhu‖

2
L2(Ω)

+
∑

e∈Eh

[Φµ(e)]
2

|e|
‖[[n× (u− Πhu)]]‖2

L2(Ω) (3.2.41)

+
∑

e∈Ei
h

[Φµ(e)]
2

|e|
‖[[n · (u− Πhu)]]‖2

L2(Ω).

The third term on the right-hand side of (3.2.41) has been estimated in Lemma 3.6,

and the last two terms can be estimated by using Lemma 3.7. Therefore it only

remains to estimate the first two terms.

It follows from (2.2.17), (2.2.18), (3.2.10), (3.2.11) and a standard interpolation

error estimate [51, 43] that

‖∇h × (u− Πhu)‖2
L2(Ω) =‖∇ × u− Π0

h(∇× u)‖2
L2(Ω) (3.2.42)

≤Ch2|∇ × u|2H1(Ω) ≤ Ch2‖f‖2
L2(Ω),

γ‖∇h · (u− Πhu)‖2
L2(Ω) =γ‖∇ · u− Π0

h(∇ · u)‖2
L2(Ω). (3.2.43)

≤Ch2|∇ · u|2H1(Ω) ≤ Ch2‖f‖2
L2(Ω).

The estimate (3.2.40) follows from (3.2.41)–(3.2.43), Lemma 3.6 and Lemma 3.7.
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The next lemma is useful for estimating terms involving the jumps of the weakly

continuous P1 vector fields across edges (cf. [40, Lemma 5.3]).

Lemma 3.9. It holds that

∑

e∈Eh

|e| [Φµ(e)]
−2‖η − η̂

Te
‖2
L2(e)

≤ Ch2|η|2H1(Ω) ∀ η ∈ H1(Ω),

where

η̂
Te

=
1

|Te|

∫

Te

η dx (3.2.44)

is the mean of η over Te, one of the triangles in Th that has e as an edge.

Proof. This is the consequence of (2.3.1), (3.2.17), the trace theorem (with scaling)

and a standard interpolation error estimate [51, 43]:

∑

e∈Eh

|e| [Φµ(e)]
−2‖η − η̂

Te
‖2
L2(e)

≤ C
∑

e∈Eh

[Φµ(T )]−2
(
‖η − η̂

Te
‖2
L2(Te) + h2

T |η − η̂
Te
|2H1(Te)

)

≤ C
∑

e∈Eh

[Φµ(T )]−2h2
T |η|

2
H1(Te) ≤ Ch2|η|2H1(Ω).

The following lemma gives an optimal bound for the consistency error.

Lemma 3.10. Let u ∈ H0(curl; Ω) ∩ H(div; Ω) be the solution of (1.2.9), and

uh ∈ Vh satisfy (3.2.14). Then

sup
w∈Vh\{0}

ah(u− uh,w)

‖w‖h
≤ Ch‖f‖L2(Ω). (3.2.45)
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Proof. Letw ∈ Vh be arbitrary. Since the strong form of (1.2.9) is given by (2.2.19),

from (3.2.12), (3.2.13), (3.2.15) and integration by parts formula, we have

ah(u,w) =
∑

T∈Th

∫

T

(∇× u)(∇×w)dx

+
∑

T∈Th

γ

∫

T

(∇ · u)(∇ ·w)dx+ α(u,w) (3.2.46)

= (f ,w) +
∑

e∈Eh

∫

e

(∇× u)[[n×w]]ds +
∑

e∈Ei
h

γ

∫

e

(∇ · u)[[n ·w]]ds.

Remark 3.11. Recall from (2.2.19c) that ∇ · u = 0 on ∂Ω if u is the solution

of (1.2.9). Hence the integrals in the last term on the right-hand side of (3.2.46)

vanish on boundary edges.

Subtracting (3.2.14) from (3.2.46), we have

ah(u− uh,w) =
∑

e∈Eh

∫

e

(∇× u)[[n×w]]ds+
∑

e∈Ei
h

∫

e

(∇ · u)[[n ·w]]ds. (3.2.47)

Since w is continuous at the midpoints of interior edges and its tangential com-

ponents vanish at the midpoints of the boundary edges, we can write, using the

midpoint rule,

∑

e∈Eh

∫

e

(∇× u)[[n×w]]ds =
∑

e∈Eh

∫

e

(∇× u− ̂(∇× u)Te
)[[n×w]]ds, (3.2.48)

where ̂(∇× u)Te
is the mean of ∇× u on Te, one of the triangles in Th that has e

as an edge. It then follows from Cauchy-Schwarz inequality, (2.2.17), (3.2.18) and

Lemma 3.9 that

∑

e∈Eh

∫

e

(∇× u)[[n×w]]ds

≤
{ ∑

e∈Eh

|e|[Φµ(e)]
−2‖(∇× u− ̂(∇× u)Te

)‖2
L2(e)

}1/2

×
{ ∑

e∈Eh

[Φµ(e)]
2

|e|
‖[n×w]]‖2

L2(e)

}1/2
(3.2.49)

≤ C(h|∇×u|H1(Ω))‖w‖h ≤ Ch‖f‖L2(Ω)‖w‖h,
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and similarly

∑

e∈Ei
h

γ

∫

e

(∇ · u)[[n ·w]]ds ≤ Ch‖f‖L2(Ω)‖w‖h. (3.2.50)

The estimate (3.2.45) follows from (3.2.47), (3.2.49) and (3.2.50).

We now derive an L2 error estimate by a duality argument.

Theorem 3.12. Let u ∈ H0(curl; Ω) ∩ H(div; Ω) be the solution of (1.2.9), and

uh ∈ Vh satisfy (3.2.14). Then

‖u− uh‖L2(Ω) ≤ Cε(h
2−ε‖f‖L2(Ω) + h1−ε‖u− uh‖h) (3.2.51)

for any ε > 0.

Proof. Let z ∈ H0(curl; Ω) ∩H(div; Ω) satisfy

(∇× v,∇× z) + γ(∇ · v,∇ · z) + α(v, z) = (v, (u− uh)) (3.2.52)

for all v ∈ H0(curl; Ω) ∩H(div; Ω). Note that the strong form of (3.2.52) is

∇× (∇× z) − γ∇(∇ · z) + αz = u− uh, (3.2.53)

and we have the following analog of (2.2.17) and (2.2.18):

|∇ × z|H1(Ω) + |∇ · z|H1(Ω) ≤ C‖u− uh‖L2(Ω). (3.2.54)

Furthermore, we can write (3.2.52) as

ah(v, z) = (v, (u− uh)) ∀ v ∈ H0(curl; Ω) ∩H(div; Ω). (3.2.55)
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From (3.2.53), (3.2.55) and integration by parts we have the following analog of

(3.2.46):

ah(uh, z) =
∑

T∈Th

∫

T

(∇×uh)(∇× z)dx

+
∑

T∈Th

γ

∫

T

(∇ · uh)(∇ · z)dx + α(uh, z) (3.2.56)

= (uh, (u− uh)) +
∑

e∈Eh

∫

e

[[n× uh]](∇× z)ds

+
∑

e∈Ei
h

γ

∫

e

[[n · uh]](∇ · z)ds.

Combine (3.2.55) and (3.2.56), we have

‖u− uh‖
2
L2(Ω) = (u,u− uh) − (uh,u− uh)

= ah(u− uh,z) +
∑

e∈Eh

∫

e

[[n× uh]](∇× z)ds (3.2.57)

+
∑

e∈Ei
h

γ

∫

e

[[n · uh]](∇ · z)ds,

and we will estimate the three terms on the right-hand side of (3.2.57) separately.

We can write the first term as

ah(u− uh, z) = ah(u− uh, z − Πhz) + ah(u− uh,Πhz). (3.2.58)

From (3.2.20) and Lemma 3.8 (applied to z) we immediately have the following

estimate:

ah(u− uh, z − Πhz) ≤C‖u− uh‖h‖z − Πhz‖h

≤Cεh
1−ε‖u− uh‖h‖u− uh‖L2(Ω). (3.2.59)
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By using (3.2.47), we can rewrite the second term on the right-hand side of

(3.2.58) as

ah(u− uh,Πhz) =
∑

e∈Eh

∫

e

(∇× u)[[n× (Πhz)]]ds (3.2.60)

+
∑

e∈Ei
h

∫

e

γ(∇ · u)[[n · (Πhz)]]ds.

Following the notation introduced in (3.2.48), the first term on the right-hand side

of (3.2.60) can be written as:

∑

e∈Eh

∫

e

(∇× u)[[n× Πhz]]ds

=
∑

e∈Eh

∫

e

(∇× u− ̂(∇× u)Te
)[[n× (Πhz)]]ds

=
∑

e∈Eh

∫

e

(∇× u− ̂(∇× u)Te
)[[n× (Πhz − z)]]ds.

Since n × (Πhz) is continuous at the midpoints of interior edges and vanishes

at the midpoints of boundary edges, and [[n × z]] = 0. It then follows from the

Cauchy-Schwarz inequality, (2.2.17), Lemma 3.7 (applied to z) and Lemma 3.9

that

∑

e∈Eh

∫

e

(∇× u)[[n× (Πhz)]]ds

≤{
∑

e∈Eh

|e|[Φµ(e)]
−2‖(∇× u− ̂(∇× u)Te

)‖2
L2(e)}

1/2

× {
∑

e∈Eh

[Φµ(e)]
2

|e|
‖[n × (Πhz − z)]]‖2

L2(e)}
1/2 (3.2.61)

≤Cε(h|∇ × u|H1(Ω))(h
1−ε‖u− uh‖L2(Ω))

≤Cεh
2−ε‖f‖L2(Ω)‖u− uh‖L2(Ω).
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Similarly, the second term on the right-hand side of (3.2.60) satisfies the following

estimate:

∑

e∈Ei
h

∫

e

γ(∇ · u)[[n · Πhz]]ds ≤ Cεh
2−ε‖f‖L2(Ω)‖u− uh‖L2(Ω). (3.2.62)

Combing (3.2.58)–(3.2.62), we have

ah(u− uh,z) (3.2.63)

≤ Cε(h
2−ε‖f‖L2(Ω) + h1−ε‖u− uh‖h)‖u− uh‖L2(Ω).

We now consider the second term on the right-hand side of (3.2.57). Since n×uh

is continuous at the midpoints of interior edges and vanishes at the midpoints of

boundary edges, and [[n×u]] = 0, we can write, following the notation introduced

in (3.2.48),

∑

e∈Eh

∫

e

[[n× uh]](∇× z)ds

=
∑

e∈Eh

∫

e

[[n× uh]](∇× z − ̂(∇× z)Te
)ds

=
∑

e∈Eh

∫

e

[[n× (uh − u)]](∇× z − ̂(∇× z)Te
)ds.

Using the Cauchy-Schwarz inequality, (3.2.18), (3.2.54) and Lemma 3.9, we obtain

∑

e∈Eh

∫

e

[[n× uh]](∇× z)ds

≤
( ∑

e∈Eh

|e|[Φµ(e)]
−2‖∇× z − ̂(∇× z)Te

‖2
L2(e)

)1/2

×
( ∑

e∈Eh

[Φµ(e)]
2

|e|
‖[[n× (uh − u)]]‖2

L2(e)

)1/2
(3.2.64)

≤Ch|∇ × z|H1(Ω)‖u− uh‖h

≤Ch‖u− uh‖L2(Ω)‖u− uh‖h.
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Similarly, we have the following bound on the third term on the right-hand side of

(3.2.57).

∑

e∈Ei
h

∫

e

γ[[n · uh]](∇ · z)ds ≤ Ch‖u− uh‖L2(Ω)‖u− uh‖h (3.2.65)

The estimate (3.2.51) can be obtained by combining (3.2.57) and (3.2.63)–

(3.2.65).

In the case where α > 0, the following theorem is an immediate consequence of

Lemma 3.3, Lemma 3.8, Lemma 3.10 and Lemma 3.12.

Theorem 3.13. Let α be positive. The following discretization error estimates

hold for the solution uh of (3.2.14):

‖u− uh‖h ≤Cεh
1−ε‖f‖L2(Ω) for any ε > 0,

‖u− uh‖L2(Ω) ≤Cεh
2−ε‖f‖L2(Ω) for any ε > 0.

In the case where α ≤ 0, we have the following theorem for the scheme (3.2.14).

The proof, which is based on the approach of Schatz for indefinite problems [89],

is identical with the proof of Theorem 4.5 in [39].

Theorem 3.14. Assume −α ≥ 0 is not one of the eigenvalues λγ,j defined by

(1.2.10). There exists a positive number h∗ such that the discrete problem (3.2.14)

is uniquely solvable for all h ≤ h∗, in which case the following discretization error

estimates are valid:

‖u− uh‖h ≤Cεh
1−ε‖f‖L2(Ω) for any ε > 0, (3.2.66)

‖u− uh‖L2(Ω) ≤Cεh
2−ε‖f‖L2(Ω) for any ε > 0. (3.2.67)

Proof. Assuming uh satisfies (3.2.14), it can be obtained from Lemma 3.4, Lemma 3.8,

Lemma 3.10 and Lemma 3.12 that

‖u− uh‖h ≤ Cεh
1−ε(‖f‖L2(Ω) + ‖u− uh‖h) ∀ ε > 0. (3.2.68)
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By choosing an ε∗ > 0, we deduce from (3.2.68) that for

h ≤ h∗ = (
1

2Cε∗
)1/(1−ε∗),

‖u− uh‖h ≤Cε∗h
1−ε∗(‖f‖L2(Ω) + ‖u− uh‖h)

≤Cε∗h
1−ε∗‖f‖L2(Ω) + Cε∗h

1−ε∗
∗ ‖u− uh‖h

≤Cε∗h
1−ε∗‖f‖L2(Ω) +

1

2
‖u− uh‖h,

and hence

‖u− uh‖h ≤ 2Cε∗h
1−ε∗‖f‖L2(Ω). (3.2.69)

Therefore, any solution zh ∈ Vh of the homogeneous discrete problem

ah(zh, v) = 0 ∀ v ∈ Vh, (3.2.70)

which corresponds to the special case where f = 0 = z, will satisfy the following

special case of (3.2.69):

‖zh‖h = 0.

Hence the only solution of (3.2.70) is the trivial solution and the discrete problem

(3.2.14) is uniquely solvable for h ≤ h∗.

The energy error estimate (3.2.66) now follows from (3.2.68) and (3.2.69), and

the L2 error estimate (3.2.67) follows from Theorem 3.12 and (3.2.66).

3.3 An Interior Penalty Method for the

Curl-Curl and Grad-Div Problem

In this section we study an interior penalty version of the nonconforming scheme

presented in Section 3.2 for the CCGD problem (1.2.9). By removing the weak

continuity condition of the vector fields, the interior penalty method can be applied

to meshes with hanging nodes. This method belongs to a growing family of finite

element methods for problems posed on H(curl; Ω)∩H(div; Ω) [40, 37, 38, 46, 39].
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The numerical scheme studied in this section is posed in [35] and the convergence

analysis can also be found in that paper.

We take Ṽh to be the space of (discontinuous) P1 vector fields, i.e.,

Ṽh = {v ∈ [L2(Ω)]2 : vT = v
∣∣
T
∈ [P1(T )]2 ∀ T ∈ Th}.

Since the vector fields in Ṽh are (in general) discontinuous, their jumps across the

edges of Th, which are defined by (3.2.12)–(3.2.13), play an important role in the

interior penalty method.

