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AN ANALYSIS OF HDG METHODS FOR THE

VORTICITY-VELOCITY-PRESSURE FORMULATION OF THE

STOKES PROBLEM IN THREE DIMENSIONS

BERNARDO COCKBURN AND JINTAO CUI

Abstract. We provide the first a priori error analysis of a hybridizable dis-
continuous Galerkin (HDG) method for solving the vorticity-velocity-pressure
formulation of the three-dimensional Stokes equations of incompressible fluid
flow. By using a projection-based approach, we prove that, when all the un-
knowns use polynomials of degree k ≥ 0, the L2 − norm of the errors in the
approximate vorticity and pressure converge to zero with order k+1/2 whereas
the error in the approximate velocity converges with order k + 1.

1. Introduction

In this paper we provide the first a priori error analysis of the hybridizable
discontinuous Galerkin (HDG) method proposed in [7] for solving the vorticity-
velocity-pressure formulation of the Stokes equations of incompressible fluid flow,
namely,

w −∇× u = 0 in Ω,(1.1a)

∇×w + ∇p = f in Ω,(1.1b)

∇ · u = 0 in Ω,(1.1c)

u = g on ∂Ω,(1.1d)
∫

Ω

p = 0.(1.1e)

Here
∫

∂Ω g · n = 0. Here Ω ⊂ R
3 is a Lipschitz polyhedron.

To describe our results, let us briefly describe the evolution of HDG methods
for incompressible fluid flow. Originally, the motivation for using hybridization
techniques for finite elements for incompressible flow stemmed from the fact that the
construction of finite dimensional spaces of divergence-free approximate velocities
is extremely difficult. The construction of such spaces was undertaken back in 1972
[15], in 1979 [17], and in 1981 [25, 19]. However, the extension of these constructions
to spaces of piecewise polynomials of arbitrary degree has been a long standing
question. Later, in [24] it was shown that, in the two-dimensional case, spaces of
divergence-free velocities can be systematically constructed provided polynomials of
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degree bigger than four are used. Lower order polynomial spaces with this property
do not exist, as was proven in 1975 [16]. Extensions of these results to the three-
dimensional case still remain an open problem. See the discussions in [3, 11, 13].

Only recently, two new approaches for generating divergence-free velocity ap-
proximations have emerged, namely, by postprocessing and by hybridization; see
the discussion in [4]. In the first approach, the approximate solution provided by
a DG method is postprocessed in an element-by-element fashion to give rise to a
new divergence-free approximate velocity. The first postprocessing technique of
this type was introduced in the framework of DG methods for diffusion problems
in [2]. In the framework of incompressible fluid flow, this was done for the first
time in 2005 [10]; see also [12]. Therein it was shown that, when the postprocessing
becomes the identity, the DG method automatically provides a solenoidal velocity;
this idea was developed in 2007 in [11] and [26]. This postprocessing can be easily
applied to the previously introduced DG methods using elementwise divergence-free
velocities proposed in 1990 [1] and then in 1998 [18].

In the second approach, the method is rewritten in an equivalent form in two
steps. In the first, the continuity constraint on the normal components of the ap-
proximate velocities on the interelement boundaries is relaxed so that we now work
with spaces of completely discontinuous velocities. In the second, the continuity
of the normal component of the approximate velocity is imposed by a suitable set
of equations. In this manner, the construction of divergence-free velocity spaces is
completely avoided. This was done for the first time in 2006 [3] for a DG method
and then in 2005 [5, 6] for a mixed method. Both of these methods were based on
vorticity-velocity-pressure formulations of the Stokes equations.

Recently, a new HDG method, based on a velocity gradient-velocity-pressure
formulation and using spaces of exactly divergence-free approximate velocities was
introduced and analyzed in [13]. All the components of the approximate solution,
which use polynomial spaces of degree k, were proven to converge with the opti-
mal order of k + 1 in L2-norm for any k ≥ 0. Moreover, an element-by-element
postprocessed velocity approximation, which is divergence-conforming and exactly
divergence-free, was shown to converge with order k + 2 for k ≥ 1 and with order
1 for k = 0. These HDG method can be obtained as limits of the HDG methods
introduced in 2010 in [23] and share with them all the above-mentioned convergence
properties; see [8].

Similar HDG methods based on a vorticity-velocity-pressure formulation had
been previously introduced in 2009 in [7], but have not been theoretically ana-
lyzed. They had only been experimentally compared with those based on a velocity
gradient-velocity-pressure formulation in [22] for the two-dimensional case. Here,
we provide the first a priori error analysis of the HDG methods proposed in [7] for
the three-dimensional case.