We now define the discrete problem:

Find uh ∈ Ṽh such that

ãh(uh, v) = (f , v) ∀ v ∈ Ṽh, (3.3.1)

where

ãh(w, v) = (∇h ×w,∇h × v) + γ(∇h ·w,∇h · v) + α(w, v)

+
∑

e∈Eh

[Φµ(e)]
2

|e|

∫

e

[[n×w]] [[n× v]]ds

+
∑

e∈Ei
h

[Φµ(e)]
2

|e|

∫

e

[[n ·w]][[n · v]]ds (3.3.2)

+ h−2
∑

e∈Eh

1

|e|

∫

e

(Π0
e[[n×w]]) (Π0

e[[n× v]])ds

+ h−2
∑

e∈Ei
h

1

|e|

∫

e

(Π0
e[[n ·w]])(Π0

e[[n · v]])ds,

|e| denotes the length of the edge e, and Π0
e is the orthogonal projection from L2(e)

to P0(e) (the space of constant functions on e). The edge weight Φµ(e) in (3.3.2)

is defined by (3.2.16).

We also use the Crouzeix-Raviart interpolation operator ΠT defined by (3.2.1)

in the analysis of the interior penalty method.
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The discretization error will be measured in both the L2 norm and the mesh-

dependent energy norm ||| · |||h defined by

|||v|||2h

= ‖∇h × v‖
2
L2(Ω) + γ‖∇h · v‖

2
L2(Ω) + ‖v‖2

L2(Ω)

+
∑

e∈Eh

[Φµ(e)]
2

|e|
‖[[n× v]]‖2

L2(e)
+

∑

e∈Ei
h

[Φµ(e)]
2

|e|
‖[[n · v]]‖2

L2(e)
(3.3.3)

+ h−2
( ∑

e∈Eh

1

|e|
‖Π0

e[[n× v]]‖2
L2(e)

+
∑

e∈Ei
h

1

|e|
‖Π0

e[[n · v]]‖2
L2(e)

)
.

It is easy to show that Lemma 3.3 and Lemma 3.4 hold for interior penalty

method in terms of ãh(·, ·) and mesh-dependent energy norm ||| · |||h. Lemma 3.6,

Lemma 3.7 and Lemma 3.9 also hold with identical proofs.

The approximation property of Ṽh is established by the following lemma.

Lemma 3.15. Let u ∈ H0(curl; Ω)∩H(div; Ω) be the solution of (1.2.9). It holds

that

inf
v∈Ṽh

|||u− v|||h ≤ |||u− Πhu|||h < Cεh
1−ε‖f‖L2(Ω) (3.3.4)

for any ε > 0.

Proof. It follows from (3.2.1) that Π0
e[[n × (u − Πhu)]] = 0 for all e ∈ Eh and

Π0
e[[n · (u− Πhu)]] = 0 for all e ∈ E ih. Therefore we have

|||u− Πhu|||
2
h = ‖∇h × (u− Πhu)‖2

L2(Ω)

+ γ‖∇h · (u− Πhu)‖2
L2(Ω) + ‖u− Πhu‖

2
L2(Ω)

+
∑

e∈Eh

[Φµ(e)]
2

|e|
‖[[n× (u− Πhu)]]‖2

L2(e)
(3.3.5)

+
∑

e∈Ei
h

[Φµ(e)]
2

|e|
‖[[n · (u− Πhu)]]‖2

L2(e)
.

The rest of the proof is identical with the proof of Lemma 3.8.
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The next lemma gives an optimal bound for the consistency error.

Lemma 3.16. Let u ∈ H0(curl; Ω) ∩ H(div; Ω) be the solution of (1.2.9) and

uh ∈ Ṽh satisfy (3.3.1). We have

sup
w∈Ṽh\{0}

ãh(u− uh,w)

|||w|||h
. h‖f‖L2(Ω). (3.3.6)

Proof. Let w ∈ Ṽh be arbitrary. The following analog of (3.2.46) holds for ãh(·, ·):

ãh(u,w) = (f ,w) +
∑

e∈Eh

∫

e

(∇× u)[[n×w]]ds (3.3.7)

+
∑

e∈Ei
h

γ

∫

e

(∇ · u)[[n ·w]]ds.

Subtracting (3.3.1) from (3.3.7), we have

ãh(u− uh,w) =
∑

e∈Eh

∫

e

(∇× u)[[n×w]]ds

+
∑

e∈Ei
h

γ

∫

e

(∇ · u)[[n ·w]]ds. (3.3.8)

Following the notation introduced in (3.2.48), we can rewrite the first term on

the right-hand side of (3.3.8) as

∑

e∈Eh

∫

e

(∇× u)[[n×w]]ds

=
∑

e∈Eh

∫

e

(∇× u− ̂(∇× u)Te
)[[n×w]]ds (3.3.9)

+
∑

e∈Eh

∫

e

̂(∇× u)Te
(Π0

e[[n×w]])ds.
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It follows from (2.2.17), (3.3.3), Lemma 3.9 and the Cauchy-Schwarz inequality

that the first term on the right-hand side of (3.3.9) satisfies

∑

e∈Eh

∫

e

(∇× u− ̂(∇× u)Te
)[[n×w]]ds

≤
( ∑

e∈Eh

|e|[Φµ(e)]
−2‖∇ × u− ̂(∇× u)‖2

L2(e)

)1/2

(3.3.10)

×
( ∑

e∈Eh

|e|−1[Φµ(e)]
2‖n×w‖2

L2(e)

)1/2

≤ Ch‖f‖L2(Ω)|||w|||h.

For the second term on the right-hand side of (3.3.9), by using the (2.2.17),

(3.3.3) and Cauchy-Schwarz inequality, we find

∑

e∈Eh

∫

e

̂(∇× u)Te
(Π0

h[[n×w]])ds

≤
∑

e∈Eh

(
|e|1/2‖ ̂(∇× u)Te

‖L2(e)

)(
|e|−1/2‖Π0

e[[n×w]]‖L2(e)

)

≤ Ch
( ∑

e∈Eh

‖ ̂(∇× u)Te
‖2
L2(Te)

)1/2
(3.3.11)

×
(
h−2

∑

e∈Eh

1

|e|
‖Π0

e[[n×w]]‖2
L2(e)

)1/2

≤ Ch‖∇ × u‖L2(Ω)|||w|||h ≤ Ch‖f‖L2(Ω)|||w|||h.

Here we have used the simple fact that, if e is an edge of a triangle T ,

|e|‖q‖2
L2(e) ≤ C‖q‖2

L2(T ) for any constant function q, (3.3.12)

where the positive constant C depends only on the shape of T .

Combining (3.3.9)–(3.3.11), we have

∑

e∈Eh

∫

e

(∇× u)[[n ·w]]ds ≤ Ch‖f‖L2(Ω)|||w|||h, (3.3.13)
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and similarly,

∑

e∈Ei
h

∫

e

(∇ · u)[[n ·w]]ds ≤ Ch‖f‖L2(Ω)|||w|||h. (3.3.14)

The estimate (3.3.6) follows from (3.3.8), (3.3.13) and (3.3.14).

The next lemma gives an L2 error estimate under the assumption that the dis-

crete problem (3.3.1) has a solution.

Lemma 3.17. Let u ∈ H0(curl; Ω) ∩ H(div; Ω) be the solution of (1.2.9) and

uh ∈ Ṽh satisfy (3.3.1). We have

‖u− uh‖L2(Ω) ≤ Cε
(
h2−ε‖f‖L2(Ω) + h1−ε|||u− uh|||h

)
(3.3.15)

for any ε > 0.

Proof. The proof is based on a duality argument.

Let z ∈ H0(curl; Ω) ∩H(div; Ω) satisfy

(∇× v,∇× z) + γ(∇ · v,∇ · z) + α(v, z) = (v, (u− uh)) (3.3.16)

for all v ∈ H0(curl; Ω) ∩H(div; Ω). The following analog of (3.2.57) holds:

‖u− uh‖
2
L2(Ω) = (u,u− uh) − (uh,u− uh)

= ãh(u− uh,z) +
∑

e∈Eh

∫

e

[[n× uh]](∇× z)ds (3.3.17)

+
∑

e∈Ei
h

γ

∫

e

[[n · uh]](∇ · z)ds,

and we will estimate the three terms on the right-hand side of (3.3.17) separately.
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Using (3.3.8) and the fact that Π0
e[[n× (Πhz)]] (resp. Π0

e[[n · (Πhz)]]) vanishes for

all e ∈ Eh (resp. e ∈ E ih), we can rewrite the first term as

ãh(u− uh, z) = ãh(u− uh, z − Πhz) + ãh(u− uh,Πhz)

= ãh(u− uh, z − Πhz)

+
∑

e∈Eh

∫

e

(∇× u− ̂(∇× u)Te
)[[n× (Πhz)]]ds

+
∑

e∈Ei
h

∫

e

γ(∇ · u− ̂(∇ · u)Te
)[[n · (Πhz)]]ds.

Then the similar arguments for (3.2.63) yield

ãh(u− uh, z)

≤ Cε(h
2−ε‖f‖L2(Ω) + h1−ε|||u− uh|||h)‖u− uh‖L2(Ω). (3.3.18)

We now consider the second term on the right-hand side of (3.3.17). First we

write

∑

e∈Eh

∫

e

[[n× uh]](∇× z)ds

=
∑

e∈Eh

∫

e

[[n× uh]](∇× z − ̂(∇× z)Te
)ds (3.3.19)

+
∑

e∈Eh

∫

e

(Π0
e[[n× uh]]) ̂(∇× z)Te

ds.

The first term on the right-hand side of (3.3.19) satisfies the estimate below,

which follows from Lemma 3.9, (3.2.54), (3.3.3), and the Cauchy-Schwarz inequal-

ity:

∑

e∈Eh

∫

e

[[n× uh]](∇× z − ̂(∇× z)Te
)ds (3.3.20)

≤ Ch‖u− uh‖L2(Ω)|||u− uh|||h.

On the other hand, as in the derivation of (3.3.11), we obtain by the Cauchy–

Schwarz inequality, (3.2.54), (3.3.3) and (3.3.12),
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∑

e∈Eh

∫

e

(Π0
e[[n× uh]]) ̂(∇× z)Te

ds

=
∑

e∈Eh

∫

e

(Π0
e[[n× (uh − u)]]) ̂(∇× z)Te

ds (3.3.21)

≤ Ch|||u− uh|||h‖∇ × z‖L2(Ω)

≤ Ch|||u− uh|||h‖u− uh‖L2(Ω).

Combining (3.3.19)–(3.3.21), we have

∑

e∈Eh

∫

e

[[n× uh]](∇× z)ds ≤ Ch‖u− uh‖L2(Ω)|||u− uh|||h. (3.3.22)

Similarly, we have the following bound on the third term on the right-hand side

of (3.3.17):

∑

e∈Ei
h

∫

e

γ[[n · uh]](∇ · z)ds ≤ Ch‖u− uh‖L2(Ω)|||u− uh|||h. (3.3.23)

The estimate (3.3.15) follows from (3.3.17), (3.3.18), (3.3.22) and (3.3.23).

The following two theorems provide the discretization error estimates for scheme

(3.3.1) in both energy norm and L2 norm. The arguments are identical to those in

the proofs of Theorem 3.13 and Theorem 3.14.

Theorem 3.18. Let α be positive. The following discretization error estimates

hold for the solution uh of (3.3.1):

|||u− uh|||h ≤Cεh
1−ε‖f‖L2(Ω) for any ε > 0,

‖u− uh‖L2(Ω) ≤Cεh
2−ε‖f‖L2(Ω) for any ε > 0.

Theorem 3.19. Assume −α ≥ 0 is not one of the eigenvalues λγ,j defined by

(1.2.10). There exists a positive number h∗ such that the discrete problem (3.3.1)
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is uniquely solvable for all h ≤ h∗, in which case the following discretization error

estimates are valid:

|||u− uh|||h ≤Cεh
1−ε‖f‖L2(Ω) for any ε > 0,

‖u− uh‖L2(Ω) ≤Cεh
2−ε‖f‖L2(Ω) for any ε > 0.

3.4 Numerical Results

In this section we report the results of a series of numerical experiments that

confirm the theoretical results obtained in Section 3.2 and Section 3.3. We take γ

to be 1 in all the experiments.

In the first experiment we examine the convergence behavior of our numerical

scheme (3.2.14) on the square domain (0, 0.5)2 with uniform meshes (Figure 3.1,

left), where the exact solution u is given by

u =




(x3

3
−
x2

4

)
(y2 − 0.5y) sin(ky)

(y3

3
−
y2

4

)
(x2 − 0.5x) cos(kx)


 . (3.4.1)

The results are tabulated in Table 3.1 for α = 1, 0 and −1 and they agree with the

error estimates in Theorem 3.13 and Theorem 3.14. That is, the scheme is second

order accurate in the L2 norm and first order accurate in the energy norm.

In the second experiment we check the behavior of the scheme (3.3.1) on unit

square (0, 1)2 using nonconforming meshes with hanging nodes depicted in Figure

3.1 (right), where the exact solution u is given by

u =



y(1 − y)

x(1 − x)


 . (3.4.2)

Table 3.2 shows that the scheme (3.3.1) behaves as predicted in Theorem 3.18 and

Theorem 3.19.
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TABLE 3.1. Convergence of the scheme (3.2.14) on the square domain (0, 0.5)2 with
uniform meshes and the exact solution given by (3.4.1)

h
‖u − uh‖L2(Ω)

‖u‖L2(Ω)
order

‖u − uh‖h

‖u‖h
order

α = 1

1/10 5.49E−02 − 3.23E−01 −
1/20 1.20E−02 2.19 1.59E−01 1.02

1/40 2.83E−03 2.09 7.92E−02 1.01
1/80 6.87E−04 2.04 3.94E−02 1.01

α = 0

1/10 6.45E−02 − 3.46E−01 −
1/20 1.38E−02 2.23 1.70E−01 1.03
1/40 3.20E−03 2.11 8.37E−02 1.01
1/80 7.73E−04 2.05 4.17E−02 1.01

α = −1

1/10 5.59E−02 − 3.24E−01 −
1/20 1.21E−02 2.20 1.59E−01 1.02
1/40 2.86E−03 2.09 7.92E−02 1.01
1/80 6.94E−04 2.04 3.94E−02 1.01

TABLE 3.2. Convergence of the scheme (3.3.1) on the square domain (0, 1)2 with non-
conforming meshes and the exact solution given by (3.4.2)

h
‖u − uh‖L2(Ω)

‖u‖L2(Ω)
order

|||u − uh|||h
|||u|||h

order

α = 1

1/8 8.82E−02 1.80 2.98E−01 0.90
1/16 2.27E−02 1.96 1.51E−01 0.98
1/32 5.69E−03 2.00 7.59E−02 1.00
1/64 1.42E−03 2.00 3.81E−02 0.99

α = 0

1/8 1.28E−01 1.93 3.59E−01 0.97
1/16 3.21E−02 2.00 1.80E−01 1.00
1/32 8.00E−03 2.00 8.99E−02 1.00
1/64 1.96E−03 2.03 4.03E−02 1.15

α = −1

1/8 2.36E−01 2.38 4.85E−01 1.20
1/16 5.52E−02 2.10 2.35E−01 1.01
1/32 1.35E−02 2.03 1.16E−01 1.01
1/64 3.31E−03 2.03 5.80E−02 1.00

FIGURE 3.1. Conforming uniform meshes (left) and nonconforming meshes (right) on
the square domain
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The goal of the third experiment is to demonstrate the convergence behavior of

scheme (3.2.14) on the L-shaped domain (−0.5, 0.5)2 \ [0, 0.5]2. The exact solution

is chosen to be

u = ∇×
(
r2/3 cos

(2

3
θ −

π

3

)
φ(r/0.5)

)
, (3.4.3)

where (r, θ) are the polar coordinates at the origin and the cut-off function is given

by

φ(r) =





1 r ≤ 0.25

−16(r − 0.75)3

×
[
5 + 15(r − 0.75) + 12(r − 0.75)2

]
0.25 ≤ r ≤ 0.75

0 r ≥ 0.75

.

The meshes are graded around the re-entrant corner (0,0) using the refinement

procedure described in Section 2.3 with the grading parameter 1/3. The first three

levels of graded meshes are depicted in Figure 3.2. The results are tabulated in

Table 3.3 and they agree with the error estimates for our scheme.

FIGURE 3.2. Graded meshes on the L-shaped domain

In the last set of experiment, we demonstrate the convergence behavior of the

scheme (3.3.1) on the L-shaped domain with the graded meshes used in the third

experiment. The right-hand side function is chosen to be

f =




1

1


 . (3.4.4)
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TABLE 3.3. Convergence of the scheme (3.2.14) on the L-shaped domain with graded
meshes and the exact solution given by (3.4.3)

h
‖u − uh‖L2(Ω)

‖u‖L2(Ω)
order

‖u − uh‖h

‖u‖h
order

α = 1

1/4 7.57E+01 − 1.01E+01 −
1/8 2.82E+01 1.43 6.07E−00 0.74
1/16 3.23E−00 3.13 2.21E−00 1.46
1/32 6.84E−01 2.23 1.10E−00 1.00
1/64 1.67E−01 2.04 5.54E−01 1.00

α = 0

1/4 9.93E+01 − 1.32E+01 −
1/8 3.24E+01 1.62 6.70E−00 0.97
1/16 3.29E−00 3.30 2.24E−00 1.58
1/32 6.91E−01 2.25 1.11E−00 1.01
1/64 1.71E−01 2.01 5.54E−01 1.00

α = −1

1/4 1.46E+02 − 1.90E+01 −
1/8 3.85E+01 1.92 7.58E−00 1.32
1/16 3.37E−00 3.51 2.25E−00 1.75
1/32 6.99E−01 2.27 1.11E−00 1.03
1/64 1.77E−01 1.98 5.54E−01 1.00

The results are tabulated in Table 3.4 and they demonstrate that the scheme is

second order accurate in the L2 norm and first order accurate in the energy norm.

TABLE 3.4. Convergence of the scheme (3.3.1) on the L-shaped domain with graded
meshes and right-hand side function given by (3.4.4)

h
‖u − uh‖L2(Ω)

‖u‖L2(Ω)
order

|||u − uh|||h
|||u|||h

order

α = 1

1/16 4.77E−01 1.67 1.02E+00 1.13
1/32 1.28E−01 1.89 4.65E−01 1.13
1/64 3.23E−02 1.99 2.20E−01 1.08
1/128 8.03E−03 2.01 1.07E−01 1.04

α = 0

1/16 6.21E−01 2.11 1.14E+00 1.37
1/32 1.52E−01 2.03 5.01E−01 1.19
1/64 3.74E−02 2.02 2.34E−01 1.10
1/128 9.22E−03 2.02 1.13E−01 1.05

α = −1

1/16 9.07E−01 3.45 1.46E+00 1.48
1/32 1.90E−01 2.26 5.47E−01 1.37
1/64 4.49E−02 2.08 2.55E−01 1.15
1/128 1.10E−02 2.04 1.22E−01 1.06
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Chapter 4
Multigrid Methods for Symmetric
Discontinuous Galerkin Methods on
Graded Meshes
In this chapter we study the multigrid methods for a class of symmetric discon-

tinuous Galerkin methods presented in Section 2.4. We establish the uniform con-

vergence of W -cycle, V -cycle and F -cycle multigrid algorithms for the resulting

discrete problems on graded meshes. Results of numerical experiments will be re-

ported in Section 4.3.

4.1 Convergence of the W -Cycle Algorithm

In this section we study the convergence of the W -cycle algorithm for the discrete

problem Akuk = fk resulting from DG methods (2.5.1) on graded meshes, where

Ak : Vk −→ V ′
k and fk ∈ V ′

k are defined by (2.5.7) and (2.5.8). Recall that the error

propagation operator Ek : Vk −→ Vk for the k-th level W -cycle algorithm has the

following recursive relation:

Ek = Rm2
k (Idk − Ikk−1P

k−1
k + Ikk−1E

2
k−1P

k−1
k )Rm1

k ,

where Idk is the identity operator on Vk, Rk : Vk −→ Vk, and P k−1
k : Vk−1 −→ Vk

are defined by (2.5.19) and (2.5.21).

We will follow the approach of [17, 99] in the analysis below. The results are also

presented in [36, 34].

The keys to the convergence analysis of the W -cycle algorithm are the estimates

for the operators Rm
k (smoothing property) and Idk − Ikk−1P

k−1
k (approximation

property) in terms of mesh-dependent norms.

For j = 0, 1, 2 and k ≥ 0, let the mesh-dependent norms |||v|||j,k be defined by

|||v|||j,k =
√

〈Bk(B
−1
k Ak)jv, v〉 ∀ v ∈ Vk, k ≥ 0. (4.1.1)
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In particular, we have

|||v|||20,k = 〈Bkv, v〉 ∀ v ∈ Vk, (4.1.2)

|||v|||21,k = 〈Akv, v〉 = ak(v, v) ∀ v ∈ Vk, (4.1.3)

where the operator Bk : Vk −→ V ′
k is defined by (2.5.9) in terms of canonical

bilinear form 〈·, ·〉 on V ′
k × Vk. Also the Cauchy-Schwarz inequality implies that

|||v|||2,k = max
w∈Vk\{0}

〈Akv, w〉

|||w|||0,k
∀ v ∈ Vk. (4.1.4)

It follows from (2.5.14) and (4.1.4) that

|||v|||2,k ≤ Ch−1
k |||v|||1,k ∀ v ∈ Vk. (4.1.5)

There is an important connection between the mesh-dependent norm ||| · |||0,k and

the norm ‖ · ‖L2,−µ(Ω) defined by (2.4.46). From (2.2.33), (2.3.1), (2.3.2), (2.5.10)

and (4.1.2), we have

|||v|||20,k ≈ ‖v‖2
L2,−µ(Ω) ∀ v ∈ Vk, (4.1.6)

where the positive constants in the equivalence depend only on the shape regularity

of Tk.

The smoothing properties in the following lemma are simple consequences of

(2.5.14), (2.5.19) and (4.1.1). Their proofs are standard [71, 43].

Lemma 4.1. There exists a positive constant C independent of k such that

|||Rkv|||j,k ≤ |||v|||j,k ∀ v ∈ Vk, k ≥ 1, j = 0, 1, 2, (4.1.7)

|||Rm
k v|||j+1,k ≤ Ch−1

k (1 +m)−1/2|||v|||j,k ∀ v ∈ Vk, k ≥ 1, j = 0, 1. (4.1.8)

Note that, for z ∈ Vk−1 ∩H1
0 (Ω), we have

ak−1(P
k−1
k Ikk−1z, v) = ak(I

k
k−1z, I

k
k−1v) = ak−1(z, v) ∀ v ∈ Vk−1,
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which implies

P k−1
k Ikk−1z = z ∀ z ∈ Vk−1 ∩H

1
0 (Ω).

Hence

ak(I
k
k−1z, (Idk − Ikk−1P

k−1
k )v) = ak(I

k
k−1z, v) − ak(P

k−1
k Ikk−1z, P

k−1
k v)

= ak(z, P
k−1
k v) − ak(z, P

k−1
k v) (4.1.9)

= 0 ∀ z ∈ Vk−1 ∩H
1
0 (Ω), v ∈ Vk.

The following lemma gives a preliminary approximation property.

Lemma 4.2. There exists a positive constant C independent of k such that

|||(Idk−I
k
k−1P

k−1
k )v|||0,k ≤ Chk|||(Idk−I

k
k−1P

k−1
k )v|||1,k ∀ v ∈ Vk, k ≥ 1. (4.1.10)

Proof. We will prove (4.1.10) by a duality argument.

Let v ∈ Vk be arbitrary and χ = φ−2
µ (Idk−Ikk−1P

k−1
k )v, where the weight function

φµ is defined by (2.2.33). From (2.2.34) and (2.4.46), it is easy to see that

‖χ‖L2,µ(Ω) = ‖(Idk − Ikk−1P
k−1
k )v‖L2,−µ(Ω). (4.1.11)

Let ξ ∈ H1
0 (Ω) satisfy

∫

Ω

∇ξ · ∇v dx =

∫

Ω

χv dx ∀ v ∈ H1
0 (Ω).

It follows from the consistency of the DG methods that

ak(ξ, v) =

∫

Ω

χv dx ∀ v ∈ Vk. (4.1.12)

Furthermore, by (2.3.7), (2.5.4) (applied to ξ), (2.5.5) and (4.1.11), we have

‖ξ − Ikk−1Πk−1ξ‖k ≤ C‖ξ − Πk−1ξ‖k−1 (4.1.13)

≤ Chk−1‖χ‖L2,µ(Ω) ≤ Chk‖(Idk − Ikk−1P
k−1
k )v‖L2,−µ(Ω).
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Combining (2.4.33), (2.4.46), (2.5.3), (2.5.10), (4.1.2), (4.1.9), (4.1.12) and (4.1.13),

we find

|||(Idk − Ikk−1P
k−1
k )v|||20,k = 〈Bk(Idk − Ikk−1P

k−1
k )v, (Idk − Ikk−1P

k−1
k )v〉

≈ ‖(Idk − Ikk−1P
k−1
k )v‖2

L2,−µ(Ω)

=

∫

Ω

φ−2
µ [(Idk − Ikk−1P

k−1
k )v]2dx

=

∫

Ω

χ(Idk − Ikk−1P
k−1
k )v dx

= ak(ξ, (Idk − Ikk−1P
k−1
k )v) (4.1.14)

= ak(ξ − Ikk−1Πk−1ξ, (Idk − Ikk−1P
k−1
k )v)

≤ C‖ξ − Ikk−1Πk−1ξ‖k‖(Idk − Ikk−1P
k−1
k )v‖k

≈ Chk‖(Idk − Ikk−1P
k−1
k )v‖L2,−µ(Ω)|||(Idk − Ikk−1P

k−1
k )v|||1,k

≈ Chk|||(Idk − Ikk−1P
k−1
k )v|||0,k|||(Idk − Ikk−1P

k−1
k )v|||1,k,

which implies (4.1.10).

The approximation property for the convergence analysis is provided by the next

lemma.

Lemma 4.3. There exists a positive constant C independent of k such that

|||(Idk − Ikk−1P
k−1
k )v|||0,k ≤ Ch2

k|||v|||2,k ∀ v ∈ Vk, k ≥ 1. (4.1.15)

Proof. From (4.1.3) and duality, we have

|||(Idk − Ikk−1P
k−1
k )v|||1,k = sup

w∈Vk\{0}

ak((Idk − Ikk−1P
k−1
k )v, w)

|||w|||1,k
. (4.1.16)

Combining (2.5.21), (4.1.4) and (4.1.10), we obtain

ak((Idk − Ikk−1P
k−1
k )v, w) = ak(v, (Idk − Ikk−1P

k−1
k )w)

≤ |||v|||2,k|||(Idk − Ikk−1P
k−1
k )w|||0,k ≤ Chk|||v|||2,k|||w|||1,k,
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which together with (4.1.16) implies

|||(Idk − Ikk−1P
k−1
k )v|||1,k ≤ Chk|||v|||2,k ∀ v ∈ Vk, k ≥ 1. (4.1.17)

The estimate (4.1.15) follows from (4.1.10) and (4.1.17).

Combining (4.1.8) and (4.1.15), we immediately have the following theorem on

the two-grid algorithm.

Theorem 4.4. Let Ẽk be the error propagation operator for the two-grid algorithm

defined by (2.5.28). There exists a positive constant CTG independent of k such that

|||Ẽkv|||1,k ≤ CTG[(1 +m1)(1 +m2)]
−1/2|||v|||1,k ∀ v ∈ Vk, k ≥ 1. (4.1.18)

Proof.

|||Ẽkv|||1,k = |||Rm2
k (Idk − Ikk−1P

k−1
k )Rm1

k v|||1,k

≤ C(1 +m2)
−1/2h−1

k |||(Idk − Ikk−1P
k−1
k )Rm1

k v|||0,k

≤ C(1 +m2)
−1/2hk|||R

m1

k v|||2,k

≤ C(1 +m2)
−1/2(1 +m1)

−1/2|||v|||1,k.

To go from the two-grid estimate (4.1.18) to an estimate for the W -cycle multi-

grid algorithm, we need the next lemma on the stability of Ikk−1 and P k−1
k , which

directly follows from (2.5.3), (2.5.5), (4.1.3) and duality.

Lemma 4.5. There exists a positive constant CIT independent of k such that

|||Ikk−1v|||1,k ≤ CIT |||v|||1,k−1 ∀ v ∈ Vk−1, (4.1.19)

|||P k−1
k v|||1,k−1 ≤ CIT |||v|||1,k ∀ v ∈ Vk. (4.1.20)
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Theorem 4.6. Given any C∗ > CTG, there exists a positive integer m∗ indepen-

dent of k such that the output MGW (k, g, z0, m1, m2) of the W -cycle algorithm

(Algorithm 2.32) applied to (2.5.12) satisfies the estimate

|||z −MGW (k, g, z0, m1, m2)|||1,k ≤
C∗

[(1 +m1)(1 +m2)]1/2
|||z − z0|||1,k, (4.1.21)

provided m1 +m2 ≥ m∗.

Proof. In view of Lemma 2.33, it suffices to show that

|||Ekv|||1,k ≤
C∗

[(1 +m1)(1 +m2)]1/2
|||v|||1,k ∀ v ∈ Vk, k ≥ 0, (4.1.22)

where Ek is the k-th level error operator for theW -cycle algorithm (Algorithm 2.32)

defined by (2.5.23).

We will prove (4.1.22) by mathematical induction. The case k = 0 holds for any

m∗ since A0z = g is solved exactly.

Assume k ≥ 1 and (4.1.22) is valid for k− 1. Let v ∈ Vk be arbitrary. In view of

(2.5.23) and (2.5.28), we have

Ekv = Rm2
k (Idk − Ikk−1P

k−1
k )Rm1

k v +Rm2
k (Ikk−1E

2
k−1P

k−1
k )Rm1

k v (4.1.23)

= Ẽkv +Rm2
k (Ikk−1E

2
k−1P

k−1
k )Rm1

k v.

For the first term on the right-hand side of (4.1.23), we obtain from (4.1.18) that

|||Ẽkv|||1,k ≤ CTG[(1 +m1)(1 +m2)]
−1/2|||v|||1,k.

From (4.1.7), (4.1.19), (4.1.20) and the induction hypothesis, we obtain

|||Rm2
k Ikk−1E

2
k−1P

k−1
k Rm1

k v|||1,k ≤ C2
ITC

2
∗ [(1 +m1)(1 +m2)]

−1|||v|||1,k.

It follows that

|||Ekv|||1,k ≤ (CTG[(1 +m1)(1 +m2)]
−1/2 + C2

ITC
2
∗ [(1 +m1)(1 +m2)]

−1)|||v|||1,k.

(4.1.24)
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If we choose m1 +m2 ≥ m∗, where

m−1/2
∗ ≤

C∗ − CTG
C2
ITC

2
∗

,

then

CTG[(1 +m1)(1 +m2)]
−1/2 + C2

ITC
2
∗ [(1 +m1)(1 +m2)]

−1

≤ (CTG + C2
ITC

2
∗m

−1/2
∗ )[(1 +m1)(1 +m2)]

−1/2

≤ C∗[(1 +m1)(1 +m2)]
−1/2,

which together with (4.1.24) implies (4.1.22). Therefore (4.1.21) is also valid for

k ≥ 0.

Theorem 4.6 shows that the W -cycle algorithm (Algorithm 2.32) is a contraction

with contraction number independent of grid levels provided the number of smooth-

ing steps is sufficiently large. Furthermore, the contraction number decreases at

the rate of 1/m for the W -cycle algorithm with m pre-smoothing and m post-

smoothing steps. Numerical results will be presented in Section 4.3 to illustrate

the theoretical results.

4.2 Convergence of the V -Cycle and F -Cycle

Algorithms

In this section we study the convergence of the V -cycle and F -cycle algorithms for

the discrete problem

Akuk = fk,

where Ak : Vk −→ V ′
k and fk ∈ V ′

k are defined by (2.5.7) and (2.5.8). The analysis

is based on the additive multigrid theory developed in [30, 31].

By iterating the recursive relation (2.5.34) for the V -cycle error propagation

operator Ek with m pre-smoothing and m post-smoothing steps and taking into
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account that E0 = 0, we have

Ek = Rm
k (Idk − Ikk−1P

k−1
k + Ikk−1Ek−1P

k−1
k )Rm

k

= Rm
k [(Idk − Ikk−1P

k−1
k )Rm

k

+Rm
k I

k
k−1R

m
k−1[(Idk−1 − Ik−1

k−2P
k−2
k−1 ) (4.2.1)

+ Ik−1
k−2Ek−2P

k−2
k−1 ]Rm

k−1P
k−1
k Rm

k

=
k∑

j=2

Tk,jR
m
j (Idj − Ijj−1P

j−1
j )Rm

j Tj,k,

where Tk,k = Idk, and for j < k, Tj,k : Vk −→ Vj and Tk,j : Vj −→ Vk are the

multilevel operators defined by

Tj,k =P j
j+1R

m
j+1 · · ·P

k−1
k Rm

k ,

Tk,j =Rm
k I

k
k−1 · · ·R

m
j+1I

j+1
j .

Note that (2.5.20) and (2.5.21) imply that

aj(Tj,kv, w) = ak(v, Tk,j, w) ∀ v ∈ Vk, w ∈ Vj.

The additive expression (4.2.1) for Ek is the starting point of the additive theory.

The convergence theory based on (4.2.1) has been applied successfully to classical

nonconforming finite elements on quasi-uniform meshes [31, 100, 47, 45]. In this

section we extend the theory to DG methods on graded meshes.

The convergence of the V -cycle and F -cycle algorithms (Algorithm 2.35 and

Algorithm 2.36) is obtained within the framework of [31]. Therefore, we must verify

the assumptions in [31, Section 3]. Moreover, by using weighted Sobolev spaces and

graded meshes, we can treat the convergence of the V -cycle and F -cycle algorithms

with full elliptic regularity. In other words, we can apply the additive theory in

[31] for the case α = 1 (α is the index of elliptic regularity), which means that we
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need to establish the following estimates besides the estimates in Section 4.1:

|||Ikk−1v|||
2
1,k ≤(1 + θ2)|||v|||21,k−1 + Cθ−2h2

k|||v|||
2
2,k−1 ∀ v ∈ Vk−1, θ ∈ (0, 1), (4.2.2)

|||Ikk−1v|||
2
0,k ≤(1 + θ2)|||v|||20,k−1 + Cθ−2h2

k|||v|||
2
1,k−1 ∀ v ∈ Vk−1, θ ∈ (0, 1), (4.2.3)

|||P k−1
k v|||20,k−1 ≤ (1 + θ2)|||v|||20,k + Cθ−2h2

k|||v|||
2
1,k ∀ v ∈ Vk , θ ∈ (0, 1) , (4.2.4)

and

|||
(
Idk−1 − P k−1

k Ikk−1

)
v|||0,k−1 ≤ Chk|||v|||1,k−1 ∀ v ∈ Vk−1. (4.2.5)

For future reference we state here two simple inequalities:

ab ≤(θa)2 + b2/(4θ2) ∀ a, b ∈ R, θ ∈ (0, 1), (4.2.6)

(a + b)2 ≤(1 + θ2)a2 + (1 + θ−2)b2 ∀ a, b ∈ R, θ ∈ (0, 1). (4.2.7)

The following result is also useful for the analysis.

Lemma 4.7. Given any w ∈ Vk, there exists φ ∈ L2,µ(Ω) such that

ak(w, v) =

∫

Ω

φv dx ∀ v ∈ Vk, (4.2.8)

and

‖φ‖L2,µ(Ω) ≤ C|||w|||2,k. (4.2.9)

Proof. In view of (4.1.4) and (4.1.6), the linear functional L(v) = ak(w, v) defined

on Vk satisfies the estimate

|L(v)| ≤ |||w|||2,k|||v|||0,k ≤ C|||w|||2,k‖v‖L2,−µ(Ω) ∀ v ∈ Vk.

By the Hahn-Banach Theorem [98], we can extend L to a bounded linear functional

on L2,−µ(Ω) with the same bound, i.e., there exists φ ∈ L2,µ(Ω) that satisfies (4.2.8)

and (4.2.9).

The statements of the proof for the following four lemmas, which verify assump-

tions (4.2.2)–(4.2.5), are carried out in [34]. We state them in below.
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Lemma 4.8. The estimate (4.2.2) is valid.

Proof. It suffices to show that

|||ζk−1|||
2
1,k ≤ |||ζk−1|||

2
1,k−1 + Ch2

k|||ζk−1|||
2
2,k−1 ∀ ζk−1 ∈ Vk−1, k ≥ 1,

where C is a positive constant.

Let ζk−1 ∈ Vk−1 be arbitrary. By Lemma 4.7, there exists φ ∈ L2,µ(Ω) such that

ak−1(ζk−1, v) =

∫

Ω

φv dx ∀ v ∈ Vk−1, (4.2.10)

and

‖φ‖L2,µ(Ω) ≤ C|||ζk−1|||2,k−1. (4.2.11)

Let ζ ∈ H1
0 (Ω) ∩H2

µ(Ω) satisfy

∫

Ω

∇ζ · ∇ v dx =

∫

Ω

φv dx ∀ v ∈ H1
0 (Ω). (4.2.12)

Therefore ζk−1 is the approximation of ζ by DG methods (2.5.1) on the (k −

1)-st level. From (2.4.28), (2.4.35), (2.4.36), (2.5.2), (2.5.3), (4.1.3), (4.2.12) and

Theorem 2.28, we have

|||ζk−1|||
2
1,k ≤ |||ζk−1|||

2
1,k−1 + C

∑

e∈Ek−1

1

|e|
‖[[ζk−1]]‖

2
L2(e)

= |||ζk−1|||
2
1,k−1 + C

∑

e∈Ek−1

1

|e|
‖[[ζ − ζk−1]]‖

2
L2(e)

≤ |||ζk−1|||
2
1,k−1 + C‖ζ − ζk−1‖

2
k

≤ |||ζk−1|||
2
1,k−1 + Ch2

k‖φ‖
2
L2,µ(Ω)

≤ |||ζk−1|||
2
1,k−1 + Ch2

k|||ζk−1|||
2
2,k−1.

Lemma 4.9. The estimate (4.2.3) is valid.
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Proof. Let v ∈ Vk−1 be arbitrary. From (2.3.7), (2.5.9) and (4.1.2), we have

|||v|||20,k = h2
k

∑

T ′∈Tk

∑

m′∈MT ′

v2
T ′(m′)

= h2
k

∑

T∈Tk−1

∑

T ′⊂T
T ′∈Tk

∑

m′∈MT ′

v2
T ′(m′)

= h2
k−1

∑

T∈Tk−1

∑

m∈MT

v2
T
(m) (4.2.13)

+ h2
k

∑

T∈Tk−1

[ ∑

T ′⊂T
T ′∈Tk

∑

m′∈MT ′

v2
T ′(m′) − 4

∑

m∈MT

v2
T
(m)

]

= |||v|||20,k−1 + h2
k

∑

T∈Tk−1

[ ∑

T ′⊂T
T ′∈Tk

∑

m′∈MT ′

v2
T ′(m′) − 4

∑

m∈MT

v2
T
(m)

]
.

Let T ∈ Tk−1, m ∈ MT , T ′ ∈ Tk, T ′ ⊂ T , and m′ ∈ MT ′ . It follows from the

mean value theorem that

∣∣v2
T (m) − v2

T ′(m′)
∣∣ =

∣∣vT (m) − vT ′(m′)
∣∣∣∣vT (m) + vT ′(m′)

∣∣

≤ C‖∇vT‖L2(T )‖vT‖L∞(T ). (4.2.14)

Hence by combining (2.3.7), (2.5.2), (2.5.3), (2.5.9), (4.1.2), (4.1.3), (4.2.13), (4.2.14)

and the Cauchy-Schwarz inequality, we have

∣∣|||v|||20,k−1 − |||v|||20,k
∣∣ ≤h2

k

∣∣∣
∑

T ′⊂T
T ′∈Tk

∑

m′∈MT ′

v2
T ′(m′) − 4

∑

m∈MT

v2
T (m)

∣∣∣

≤Ch2
k‖∇v‖L2(T )

[ ∑

m∈MT

v2
T (m)

]1/2

(4.2.15)

≤Chk
[ ∑

T∈Tk−1

‖∇v‖2
L2(T )

]1/2[
h2
k−1

∑

T∈Tk−1

∑

m∈MT

v2
T
(m)

]1/2

≤Chk‖v‖k−1|||v|||0,k−1

≤Chk|||v|||1,k−1|||v|||0,k−1.

The estimate (4.2.3) then follows from (4.2.6) and (4.2.15).
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Lemma 4.10. The estimate (4.2.4) is valid.

Proof. Let ζk ∈ Vk be arbitrary. By Lemma 4.7, there exists φ ∈ L2,µ(Ω) such that

ak(ζk, v) =

∫

Ω

ψv dx ∀ v ∈ Vk and ‖φ‖L2,µ(Ω) ≤ C|||ζk|||2,k. (4.2.16)

Let ζ ∈ H1
0 (Ω)∩H2

µ(Ω) satisfy (4.2.12) and ζk−1 = P k−1
k ζk. Then (4.2.16) implies

that ζk is the DG approximation of ζ on the k-th level, and (2.5.21) implies that

ak−1(ζk−1, v) = ak(ζk, I
k
k−1v) =

∫

Ω

φv dx ∀ v ∈ Vk−1,

i.e., ζk−1 is the DG approximation of ζ on the (k − 1)-st level.

Let θ ∈ (0, 1) be arbitrary. From (4.1.20), (4.2.6) and (4.2.15), we have

|||ζk−1|||
2
0,k−1 ≤|||ζk−1|||

2
0,k +

θ2

2
|||ζk−1|||

2
0,k−1 + Cθ−2h2

k|||ζk−1|||
2
1,k−1

≤|||ζk−1|||
2
0,k +

θ2

2
|||ζk−1|||

2
0,k−1 + Cθ−2h2

k|||ζk|||
2
1,k,

and hence

|||ζk−1|||
2
0,k−1 ≤

1

1 − (θ2/2)
|||ζk−1|||

2
0,k + Cθ−2h2

k|||ζk|||
2
1,k (4.2.17)

≤ (1 + θ2)|||ζk−1|||
2
0,k + Cθ−2h2

k|||ζk|||
2
1,k.

On the other hand, we have, by (4.1.6), (4.2.6), (4.2.16) and Theorem 2.29,

|||ζk−1|||
2
0,k ≤ (|||ζk|||0,k + |||ζk−1 − ζk|||0,k)

2

≤ (1 + θ2)|||ζk|||
2
0,k + (1 + θ−2)|||ζk−1 − ζk|||

2
0,k

≤ (1 + θ2)|||ζk|||
2
0,k + Cθ−2‖ζk−1 − ζk‖

2
L2,−µ(Ω) (4.2.18)

≤ (1 + θ2)|||ζk|||
2
0,k + Cθ−2

(
‖ζk−1 − ζ‖L2,−µ(Ω) + ‖ζ − ζk‖L2,−µ(Ω)

)2

≤ (1 + θ2)|||ζk|||
2
0,k + Cθ−2h4

k‖φ‖
2
L2,µ(Ω)

≤ (1 + θ2)|||ζk|||
2
0,k + Cθ−2h4

k|||ζk|||
2
2,k.
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Combining (4.1.5), (4.2.17) and (4.2.18), we find

|||P k−1
k ζk|||

2
0,k−1 ≤ (1 + θ2)2|||ζk|||

2
0,k + Cθ−2h2

k|||ζk|||
2
1,k,

which implies that (4.2.4) holds for ζk because θ ∈ (0, 1) is arbitrary.

Lemma 4.11. The estimate (4.2.5) is valid.

Proof. Let ζk−1 ∈ Vk−1 be arbitrary. By Lemma 4.7, there exists φ ∈ L2,µ(Ω) such

that

ak(ζk−1, v) =

∫

Ω

φv dx ∀ v ∈ Vk and ‖φ‖L2,µ(Ω) ≤ C|||ζk−1|||2,k. (4.2.19)

Let ζ ∈ H1
0 (Ω) ∩ H2

µ(Ω) satisfy (4.2.12). In view of (4.2.19), ζk−1 is the DG

approximation of ζ on the k-th level, and P k−1
k ζk−1 is the DG approximation of ζ

on the (k − 1)-st level as in the proof of Lemma 4.10.

It follows from Theorem 2.29, (4.1.5), (4.1.19) and (4.2.19) that

|||(Idk−1 − P k−1
k Ikk−1)ζk−1|||0,k−1 = |||ζk−1 − P k−1

k ζk−1|||0,k−1

≤ C‖ζk−1 − P k−1
k ζk−1‖L2,−µ(Ω)

≤ C
[
‖ζk−1 − ζ‖L2,−µ(Ω) + ‖ζ − P k−1

k ζk−1‖L2,−µ(Ω)

]

≤ Ch2
k‖φ‖L2,µ(Ω)

≤ Ch2
k|||ζk−1|||2,k

≤ Chk|||ζk−1|||1,k ≤ Chk|||ζk−1|||1,k−1.

We have verified the assumptions (4.2.2)–(4.2.5) for the additive theory. There-

fore we can apply the results in [31] to obtain the following convergence theorems

for the V -cycle and F -cycle algorithms.
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Theorem 4.12. The output MGV (k, g, z0, m,m) of the V -cycle algorithm (Algo-

rithm 2.35) applied to (2.5.12) satisfies the following estimate:

|||z −MGV (k, g, z0, m,m)|||1,k ≤
C

m
|||z − z0|||1,k,

where the positive constant C is independent of the grid level k, provided that the

number of smoothing steps m is greater than a positive integer m∗ that is also

independent of k.

Theorem 4.13. The output MGF (k, g, z0, m,m) of the F -cycle algorithm (Algo-

rithm 2.36) applied to (2.5.12) satisfies the following estimate:

|||z −MGF (k, g, z0, m,m)|||1,k ≤
C

m
|||z − z0|||1,k,

where the positive constant C is independent of the grid level k, provided that the

number of smoothing steps m is greater than a positive integer m∗ that is also

independent of k.

Theorem 4.12 and 4.13 illustrate that both the V -cycle and F -cycle algorithms

are contractions with contraction number independent of grid level, provided the

number of smoothing steps is sufficiently large. Furthermore, the contraction num-

bers decrease at the rate of 1/m for both algorithms with m smoothing steps.

Results of numerical experiments will be reported in the next section.

4.3 Numerical Results

In this section we report the contraction numbers of the W -cycle, F -cycle and

V -cycle algorithms for the DG methods (2.5.1) on the L-shaped domain (−1, 1)2 \

([0, 1]× [−1, 0]) with graded meshes (cf. Figure 2.2). The triangulations T1, . . . , T7

are generated by the refinement procedure described in Section 2.3, where the

grading parameter at the reentrant corner is taken to be 2/3.
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We use η = 1 and λ = 1/35 for the method of Brezzi et al. and tabulate the

contraction numbers in Tables 4.3–4.3. We find that the W -cycle (resp. F -cycle

and V -cycle) algorithm is a contraction for m ≥ 2 (resp. m ≥ 3 and m ≥ 5).

TABLE 4.1. Contraction numbers of the W -cycle algorithm on the L-shaped domain for
the method of Brezzi et al. (η = 1)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m = 2 0.69 0.75 0.76 0.79 0.78 0.79 0.79

m = 3 0.53 0.65 0.72 0.72 0.74 0.74 0.75

m = 4 0.44 0.60 0.66 0.68 0.69 0.71 0.71

m = 5 0.39 0.55 0.61 0.64 0.65 0.66 0.67

m = 6 0.33 0.50 0.56 0.61 0.62 0.63 0.64

m = 7 0.30 0.47 0.54 0.57 0.59 0.60 0.60

m = 8 0.26 0.34 0.51 0.55 0.57 0.57 0.58

m = 9 0.22 0.41 0.48 0.52 0.53 0.54 0.54

TABLE 4.2. Contraction numbers of the F -cycle algorithm on the L-shaped domain for
the method of Brezzi et al. (η = 1)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m = 3 0.53 0.65 0.72 0.72 0.74 0.74 0.75

m = 4 0.44 0.60 0.66 0.68 0.70 0.71 0.71

m = 5 0.39 0.55 0.61 0.64 0.65 0.66 0.67

m = 6 0.33 0.50 0.56 0.61 0.62 0.63 0.64

m = 7 0.30 0.47 0.54 0.57 0.60 0.60 0.60

m = 8 0.26 0.44 0.51 0.55 0.57 0.58 0.58

m = 9 0.22 0.41 0.48 0.52 0.53 0.54 0.54

m = 10 0.20 0.39 0.44 0.47 0.52 0.52 0.53

For the LDG method, we use η = 1 and λ = 1/20. The results are reported in

Tables 4.3–4.3. In this case the W -cycle (resp. F -cycle and V -cycle) algorithm is

a contraction for m = 3 (resp. m ≥ 4 and m ≥ 5).

We take η = 4 and λ = 1/80 for the method of Bassi et al. The contraction

numbers are tabulated in Tables 4.3–4.3. We found that the W -cycle (resp. F -

cycle and V -cycle) algorithm is a contraction for m ≥ 1 (resp. m ≥ 3 and m ≥ 4).
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TABLE 4.3. Contraction numbers of the V -cycle algorithm on the L-shaped domain for
the method of Brezzi et al. (η = 1)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m = 5 0.39 0.58 0.65 0.69 0.69 0.73 0.90

m = 6 0.33 0.54 0.60 0.62 0.68 0.68 0.70

m = 7 0.30 0.50 0.56 0.52 0.62 0.65 0.66

m = 8 0.26 0.47 0.53 0.57 0.61 0.63 0.63

m = 9 0.22 0.44 0.48 0.56 0.57 0.60 0.61

m = 10 0.20 0.42 0.46 0.53 0.57 0.58 0.59

m = 11 0.19 0.40 0.44 0.49 0.54 0.57 0.57

m = 12 0.17 0.38 0.43 0.46 0.50 0.54 0.55

TABLE 4.4. Contraction numbers of the W -cycle algorithm on the L-shaped domain for
the LDG method (η = 1)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m = 3 0.99 0.88 0.65 0.63 0.63 0.63 0.64

m = 4 0.65 0.43 0.51 0.55 0.57 0.56 0.57

m = 5 0.43 0.38 0.45 0.49 0.50 0.51 0.52

m = 6 0.28 0.33 0.41 0.44 0.46 0.47 0.47

m = 7 0.18 0.29 0.37 0.39 0.42 0.43 0.44

m = 8 0.13 0.26 0.33 0.37 0.39 0.39 0.40

m = 9 0.11 0.24 0.30 0.32 0.36 0.37 0.38

m = 10 0.09 0.22 0.29 0.32 0.35 0.36 0.36

For the SIPG method, we use η = 10 and λ = 1/40. The contraction numbers are

tabulated in Tables 4.10–4.3. The W -cycle (resp. F -cycle and V -cycle) algorithm

is a contraction for m ≥ 2 (resp. m ≥ 4 and m ≥ 6).

Remark 4.14. For all four DG methods, the W -cycle algorithm and the F -cycle

algorithm have similar contraction numbers when they are both contractions.

Finally, the asymptotic behaviors of the contraction numbers of the W -cycle

and V -cycle algorithms for all four DG methods with respect to the number of

smoothing steps for k = 6 are depicted in Figure 4.1–4.2. The log-log graphs

confirm that the contraction number decreases at the rate of m−1, as predicted by

Theorems 4.6 and 4.12.
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TABLE 4.5. Contraction numbers of the F -cycle algorithm on the L-shaped domain for
the LDG method (η = 1)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m = 4 0.65 0.43 0.51 0.54 0.57 0.57 0.58

m = 5 0.43 0.38 0.45 0.49 0.50 0.52 0.52

m = 6 0.28 0.33 0.41 0.44 0.45 0.47 0.47

m = 7 0.18 0.29 0.37 0.39 0.42 0.43 0.44

m = 8 0.13 0.26 0.33 0.37 0.39 0.39 0.40

m = 9 0.11 0.24 0.30 0.32 0.36 0.37 0.38

m = 10 0.09 0.22 0.29 0.32 0.35 0.36 0.36

m = 11 0.07 0.20 0.22 0.31 0.33 0.34 0.34

TABLE 4.6. Contraction numbers of the V -cycle algorithm on the L-shaped domain for
the LDG method (η = 1)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m = 5 0.43 0.45 0.53 0.64 0.72 0.77 0.81

m = 6 0.28 0.35 0.36 0.42 0.48 0.48 0.50

m = 7 0.18 0.31 0.38 0.41 0.48 0.48 0.49

m = 8 0.13 0.28 0.34 0.39 0.41 0.45 0.46

m = 9 0.11 0.25 0.30 0.35 0.39 0.43 0.43

m = 10 0.09 0.23 0.28 0.35 0.38 0.40 0.41

m = 11 0.07 0.21 0.28 0.33 0.37 0.38 0.39

m = 12 0.06 0.20 0.25 0.32 0.36 0.36 0.38
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FIGURE 4.1. Asymptotic behaviors of the contraction numbers with respect to the
number of smoothing steps for the method of Brezzi et al. (left, η = 1) and for the LDG
method (right, η = 1)
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TABLE 4.7. Contraction numbers of the W -cycle algorithm on the L-shaped domain for
the method of Bassi et al. (η = 4)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m = 1 0.81 0.89 0.91 0.91 0.91 0.91 0.91

m = 2 0.79 0.85 0.86 0.87 0.87 0.87 0.87

m = 3 0.72 0.80 0.83 0.83 0.84 0.83 0.83

m = 4 0.65 0.75 0.81 0.80 0.81 0.80 0.81

m = 5 0.61 0.71 0.76 0.78 0.78 0.79 0.79

m = 6 0.55 0.70 0.74 0.78 0.77 0.77 0.78

m = 7 0.51 0.67 0.72 0.75 0.76 0.77 0.77

m = 8 0.49 0.66 0.71 0.72 0.74 0.75 0.75

TABLE 4.8. Contraction numbers of the F -cycle algorithm on the L-shaped domain for
the method of Bassi et al. (η = 4)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m = 3 0.72 0.82 0.83 0.83 0.83 0.83 0.84

m = 4 0.65 0.78 0.81 0.80 0.81 0.80 0.81

m = 5 0.61 0.76 0.76 0.78 0.78 0.79 0.79

m = 6 0.55 0.71 0.74 0.78 0.77 0.77 0.78

m = 7 0.51 0.69 0.72 0.75 0.76 0.77 0.77

m = 8 0.49 0.68 0.71 0.72 0.74 0.75 0.75

m = 9 0.45 0.65 0.68 0.71 0.72 0.74 0.74

m = 10 0.41 0.63 0.68 0.68 0.71 0.72 0.72
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FIGURE 4.2. Asymptotic behaviors of the contraction numbers with respect to the
number of smoothing steps for the method of Bassi et al. (left, η = 4) and for the SIP
method (right, η = 10)
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TABLE 4.9. Contraction numbers of the V -cycle algorithm on the L-shaped domain for
the method of Bassi et al. (η = 4)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m = 4 0.65 0.76 0.83 0.80 0.82 0.93 0.99

m = 5 0.61 0.73 0.77 0.80 0.81 0.81 0.82

m = 6 0.55 0.73 0.74 0.78 0.80 0.81 0.80

m = 7 0.51 0.70 0.73 0.76 0.79 0.80 0.80

m = 8 0.49 0.69 0.71 0.76 0.78 0.78 0.78

m = 9 0.45 0.67 0.69 0.73 0.75 0.77 0.77

m = 10 0.41 0.65 0.69 0.71 0.75 0.75 0.76

m = 11 0.39 0.64 0.67 0.69 0.70 0.73 0.74

TABLE 4.10. Contraction numbers of the W -cycle algorithm on the L-shaped domain
for the SIP method (η = 10)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m = 2 0.82 0.77 0.80 0.79 0.79 0.80 0.79

m = 3 0.61 0.71 0.71 0.73 0.75 0.75 0.76

m = 4 0.47 0.61 0.68 0.72 0.72 0.73 0.73

m = 5 0.44 0.59 0.66 0.68 0.70 0.70 0.71

m = 6 0.39 0.54 0.61 0.66 0.67 0.69 0.69

m = 7 0.35 0.52 0.59 0.65 0.66 0.67 0.67

m = 8 0.31 0.48 0.59 0.64 0.65 0.66 0.66

m = 9 0.28 0.47 0.58 0.62 0.64 0.65 0.65

TABLE 4.11. Contraction numbers of the F -cycle algorithm on the L-shaped domain
for the SIP method (η = 10)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m = 4 0.47 0.61 0.68 0.72 0.72 0.73 0.73

m = 5 0.44 0.59 0.66 0.68 0.70 0.70 0.71

m = 6 0.39 0.54 0.61 0.66 0.67 0.69 0.69

m = 7 0.35 0.52 0.59 0.65 0.66 0.68 0.68

m = 8 0.31 0.48 0.59 0.64 0.65 0.66 0.66

m = 9 0.28 0.47 0.58 0.62 0.64 0.65 0.65

m = 10 0.25 0.45 0.56 0.62 0.63 0.64 0.64

m = 11 0.24 0.43 0.53 0.58 0.60 0.62 0.63
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TABLE 4.12. Contraction numbers of the V -cycle algorithm on the L-shaped domain
for the SIP method (η = 10)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m = 6 0.39 0.56 0.60 0.69 0.71 0.73 0.77

m = 7 0.35 0.53 0.57 0.69 0.71 0.72 0.73

m = 8 0.31 0.49 0.62 0.67 0.69 0.70 0.71

m = 9 0.28 0.47 0.60 0.64 0.67 0.69 0.70

m = 10 0.25 0.45 0.56 0.64 0.67 0.68 0.69

m = 11 0.24 0.44 0.55 0.64 0.66 0.67 0.68

m = 12 0.22 0.42 0.54 0.61 0.64 0.67 0.67

m = 13 0.20 0.41 0.51 0.60 0.64 0.66 0.66
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Chapter 5
Hodge Decomposition and Maxwell’s
Equations

In this chapter we propose a new numerical approach for the two-dimensional

Maxwell’s equation (1.2.8) that is based on the Hodge decomposition. The resulting

discrete problems will be solved by multigrid methods in Chapter 6.

5.1 Hodge Decomposition

Let Ω ⊂ R2 be a bounded polygonal domain and f ∈ [L2(Ω)]2. Consider the

problem of finding u ∈ H0(curl; Ω) ∩H(div0; Ω) such that

(∇× u,∇× v) + α(u, v) = (f , v) ∀ v ∈ H0(curl; Ω) ∩H(div0; Ω). (5.1.1)

We assume that (5.1.1) is uniquely solvable, i.e., −α is not a Maxwell eigenvalue.

In particular, we assume α 6= 0 when Ω is not simply connected.

Let ξ = ∇× u ∈ H1(Ω). Then ξ satisfies the equation (cf. (2.2.16))

∇× ξ + αu = Qf , (5.1.2)

where Q : [L2(Ω)]2 −→ H(div0; Ω) is the orthogonal projection. Note that, for any

ψ ∈ H1(Ω), we have (cf. [68, Theorem 3.1]) ∇× ψ ∈ H(div0; Ω), where

∇× ψ =




∂ψ
∂x2

− ∂ψ
∂x1


 .

Hence ξ is determined by

(∇× ξ,∇× ψ) + α(ξ, ψ) =(∇× ξ,∇× ψ) + α(u,∇× ψ) (5.1.3)

=(Qf ,∇× ψ) = (f ,∇× ψ) ∀ψ ∈ H1(Ω)
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when α 6= 0, and by (5.1.3) together with the constraint

(ξ, 1) =

∫

Ω

ξ dx =

∫

Ω

∇× u dx =

∫

∂Ω

n× u ds = 0 (5.1.4)

when Ω is simply connected and α = 0. The problem (5.1.3) is uniquely solvable

(cf. [33, Lemma 3.2]).

In the derivation of (5.1.3) we used the following fact (cf. [68, Theorems 2.11

and 2.12]):

v ∈ H0(curl; Ω), if and only if (∇× v, ψ) = (v,∇× ψ) ∀ψ ∈ H1(Ω). (5.1.5)

For any u ∈ H0(curl; Ω) ∩H(div0; Ω), there is a unique decomposition:

u = ∇× φ+
m∑

j=1

cj∇ϕj, (5.1.6)

where φ ∈ H1(Ω) satisfies

∂φ

∂n
= 0 on ∂Ω, (5.1.7)

and the constraint

(φ, 1) =

∫

Ω

φ dx = 0. (5.1.8)

The non-negative integer m is the Betti number for Ω (m = 0 if Ω is simply

connected), and the functions ϕ1, . . . , ϕm are defined as follows.

Suppose ∂Ω has m+ 1 components. We denote the outer boundary of Ω by Γ0,

and the m components of the inner boundary by Γ1, . . . ,Γm. Then the functions

ϕj are determined by

(∇ϕj,∇v) = 0 ∀ v ∈ H1
0 (Ω), (5.1.9a)

ϕj
∣∣
Γ0

= 0, (5.1.9b)

ϕj
∣∣
Γi

= δji =





1 j = i

0 j 6= i
for 1 ≤ i ≤ m. (5.1.9c)
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We refer to (5.1.6) as the Hodge decomposition of u ∈ H0(curl; Ω) ∩ H(div0; Ω).

Detailed justifications of (5.1.6) can be found in [33, Section 2].

The following lemma is crucial for the derivation of the new numerical approach.

The proof is identical with the proof of Lemma 2.4 in [33].

Lemma 5.1. Let ψ ∈ HΩ, which is the space of harmonic functions spanned by

the functions ϕ1, . . . , ϕm defined by (5.1.9). Then we have

(∇× η,∇ψ) = 0 ∀ η ∈ H1(Ω). (5.1.10)

Note that (5.1.5) and (5.1.10) imply ∇HΩ ⊂ H0(curl; Ω) ∩ H(div0; Ω). We can

use (5.1.5), (5.1.6) and Lemma 5.1 to show that φ in (5.1.6) satisfies

(∇× φ,∇× ψ) =
(
∇× φ+

m∑

j=1

cj∇ϕj,∇× ψ
)

=(u,∇× ψ) = (∇× u, ψ) = (ξ, ψ) ∀ ψ ∈ H1(Ω). (5.1.11)

Note that α 6= 0 when m ≥ 1 since 0 is a Maxwell eigenvalue for domains that

are not simply connected. In this case we can take v = ∇ϕi in (5.1.1) and arrive

at the equation

α
(
∇× φ+

m∑

j=1

cj∇ϕj,∇ϕi
)

= (f ,∇ϕi),

which together with Lemma 5.1 implies

m∑

j=1

(∇ϕj,∇ϕi)cj =
1

α
(f ,∇ϕi) for 1 ≤ i ≤ m. (5.1.12)

Remark 5.2. The bilinear form (ϕ, %) → (∇ϕ,∇%) is symmetric positive-definite

on HΩ, because (∇ϕ,∇ϕ) = 0 implies ϕ = 0 since ϕ vanishes on the outer boundary

Γ0 of Ω. Hence the system (5.1.12) is symmetric positive-definite.

We can therefore solve (5.1.1) by the following procedure.
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(1) Compute a numerical approximation ξ̃ of ξ by solving (5.1.3) when α 6= 0

and by solving (5.1.3) with constraint (5.1.4) when Ω is simply connected

and α = 0.

(2) Compute a numerical approximation φ̃ of φ by solving (5.1.11) under the

constraint (5.1.8), where ξ is replaced by ξ̃.

(3) Compute numerical approximations ϕ̃1, . . . , ϕ̃m of ϕ1, . . . , ϕm by solving (5.1.9).

(4) Compute numerical approximations c̃1, . . . , c̃m of c1, . . . , cm by solving (5.1.12),

where ϕ1, . . . , ϕm are replaced by ϕ̃1, . . . , ϕ̃m

(5) The numerical approximation ũ of u is given by

ũ = ∇× φ̃+
m∑

j=1

c̃j∇ϕ̃j.

Remark 5.3. The equations (5.1.3) and (5.1.11) can be rewritten as

(∇ξ,∇ψ) + α(ξ, ψ) = (f ,∇× ψ) ∀ψ ∈ H1(Ω),

(∇φ,∇ψ) = (ξ, ψ) ∀ψ ∈ H1(Ω).

Hence the boundary value problems for ξ and φ are Neumann problems for the

Laplace operator.

Since the boundary value problems in Steps (1)–(3) are standard second order

scalar elliptic boundary value problems, they can be solved by many methods. We

will demonstrate this numerical approach by a P1 finite element method in the

following section.

5.2 A P1 Finite Element Method

Let Th be a simplicial triangulation of Ω with mesh size h and Vh ⊂ H1(Ω) be the

P1 finite element space associated with Th.
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For α 6= 0, the P1 finite element method for (5.1.3) is to find ξh ∈ Vh such that

(∇× ξh,∇× v) + α(ξh, v) = (f ,∇× v) ∀ v ∈ Vh, (5.2.1)

For α > 0, the problem (5.2.1) is symmetric positive-definite and hence well-

posed. It is also well-posed for α < 0 provided −α is not a Maxwell eigenvalue and

h is sufficiently small (cf. Theorem 5.5 below).

Note that (5.2.1) implies

(ξh, 1) = 0. (5.2.2)

When Ω is simply connected and α = 0, ξh ∈ Vh is defined by (5.2.1) together

with the constraint (5.2.2). This is a well-posed problem because of the Poincaré-

Friedrichs inequality (cf. (2.1.5a)).

The P1 finite element method for (5.1.11) is to find φh ∈ Vh such that

(∇× φh,∇× v) = (ξh, v) ∀ v ∈ Vh, (5.2.3a)

(φh, 1) = 0. (5.2.3b)

The problem (5.2.3) is well-posed because of (2.1.5a) and (5.2.2).

In the case where m ≥ 1, the P1 finite element approximation ϕj,h ∈ Vh for the

harmonic function ϕj in the Hodge decomposition (5.1.6) is determined by

(∇ϕj,h,∇v) = 0 ∀ v ∈ Vh ∩H
1
0 (Ω), (5.2.4a)

ϕj,h
∣∣
Γ0

= 0, (5.2.4b)

ϕj,h
∣∣
Γi

= δji =





1 j = i

0 j 6= i
for 1 ≤ i ≤ m. (5.2.4c)

We then compute c1,h, . . . , cm,h by solving the symmetric positive-definite system

m∑

j=1

(∇ϕj,h,∇ϕi,h)cj,h =
1

α
(f ,∇ϕi,h) for 1 ≤ i ≤ m. (5.2.5)
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Note that we assume α 6= 0 when Ω is not simply connected.

Finally we define the piecewise constant approximation uh of u by

uh = ∇× φh +
m∑

j=1

cj,h∇ϕj,h. (5.2.6)

5.3 Error Analysis

In this section we present the error analysis for the P1 finite element method intro-

duced in Section 5.2. A properly graded triangulation Th is used to recover optimal

convergence rates on a general polygonal domain Ω ⊂ R2. The error analysis based

on uniform meshes can be found in [33].

Let ω1, . . . , ωL be the interior angles at the corners c1, . . . , cL of Ω and f ∈

[L2(Ω)]2. The triangulation Th that is used in the rest of this section satisfies the

property (2.3.1), where the grading parameters µ1, . . . , µL are chosen according to

(2.2.32).

We begin by comparing ξh and ξ = ∇ × u under the ‖ · ‖2,−µ norm, which is

defined by (2.4.46).

Theorem 5.4. For α > 0 (general Ω) and α = 0 (simply connected Ω), we have

‖ξ − ξh‖L2,−µ(Ω) ≤ Ch‖f‖L2(Ω). (5.3.1)

Proof. We will prove (5.3.1) by a duality argument.

Let ζ ∈ H1(Ω) be determined by

(∇× ζ,∇× v) + α(ζ, v) = (φ−2
µ (ξ − ξh), v) ∀ v ∈ H1(Ω). (5.3.2)

Note that (5.1.4) and (5.2.2) imply

(ξ − ξh, 1) = 0. (5.3.3)

Let Πh : C(Ω̄) −→ Vh be the nodal interpolation operator for the P1 finite

element. We will first prove that

|ζ − Πhζ|H1(Ω) ≤ Ch‖ξ − ξh‖L2,−µ(Ω). (5.3.4)
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Let Th,` be the collection of triangles in Th that touch a corner c` of Ω. Then we

have

|ζ − Πhζ|
2
H1(Ω) =

∑

T∈T ′′
h

|ζ − Πhζ|
2
H1(T ) +

∑

T∈T ′
h

|ζ − Πhζ|
2
H1(T ), (5.3.5)

where T ′
h =

⋃
ω`>π

Th,` and T ′′
h = Th \ T ′

h.

For the triangles away from the reentrant corners, we derive from (2.2.33),

(2.2.34), (2.2.37), (2.3.1), (2.3.2) and a standard interpolation error estimate [51,

43] that

∑

T∈T ′′
h

|ζ − Πhζ|
2
H1(T ) ≤ C

∑

T∈T ′′
h

h2
T |ζ|

2
H2(T )

≤ C
∑

T∈T ′′
h

h2[Φµ(T )]2
2∑

i,j=1

‖∂2ζ/∂xi∂xj‖
2
L2(T ) (5.3.6)

≤ Ch2

2∑

i,j=1

∑

T∈T ′′
h

‖φ2
µ(∂

2ζ/∂xi∂xj)‖
2
L2(T )

≤ Ch2‖φ−2
µ (ξ − ξh)‖

2
L2,µ(Ω)

≤ Ch2‖ξ − ξh‖
2
L2,−µ(Ω).

For the triangles that touch a reentrant corner, we can apply an interpolation

error estimate for fractional order Sobolev spaces [65] together with (2.2.38) and

(2.3.5) to obtain

∑

T∈T ′
h

|ζ − Πhζ|
2
H1(T ) ≤C

∑

ω`>π

∑

T∈Th,`

h2µ`
T |ζ|2H1+µ`(T )

≤Ch2
∑

ω`>π

|ζ|2H1+µ`(N`,δ) (5.3.7)

≤Ch2‖φ−2
µ (ξ − ξh)‖

2
L2,µ(Ω)

≤Ch2‖ξ − ξh‖
2
L2,−µ(Ω),

where N`,δ = {x ∈ Ω : |x− c`| < δ} is the neighborhood around the corner c` for

1 ≤ ` ≤ L. Without loss of generality we may assume h < δ.
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Hence the estimate (5.3.4) is a direct consequence of (5.3.5), (5.3.6) and (5.3.7).

Similar arguments yield

‖ζ − Πhζ‖L2(Ω) + h|ζ − Πhζ|H1(Ω) ≤ Ch2‖ξ − ξh‖L2,−µ(Ω). (5.3.8)

It follows from (5.3.2), the Galerkin orthogonality (cf. (5.1.3) and (5.2.1))

(
∇× (ξ − ξh),∇× v

)
+ α(ξ − ξh, v) = 0 ∀ v ∈ Vh, (5.3.9)

and (5.3.8) that

‖ξ − ξh‖
2
L2,−µ(Ω) =

(
∇× ζ,∇× (ξ − ξh)

)
+ α(ζ, ξ − ξh)

=
(
∇× (ζ − Πhζ),∇× (ξ − ξh)

)
+ α(ζ − Πhζ, ξ − ξh)

≤ C
(
‖ζ − Πhζ‖L2(Ω) + ‖∇ × (ζ − Πhζ)‖L2(Ω)

)

×
(
‖ξ − ξh‖L2(Ω) + ‖∇ × (ξ − ξh)‖L2(Ω)

)

≤ Ch‖ξ − ξh‖L2,−µ(Ω)

(
‖ξ − ξh‖L2(Ω) + ‖∇ × (ξ − ξh)‖L2(Ω)

)
,

which together with (2.1.5a) and (5.3.3) implies

‖ξ − ξh‖L2,−µ(Ω) ≤ Ch|ξ − ξh|H1(Ω). (5.3.10)

Now we estimate |ξ − ξh|H1(Ω). Let v ∈ Vh satisfy (v, 1) = 0. It follows from

(2.1.5a), (5.3.3) and (5.3.9) that

|ξ − ξh|
2
H1(Ω) + α‖ξ − ξh‖

2
L2(Ω) =

(
∇× (ξ − ξh),∇× (ξ − v)

)
+ α(ξ − ξh, ξ − v)

≤ C|ξ − ξh|H1(Ω)|ξ − v|H1(Ω),

which implies

|ξ − ξh|H1(Ω) ≤ C|ξ − v|H1(Ω) ∀ v ∈ Vh. (5.3.11)

It follows from (5.3.10) and (5.3.11) that

‖ξ − ξh‖L2,−µ(Ω) ≤ Ch inf
v∈Vh

|ξ − v|H1(Ω). (5.3.12)
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Under the assumption that f ∈ [L2(Ω)]2, we have the following stability estimate

from the well-posedness of the continuous problem:

‖ξ‖H1(Ω) ≤ C‖f‖L2(Ω). (5.3.13)

Therefore the estimate (5.3.1) follows from (5.3.12) and (5.3.13)

Theorem 5.5. The discrete problem (5.2.1) is well-posed for α < 0, provided −α

is not a Maxwell eigenvalue and h is sufficiently small. Under these conditions the

estimate (5.3.1) remains valid.

Proof. We follow the approach of Schatz (cf. [89]). Assuming that (5.2.1) has a so-

lution ξh ∈ Vh. we can apply the same duality argument in the proof of Theorem 5.4

to obtain the estimate (5.3.10).

Let v ∈ Vh satisfy (v, 1) = 0. It follows from (2.1.5a), (5.1.4), (5.2.2), (5.3.9) and

(5.3.10) that

|ξ − ξh|
2
H1(Ω) =

(
∇× (ξ − ξh),∇× (ξ − v)

)
+ α(ξ − ξh, ξ − v) − α‖ξ − ξh‖

2
L2(Ω)

≤ C‖∇ × (ξ − ξh)‖L2(Ω)‖∇ × (ξ − v)‖L2(Ω) + |α|‖ξ − ξh‖
2
L2,−µ(Ω)

≤ C
(
|ξ − ξh|H1(Ω)|ξ − v|H1(Ω) + h2|ξ − ξh|

2
H1(Ω)

)
.

Hence, for h sufficiently small,

|ξ − ξh|H1(Ω) ≤ C|ξ − v|H1(Ω) ∀ v ∈ Vh,

which again implies (5.3.11).

In the special case where f = 0, ξ = 0 and v = 0, we deduce from (5.2.2)

and (5.3.11) that the only solution of the homogeneous discrete problem is trivial.

Hence the discrete problem (5.2.1) is well-posed for h sufficient small, and then

the estimate (5.3.1) follows from (5.3.10), (5.3.11) and (5.3.13).
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Corollary 5.6. Under the assumptions in Theorem 5.4 and Theorem 5.5, we have

‖ξ − ξh‖L2(Ω) ≤ Ch‖f‖L2(Ω). (5.3.14)

Remark 5.7. If f is a piecewise smooth vector field, then it follows from (5.3.10)

and Remark 6.3 in [33] that

‖ξ − ξh‖L2(Ω) ≤ Cεh
(3/2)−ε. (5.3.15)

Next we compare φh and φ.

Lemma 5.8. We have

|φ− φh|H1(Ω) ≤ Ch‖f‖L2(Ω). (5.3.16)

Proof. Since (ξ, 1) = 0, there exits a unique φ̃h such that

(∇× φ̃h,∇× v) = (ξ, v) ∀ v ∈ Vh, (5.3.17a)

(φ̃h, 1) = 0. (5.3.17b)

Combine (5.2.3) and (5.3.17), we have

(
∇× (φ̃h − φh),∇× v) = (ξ − ξh, v) ∀ v ∈ Vh, (5.3.18)

and (φ̃h − φh, 1) = 0. Then from (2.1.5a), (5.3.14) and (5.3.18), we arrive at

|φ̃h − φh|
2
H1(Ω) = ‖∇ × (φ̃h − φh)‖

2
L2(Ω)

= (ξ − ξh, φ̃h − φh) (5.3.19)

≤‖ξ − ξh‖L2(Ω)‖φ̃h − φh‖L2(Ω)

≤Ch‖f‖L2(Ω)|φ̃h − φh|H1(Ω),

which implies

|φ̃h − φh|H1(Ω) ≤ Ch‖f‖L2(Ω). (5.3.20)
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By subtracting (5.3.17a) from (5.1.11), we obtain the Galerkin relation

(∇× (φ− φ̃h),∇× v) = 0 ∀ v ∈ Vh, (5.3.21)

which together with the arguments in Theorem 5.4 (for α = 0) implies

|φ− φ̃h|H1(Ω) = inf
v∈Vh

|φ− v|H1(Ω) ≤ Ch‖ξ‖L2(Ω). (5.3.22)

Therefore the estimate (5.3.16) follows from (5.3.13), (5.3.20) and (5.3.22).

We then turn to compare ϕj,h and ϕj.

Lemma 5.9. We have, for 1 ≤ j ≤ m,

|ϕj − ϕj,h|H1(Ω) ≤ Ch. (5.3.23)

Proof. In view of (5.1.9) and (5.2.4), the Galerkin relation

(
∇(ϕj − ϕj,h),∇v

)
= 0 ∀ v ∈ Vh ∩H

1
0 (Ω),

implies that

|ϕj − ϕj,h|H1(Ω) = inf
v∈Vh

v|∂Ω=ϕj |∂Ω

|ϕj − v|H1(Ω) ≤ |ϕj − Πhϕj|H1(Ω). (5.3.24)

Combining (5.3.24), the interpolation error estimate for Dirichlet problem (cf. [33,

Section 5]) and similar arguments in the proof of Theorem 5.4 implies (5.3.23).

Next we compare cj,h and cj. First we observe that (5.3.23) implies

∣∣(f ,∇ϕj) − (f ,∇ϕj,h)
∣∣ ≤ Ch‖f‖L2(Ω) for 1 ≤ j ≤ m. (5.3.25)

Furthermore, since ϕi − ϕi,h ∈ H1
0 (Ω) for 1 ≤ i ≤ m, (5.1.9a) implies

(∇ϕi,∇ϕj) − (∇ϕi,h,∇ϕj,h) = (∇(ϕi − ϕi,h),∇(ϕj,h − ϕj)) for 1 ≤ i, j ≤ m,

and hence, in view of (5.3.23),

∣∣(∇ϕi,∇ϕj) − (∇ϕi,h,∇ϕj,h)
∣∣ ≤ Ch2 for 1 ≤ i, j ≤ m. (5.3.26)
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Lemma 5.10. For h sufficiently small, we have

|cj − cj,h| ≤ Ch‖f‖L2(Ω) for 1 ≤ j ≤ m. (5.3.27)

Proof. We can write (5.1.12) and (5.2.5) as

Ac = b and Ahch = bh,

where c ∈ Rm (resp. ch ∈ Rm) is the vector whose j-th component is cj (resp.

cj,h), A ∈ Rm×m (resp. Ah ∈ Rm×m) is the matrix whose (i, j)-th component is

(∇ϕj,∇ϕi) (resp. (∇ϕj,h,∇ϕi,h)), and b ∈ Rm (resp. bh ∈ Rm) is the vector whose

j-th component is α−1(f ,∇ϕj) (resp. α−1(f ,∇ϕj,h)).

Note that

‖b‖∞ ≤ |α|−1
(

max
1≤j≤m

‖∇ϕj‖L2(Ω)

)
‖f‖L2(Ω) ≤ C‖f‖L2(Ω), (5.3.28)

and the estimates (5.3.25)–(5.3.26) are translated into

‖b − bh‖∞ ≤ Ch‖f‖L2(Ω) and ‖A− Ah‖∞ ≤ Ch2. (5.3.29)

The estimate (5.3.27) follows from the identity

c − ch = A−1b − A−1
h bh = A−1(b − bh) + A−1(Ah − A)A−1

h

(
(bh − b) + b

)

and (5.3.28)–(5.3.29).

Remark 5.11. In view of Remark 6.8 in [33], in the case where f is piecewise

smooth, the estimate (5.3.27) can be improved to

|cj − cj,h| ≤ Cεh
(3/2)−ε for any ε and 1 ≤ j ≤ m. (5.3.30)

Finally, we can compare uh and u by putting all the estimates together.

Theorem 5.12. For h sufficiently small, we have

‖u− uh‖L2(Ω) ≤ Ch‖f‖L2(Ω). (5.3.31)
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Proof. First we observe that the solutions c1, . . . , cm of (5.1.12) satisfy

|cj| ≤ C‖f‖L2(Ω) for 1 ≤ j ≤ m. (5.3.32)

Secondly we have, from (5.1.6) and (5.2.6),

‖u− uh‖L2(Ω) ≤ |φ− φh|H1(Ω) +

m∑

j=1

|cjϕj − cj,hϕj,h|H1(Ω) (5.3.33)

≤ |φ− φh|H1(Ω) +
m∑

j=1

(
|cj − cj,h| |ϕj|H1(Ω) + |cj,h| |ϕj − ϕj,h|H1(Ω)

)

≤ |φ− φh|H1(Ω) +

m∑

j=1

|cj − cj,h|
(
|ϕj|H1(Ω) + |ϕj − ϕj,h|H1(Ω)

)

+
m∑

j=1

|cj| |ϕj − ϕj,h|H1(Ω).

The estimate (5.3.31) follows from (5.3.16), (5.3.23), (5.3.27), (5.3.32) and (5.3.33).
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Chapter 6
Multigrid Methods for Maxwell’s
Equations

In this chapter we first introduce multigrid methods for the nonconforming finite

element methods, which were developed in Chapter 3 for solving the CCGD prob-

lem (1.2.9). We report the numerical results on a square domain with uniform

meshes. Then we study multigrid methods for the P1 finite element method in-

troduced in Chapter 5 for solving the two-dimensional Maxwell’s equation (5.1.1).

Numerical results on graded meshes are reported.

6.1 Multigrid Methods for Nonconforming

Finite Element Methods

Let Tk be a family of uniform triangulations on the unit square, hk be the mesh

size of Tk. Let Vk be the space of weakly continuous P1 vector fields associated

with Tk for k ≥ 0. More precisely, let Ek (resp. E bk and E ik) be the set of the edges

(resp. boundary edges and interior edges) of Tk. Then

Vk = {v ∈ [L2(Ω)]2 : vT = v
∣∣
T
∈ [P1(T )]2 ∀T ∈ Tk,

v is continuous at the midpoint of any e ∈ Ek,

n× v vanishes at the midpoint of any e ∈ E bk}.

Let ak(·, ·) be the analog of ah(·, ·), which is defined by (3.2.15). The k-th level

nonconforming finite element method for (1.2.9) is:

Find uk ∈ Vk such that

ak(uk, v) = (f , v) ∀ v ∈ Vk. (6.1.1)

Note that the edge weight Φµ(e) in the definition of ak(·, ·) equals 1 for all e ∈ Ek

on the square domain.
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We can rewrite (6.1.1) as

Akuk = fk, (6.1.2)

where Ak : Vk −→ V ′
k and f k ∈ V ′

k are defined by

〈Akw, v〉 = ak(w, v) ∀ v,w ∈ Vk, (6.1.3)

〈fk, v〉 = (f , v) ∀ v ∈ Vk. (6.1.4)

Here 〈·, ·〉 is the canonical bilinear form on V ′
k × Vk.

We consider the W -cycle multigrid algorithm (Algorithm 2.32) for the equation

Akz = g, (6.1.5)

where g ∈ V ′
k.

The operator Bk used in the smoothing steps is taken to be h2
kIdk, where Idk is

the identity operator on Vk.

We first define the coarse-to-fine intergrid transfer operator Ikk−1 : Vk−1 −→ Vk

by averaging. More precisely, let me be a midpoint of an interior edge e in Tk, then

we define

(Ikk−1v)(me) =
1

2

(
v1(me) + v2(me)

)
,

where vi = v
∣∣
Ti

for i = 1, 2 and T1, T2 are the triangles in Tk−1 that share e as a

common edge. If e ∈ ∂Ω, then we define

(Ikk−1v)(me) = 0.

Recall that the error propagation operator Ek : Vk −→ Vk for the k-th level

W -cycle algorithm has the following recursive relation:

Ek = Rm2
k (Idk − Ikk−1P

k−1
k + Ikk−1E

2
k−1P

k−1
k )Rm1

k ,
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where Rk : Vk −→ Vk is defined by (2.5.19), and P k−1
k : Vk−1 −→ Vk is the transpose

of Ikk−1 with respect to the variational forms, i.e.,

ak−1(P
k−1
k w, v) = ak(w, I

k
k−1v) ∀ v ∈ Vk−1, w ∈ Vk.

Let the mesh-dependent norms |||v|||1,k be defined by

|||v|||21,k = 〈Akv, v〉 = ak(v, v) ∀ v ∈ Vk, k ≥ 1. (6.1.6)

The contraction numbers of the W -cycle algorithm with respect to the norm

||| · |||1,k are tabulated in Table 6.1. We take γ = 1 and α = 1 in the definition of

ak(·, ·). We use λ = 1/20 as the damping factor in (2.5.13) such that the condition

(2.5.14) is satisfied. We find that the W -cycle algorithm is a contraction for m ≥ 7.

TABLE 6.1. Contraction numbers of the W -cycle algorithm on the square domain (0, 1)2

for the nonconforming finite element method with Ikk−1 being averaging

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m = 7 0.82 0.71 0.94 0.81 0.85 0.85 0.83

m = 8 0.74 0.69 0.86 0.74 0.79 0.79 0.76

m = 9 0.67 0.67 0.78 0.71 0.71 0.71 0.71

m = 10 0.61 0.68 0.73 0.68 0.71 0.70 0.71

m = 11 0.56 0.70 0.71 0.70 0.71 0.70 0.71

m = 12 0.52 0.70 0.69 0.70 0.70 0.70 0.70

m = 13 0.48 0.69 0.68 0.79 0.69 0.69 0.70

Next, we choose the coarse-to-fine intergrid transfer operator Ikk−1 : Vk−1 −→ Vk

as follows. For any v ∈ Vk−1, we define (Ikk−1v)(me) by averaging if e is a part of

an edge in Ek−1. Otherwise, for any T ∈ Tk, the value of (Ikk−1v)(me) is determined

by the following conditions:

∇× (Ikk−1v) =∇× v on T, (6.1.7a)

∇ · (Ikk−1v) =∇ · v on T. (6.1.7b)
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The contraction numbers of the W -cycle algorithm with such choice of Ikk−1 are

tabulated in Table 6.2. We take γ = 1, α = 1 and λ = 1/20. The W -cycle algorithm

is a contraction for m ≥ 6 in this case.

TABLE 6.2. Contraction numbers of the W -cycle algorithm on the square domain (0, 1)2

for the nonconforming finite element method

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m = 6 0.90 0.87 0.97 0.98 0.92 0.93 0.93

m = 7 0.86 0.81 0.91 0.85 0.82 0.82 0.83

m = 8 0.83 0.80 0.81 0.74 0.70 0.70 0.69

m = 9 0.78 0.58 0.58 0.62 0.60 0.60 0.60

m = 10 0.72 0.53 0.55 0.56 0.56 0.56 0.53

m = 11 0.68 0.50 0.51 0.49 0.50 0.50 0.49

m = 12 0.65 0.46 0.47 0.46 0.46 0.45 0.46

Finally, we consider multigrid methods for the discontinuous finite element method,

which was introduced in Section 3.3.

Let Ṽk be the space of discontinuous P1 vector fields, i.e.,

Ṽk = {v ∈ [L2(Ω)]2 : vT = v
∣∣
T
∈ [P1(T )]2 ∀T ∈ Tk}.

Let ãk(·, ·) be the analog of ãh(·, ·), which is defined by (3.3.2). The k-th level

discontinuous finite element method for (1.2.9) is:

Find uk ∈ Ṽk such that

ãk(uk, v) = (f , v) ∀ v ∈ Ṽk. (6.1.8)

We can rewrite (6.1.8) as

Akuk = fk, (6.1.9)

where Ak : Ṽk −→ Ṽ ′
k and f k ∈ Ṽ ′

k are defined by

〈Akw, v〉 = ãk(w, v) ∀ v,w ∈ Ṽk, (6.1.10)

〈fk, v〉 = (f , v) ∀ v ∈ Ṽk. (6.1.11)
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Here 〈·, ·〉 is the canonical bilinear form on Ṽ ′
k × Ṽk.

We consider the W -cycle multigrid algorithm (Algorithm 2.32) for the equation

Akz = g, where g ∈ Ṽ ′
k.

Let the coarse-to-fine intergrid transfer operator Ikk−1 : Ṽk−1 −→ Ṽk satisfy

(6.1.7) such that Ikk−1v is continuous at the midpoints of interior edges. Let the

operator Bk : Ṽk −→ Ṽ ′
k be defined by

〈Bkw, v〉 =h2
k(w, v) +

∑

e∈Ek

1

|e|

∫

e

(Π0
e[[n×w]]) (Π0

e[[n× v]])ds

+
∑

e∈Ei
k

1

|e|

∫

e

(Π0
e[[n ·w]])(Π0

e[[n · v]])ds ∀ v,w ∈ Ṽk,

where |e| denotes the length of the edge e, and Π0
e is the orthogonal projection

from L2(e) to the space of constant functions on e.

Let the mesh-dependent norms |||v|||1,k be defined by

|||v|||21,k = 〈Akv, v〉 = ãk(v, v) ∀ v ∈ Ṽk, k ≥ 1. (6.1.12)

The contraction numbers of the W -cycle algorithm with respect to the norm

||| · |||1,k are tabulated in Table 6.3. We take γ = 1 and α = 1 in the definition of

ãk(·, ·) and the damping factor λ = 1/10.

TABLE 6.3. Contraction numbers of the W -cycle algorithm on the square domain (0, 1)2

for the discontinuous finite element method

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m = 9 0.99 0.61 0.52 0.52 0.52 0.52 0.52

m = 10 0.91 0.54 0.48 0.48 0.49 0.49 0.49

m = 11 0.81 0.54 0.45 0.45 0.45 0.45 0.45

m = 12 0.76 0.54 0.42 0.42 0.42 0.42 0.42

m = 13 0.72 0.65 0.52 0.39 0.39 0.39 0.39

m = 14 0.59 0.50 0.36 0.36 0.36 0.37 0.34

m = 15 0.50 0.46 0.33 0.32 0.32 0.32 0.32

The convergence analysis of multigrid methods for the discrete problems (6.1.1)

and (6.1.8) is currently under investigation. Graded meshes must be used on non-
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convex domains in order to achieve the uniform convergence of multigrid algo-

rithms.

6.2 Multigrid Methods for the P1 Finite

Element Method

In this section we consider the multigrid methods for the P1 finite element method,

which was proposed in Chapter 5 for solving the two-dimensional Maxwell’s equa-

tion (5.1.1).

Let T0, T1, . . . be a sequence of triangulations generated by the refinement pro-

cedure that was described in Section 2.3, hk be the mesh size of Tk, Vk be the

corresponding P1 finite element space associated with Tk for k ≥ 0. We define

a(w, v) = (∇× w,∇× v) + α(w, v) ∀ v, w ∈ H1(Ω). (6.2.1)

The k-th level P1 finite element method for (5.1.3) (α 6= 0) is:

Find ξk ∈ Vk such that

Akξk = fk, (6.2.2)

where Ak : Vk −→ V ′
k and fk ∈ V ′

k are defined by

〈Akw, v〉 = a(w, v) ∀ v, w ∈ Vk,

〈fk, v〉 =(f ,∇× v) ∀ v ∈ Vk.

Here 〈·, ·〉 is the canonical bilinear form on V ′
k × Vk.

We consider the W -cycle multigrid algorithm (Algorithm 2.32) for the equation

Akz = g, (6.2.3)

where g ∈ V ′
k.

The error propagation operator Ek : Vk −→ Vk for the k-th level W -cycle algo-

rithm has the following recursive relation (cf. Lemma 2.33):

Ek = Rm2
k (Idk − Ikk−1P

k−1
k + Ikk−1E

2
k−1P

k−1
k )Rm1

k .
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Here the coarse-to-fine intergrid transfer operator Ikk−1 : Vk−1 −→ Vk is taken to

be the natural injection and the operator P k−1
k : Vk −→ Vk−1 is the transpose of

Ikk−1 with respect to the variational forms, i.e.,

a(P k−1
k w, v) = a(w, Ikk−1v) ∀ v ∈ Vk−1, w ∈ Vk. (6.2.4)

The operator Bk : Vk −→ V ′
k in the definition of Rk (cf. (2.5.19)) is defined by

〈Bkw, v〉 = h2
k

∑

T∈Tk

∑

p∈NT

w(p)v(p) ∀ v, w ∈ Vk, (6.2.5)

where NT is the set of the vertices of the triangle T .

In the application of k-th level iteration to (6.2.2), we use the following full

multigrid algorithm, where we apply W -cycle algorithm r times at each level.

Algorithm 6.1. Full Multigrid Algorithm for (6.2.2).

For k = 0, ξ̂0 = A−1
0 f0.

For k ≥ 1, the solution ξ̂k is obtained recursively from

ξk0 = Ikk−1ξ̂k−1,

ξk` =MGW (k, fk, ξ
k
`−1, m1, m2), 1 ≤ ` ≤ r,

ξ̂k = ξkr .

In the case where m ≥ 1, we can apply the full multigrid algorithm to obtain an

approximate solution ϕ̂j,k (1 ≤ j ≤ m) of the k-th level discrete problem (5.2.4)

for the Dirichlet boundary value problem (5.1.9).

When Ω is not simply connected, for each level k, we compute ĉ1,k, . . . , ĉm,k by

solving
m∑

j=1

(∇ϕ̂j,k,∇ϕ̂i,k)ĉj,k =
1

α
(f ,∇ϕ̂i,k) for 1 ≤ i ≤ m. (6.2.6)

In the rest of this section we introduce the multigrid methods for solving (5.1.3)

(α = 0) and (5.1.11), which are singular Neumann problems.
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Let V̂k = {v ∈ Vk : (v, 1) = 0}. The k-th level P1 finite element method for

(5.1.3) (α = 0) is as follows:

Find ξk ∈ V̂k such that

Ãkξk = fk, (6.2.7)

where Ãk : V̂k −→ V̂ ′
k and fk ∈ V̂ ′

k are defined by

〈Ãkw, v〉 = (∇× w,∇× v) ∀ v, w ∈ V̂k,

〈fk, v〉 =(f ,∇× v) ∀ v ∈ V̂k.

Here 〈·, ·〉 is the canonical bilinear form on V̂ ′
k × V̂k. We can apply Algorithm 6.1

to obtain an approximate solution ξ̂k of (6.2.7).

In practice, we consider the following k-th level P1 finite element method for

(5.1.11):

Find φk ∈ V̂k such that

Ãkφk = gk, (6.2.8)

where gk ∈ V̂ ′
k is defined by

〈gk, v〉 = (ξ̂k, v) ∀ v ∈ V̂k.

Here ξ̂k is the approximate solution of (6.2.2) (α 6= 0) or (6.2.7) (α = 0) obtained

by the Algorithm 6.1.

We now apply the following full multigrid algorithm to solve (6.2.8):

Algorithm 6.2. Full Multigrid Algorithm for (6.2.8).

For k = 0, φ̂0 ∈ V̂0 is determined by Ã0φ̂0 = g0.
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For k ≥ 1, the approximation solution φ̂k is obtained recursively from

φk0 = Ikk−1φ̂k−1,

φk` =MGW (k, gk, φ
k
`−1, m1, m2), 1 ≤ ` ≤ r,

φ̂k =φkr .

Finally, we define the approximation ûk of u for each level k by

ûk = ∇× φ̂k +
m∑

j=1

ĉj,k∇ϕ̂j,k. (6.2.9)

The convergence analysis of multigrid methods introduced in this section is

currently under investigation.

In the rest of this section we report the numerical results for the P1 finite element

method. The numerical solutions presented in Tables 6.4– 6.8 are obtained by full

multigrid methods, where r is taken to be 2, and the smoothing steps m is taken

to be 5.

The first set of experiments is performed on the unit square (0, 1)2 with uniform

meshes. First we take the exact solution to be

u =




sin(πx2)

sin(πx1)


 (6.2.10)

and solve (5.1.1) for α = −1, 0 and 1 with f = ∇ × (∇ × u) − αu ∈ H(div0; Ω).

The results are tabulated in Table 6.4.

We then take the right-hand side function to be

f =






1

0


 if x1 ≤ x2,


0

2


 if x1 > x2.

(6.2.11)
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TABLE 6.4. Results for (5.1.1) on the square domain (0, 1)2 with uniform meshes and
the exact solution given by (6.2.10)

hk
‖∇×u−ξ̂k‖L2

‖f‖L2

Order hk
‖u−ûk‖L2

‖f‖L2

Order

α = −1

1/16 4.07E−04 1.98 1/16 6.38E−03 0.99

1/32 1.01E−05 2.00 1/32 3.19E−03 1.00
1/64 2.53E−05 2.00 1/64 1.60E−03 1.00
1/128 6.31E−06 2.00 1/128 7.99E−04 1.00
1/256 1.58E−06 2.00 1/265 3.99E−04 1.00

α = 0

1/16 3.68E−04 1.98 1/16 5.73E−03 0.99
1/32 9.13E−05 2.00 1/32 2.87E−03 1.00
1/64 2.27E−05 2.00 1/64 1.43E−03 1.00
1/128 5.68E−06 2.00 1/128 7.18E−04 1.00
1/256 1.42E−06 2.00 1/265 3.59E−04 1.00

α = 1

1/16 3.41E−04 2.00 1/16 5.20E−03 0.99
1/32 8.44E−05 2.01 1/32 2.60E−03 1.00
1/64 2.10E−05 2.01 1/64 1.30E−03 1.00
1/128 5.24E−06 2.00 1/128 6.52E−04 1.00
1/256 1.31E−06 2.00 1/265 3.26E−04 1.00

Since the exact solution is not known, we estimate the errors by the differences of

the numerical solutions between two consecutive levels. The results are tabulated

in Table 6.5 for α = −1, 0 and 1.

In the second set of experiments, we examine the convergence behavior of our

numerical schemes on the L-shaped domain (−1, 1)2 \ [0, 1]2. The exact solution is

taken to be

u = ∇×
(
r2/3 cos

(2

3
θ −

π

3

)
φ(x)

)
, (6.2.12)

where (r, θ) are the polar coordinates at the origin and φ(x) = (1 − x2
1)

2(1 − x2
2)

2.

We check the performance of the numerical scheme on graded meshes. The grad-

ing parameter is taken to be 2/3 at the reentrant corner (0, 0) (cf. Figure 6.1). The

results are tabulated in Table 6.6 for α = −1, 0 and 1.

The goal of the third set of experiments is to exam the convergence behavior of

the numerical schemes on a doubly connected domain

Ω = (0, 4)2 \ [1, 3]2.
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TABLE 6.5. Results for (5.1.1) on the square domain (0, 1)2 with uniform meshes and
right-hand side function given by (6.2.11)

hk
‖∇×u−ξ̂k‖L2

‖f‖L2

Order h
‖u−ûk‖L2

‖f‖L2

Order

α = −1

1/8 2.92E−03 1.42 1/8 7.30E−03 0.93

1/16 1.06E−03 1.47 1/16 3.70E−03 0.98
1/32 3.76E−04 1.49 1/32 1.86E−03 0.99
1/64 1.34E−04 1.49 1/64 9.31E−04 1.00
1/128 4.73E−05 1.50 1/128 4.65E−04 1.00

α = 0

1/8 2.82E−03 1.40 1/8 6.61E−03 0.93
1/16 1.04E−03 1.45 1/16 3.35E−03 0.98
1/32 3.72E−04 1.47 1/32 1.68E−03 0.99
1/64 1.34E−04 1.49 1/64 8.43E−04 1.00
1/128 4.73E−05 1.49 1/128 4.22E−04 1.00

α = 1

1/8 2.73E−03 1.39 1/8 6.05E−03 0.92
1/16 1.02E−03 1.43 1/16 3.07E−03 0.98
1/32 3.69E−04 1.46 1/32 1.54E−03 0.99
1/64 1.32E−04 1.48 1/64 7.72E−04 1.00
1/128 4.71E−05 1.49 1/128 3.86E−04 1.00

FIGURE 6.1. Graded meshes on the L-shaped domain

The solution u of (5.1.1) can be written as

u = ∇× φ+ c∇ϕ, (6.2.13)

where c is a constant number and the harmonic function ϕ satisfies the following

boundary conditions:

ϕ
∣∣
Γ0

= 0 and ϕ
∣∣
Γ1

= 1.

Here Γ0 (resp. Γ1) is the boundary of (0, 4)2 (resp. (1, 3)2).

First we take the exact solution to be

u =



x2(1 − x2)(3 − x2)(4 − x2)

x1(1 − x1)(3 − x1)(4 − x1)


 (6.2.14)
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TABLE 6.6. Results for (5.1.1) on the L-shaped domain and the exact solution given by
(6.2.12)

hk
‖∇×u−ξ̂k‖L2

‖f‖L2

Order h
‖u−ûk‖L2

‖f‖L2

Order

α = −1

1/16 4.95E−03 1.86 1/16 7.34E−03 1.55
1/32 1.37E−03 1.88 1/32 2.97E−03 1.30
1/64 3.63E−04 1.89 1/64 1.38E−03 1.11
1/128 9.75E−05 1.90 1/128 6.77E−04 1.02
1/256 2.60E−05 1.90 1/256 3.40E−04 0.99

α = 0

1/16 2.03E−03 1.84 1/16 5.21E−03 1.13
1/32 5.55E−04 1.87 1/32 2.55E−03 1.02
1/64 1.50E−04 1.88 1/64 1.28E−03 0.99
1/128 4.04E−05 1.89 1/128 6.49E−04 0.98
1/256 1.08E−05 1.90 1/256 3.29E−04 0.98

α = 1

1/16 1.43E−03 1.85 1/16 4.88E−03 1.03
1/32 3.87E−04 1.89 1/32 2.45E−03 0.99
1/64 1.03E−04 1.91 1/64 1.24E−03 0.98
1/128 2.74E−05 1.91 1/128 6.29E−04 0.98
1/256 7.25E−06 1.92 1/256 3.19E−04 0.98

and check the convergence behavior of the numerical schemes on Ω with graded

meshes. The grading parameter is taken to be 2/3 at the reentrant corners (1, 1),

(1, 3), (3, 1) and (3, 3) (cf. Figure 6.2). The numerical results are tabulated in

FIGURE 6.2. Graded meshes on the doubly connected domain

Table 6.7 for α = −1 and 1.

Note that in this case u is the curl of a quintic polynomial and hence c = 0 in

(6.2.13). It is observed that ĉk = 0 up to machine error.
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TABLE 6.7. Results for (5.1.1) on the doubly connected domain and the exact solution
given by (6.2.14)

hk
‖∇×u−ξ̂k‖L2

‖f‖L2

Order |ĉk|
‖u−ûk‖L2

‖f‖L2

Order

α = −1

1/8 4.59E−03 1.99 1.78E−16 1.22E−02 1.05
1/16 1.15E−03 2.00 1.22E−16 6.06E−03 1.01
1/32 2.86E−04 2.00 2.53E−16 3.03E−03 1.01
1/64 7.16E−05 2.00 5.57E−17 1.51E−03 1.00
1/128 1.79E−05 2.00 7.32E−17 7.57E−04 1.00

α = 1

1/8 2.10E−03 1.99 8.65E−16 1.02E−02 0.99
1/16 5.27E−04 2.00 9.43E−16 5.13E−03 0.99
1/32 1.32E−04 2.00 7.81E−16 2.57E−03 1.00
1/64 3.29E−05 2.00 1.34E−17 1.29E−03 1.00
1/128 8.22E−06 2.00 2.57E−17 6.43E−04 1.00

We then take the right-hand side function to be

f =






1 + x1

0


 if x1 ≤ x2 and 3 ≤ x1 ≤ 4,


 0

1 + x2


 otherwise.

(6.2.15)

The results are reported in Table 6.8 for α = −1 and 1.

TABLE 6.8. Results for (5.1.1) on the doubly connected domain and right-hand side
function given by (6.2.15)

hk
‖∇×u−ξ̂k‖L2

‖f‖L2

Order ĉk Order
‖u−ûk‖L2

‖f‖L2

Order

α = −1

1/4 7.18E−01 0.91 0.764157 0.91 8.36E−01 0.86

1/8 1.95E−01 1.88 0.765826 1.58 3.01E−01 1.48
1/16 4.01E−02 2.28 0.766367 1.62 1.24E−01 1.28
1/32 1.03E−02 1.97 0.766528 1.75 6.07E−02 1.03
1/64 2.79E−03 1.88 0.766570 1.79 3.09E−02 0.98

α = 1

1/4 7.33E−03 1.69 -0.764157 0.91 9.03E−02 0.83
1/8 2.22E−03 1.72 -0.765826 1.58 4.97E−02 0.86
1/16 6.60E−04 1.75 -0.766367 1.62 2.71E−02 0.87
1/32 1.99E−04 1.70 -0.766528 1.75 1.48E−02 0.87
1/64 6.63E−05 1.58 -0.766570 1.79 7.98E−03 0.89
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Chapter 7
Conclusions

In this dissertation we have investigated nonconforming finite element methods for

two-dimensional Maxwell’s equations and their solutions by multigrid algorithms.

We have also studied multigrid methods for discontinuous Galerkin methods on

graded meshes for the Poisson problem.

We show that the elliptic curl-curl and grad-div problem appearing in electro-

magnetics can be solved by two types of nonconforming finite element methods

on graded meshes. The first method is based on a discretization using Crouzeix-

Raviart weakly continuous vector fields. Optimal convergence rates in both the

energy norm and the L2 norm are achieved on general polygonal domains, provided

that two consistency terms involving the jumps of the vector fields are included

in the discretization and properly graded meshes are used. The second method

uses discontinuous P1 vector fields and two additional over-penalized terms are

added to the scheme. Similar convergence results are established on nonconform-

ing meshes. We also report numerical results for multigrid algorithms applied to

the resulting discrete problems on the unit square. The convergence analysis of

multigrid methods for the discretized curl-curl and grad-div problem is currently

under investigation.

Since there are many similarities between nonconforming finite element meth-

ods for Maxwell’s equations on graded meshes and discontinuous Galerkin (DG)

methods for the Poisson problem on graded meshes, we also investigate multigrid

algorithms for discontinuous Galerkin methods. We consider a class of symmetric

discontinuous Galerkin methods for a model Poisson problem on graded meshes.
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The elliptic regularity results in terms of weighted Sobolev norms are used in the

analysis. Optimal order error estimates are derived in both the energy norm and

the L2 norm. Then we establish the uniform convergence of W -cycle, V -cycle and

F -cycle multigrid algorithms for the resulting discrete problems on non-convex

domains, where the model problem has singularities. We show that the conver-

gence of the multigrid algorithms on non-convex domains with properly graded

meshes is identical to the convergence of multigrid methods on convex domains

with quasi-uniform meshes.

Then we propose a new numerical approach for two-dimensional Maxwell’s equa-

tions that is based on the Hodge decomposition for divergence-free vector fields.

In this approach, an approximate solution for Maxwell’s equations can be ob-

tained by solving standard second order scalar elliptic boundary value problems.

We demonstrate its performance using P1 finite element methods. We can recover

O(h) convergence on non-convex domains, provided that graded meshes are used.

Finally we study multigrid methods for Maxwell’s equations based on the new ap-

proach. All the theoretical results obtained in this dissertation are confirmed by

numerical results.
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son, Paris, 1967.
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