The idea of the analysis in this paper is similar to that of the HDG methods
based on the velocity gradient-velocity-pressure formulation [8]. Indeed, it consists
in estimating a projection of the errors that is tailored to the very structure of
the numerical traces of the method. However, unlike the projection used in [8], the
velocity and pressure components of the projection are decoupled from the vorticity
component. In fact, the projection for the velocity and pressure is the one used in
the analysis of HDG methods for diffusion problems in [9], whereas the projection
for the vorticity is nothing but the standard L2-projection. We show that the
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approximated vorticity and pressure, which are polynomials of degree k, converge
with order k +1/2 in L2-norm for any k ≥ 0. Moreover, the approximated velocity
converges with order k + 1.

Finally, let us briefly compare these results with those associated with edge ele-
ments. In an early paper [20], the first-type Nédélec edge elements and continuous
piecewise polynomial of order k were used for the approximate velocity and pres-
sure, respectively. Both components were proven to converge with a suboptimal
order of k in the energy norm for any k ≥ 0. Later, in [21], the H(curl)-conforming
(second-type) edge elements of order k were used to approximate the vorticity, and
the H(div)-conforming edge elements of order k − 1 is applied to approximate the
velocity. It was shown that both vorticity and velocity converge with order k − 1
in L2-norm for k ≥ 1.

The paper is organized as follows. In Section 2, we present the method and state
and discuss our main results. In Section 3, we provide a detailed proof of our error
estimates. We end in Section 4 with some concluding remarks.

2. Main results

2.1. The HDG method. Let Th be a shape-regular triangulation of Ω which
consists of tetrahedra T . We denote by Eh the set of all faces F of all tetrahedra T
of the triangulation Th and by ∂Ωh the set of boundaries ∂T of the elements T of
Th.

The HDG method seeks an approximation of the solution (w|Ω,u|Ω, p|Ω,u|Eh
)

of the problem (1.1), (wh,uh, ph, ûh), in the space W h × V h × Ph ×Mh, where

W h :={w ∈ L2(Th) :w|T ∈ P k(T ) ∀ T ∈ Th},(2.1a)

V h :={v ∈ L2(Th) : v|T ∈ P k(T ) ∀ T ∈ Th},(2.1b)

Ph :={q ∈ L2(Th) : q|T ∈ Pk(T ) ∀ T ∈ Th},(2.1c)

Mh :={µ ∈ L2(Eh) : µ|T ∈ P k(F ) ∀ F ∈ Eh},(2.1d)

Pk(T ) is the space of polynomials of total degree at most k defined on T , and
P k(T ) = [Pk(T )]n. The approximation is defined by requiring that

(wh, τ )Th
− (uh,∇× τ )Th

− 〈ûh, τ × n〉∂Th
= 0,(2.2a)

(wh,∇× v)Th
− (ph,∇ · v)Th

+ 〈n× ŵh + p̂hn,v〉∂Th
= (f ,v)Th

,(2.2b)

−(uh,∇q)Th
+ 〈ûh, qn〉∂Th

= 0,(2.2c)

〈n× ŵh + p̂hn,µ〉∂Th\∂Ω = 0,(2.2d)

〈ûh,µ〉∂Ω = 〈g,µ〉∂Ω,(2.2e)

(ph, 1)Th
= 0.(2.2f)

for all (τ ,v, q,µ) ∈W h × V h × Ph ×Mh, where

ŵh = wh + τt(uh − ûh) × n on ∂Th,(2.3a)

p̂h = ph + τn(uh − ûh) · n on ∂Th.(2.3b)

Here the stabilization functions τt and τn are taken to be constants on each face on
∂Th.
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Note that we have used the following notation. We write

(v, w)Th
=
∑

T∈Th

(v, w)T and (v,w)Th
=

3∑

i=1

(vi, wi)Th
,

and

〈v, w〉∂Th
=
∑

T∈Th

〈v, w〉∂T and 〈v,w〉∂Th
=

3∑

i=1

〈vi, wi〉∂Th
.

Here (·, ·)T and 〈·, ·〉∂T are the inner products of L2(T ) and L2(∂T ), respectively.

2.2. The projection. From here on we denote by ‖v‖Hℓ(T ) the usual Hℓ norm

of v on the domain T . We set Hℓ := [Hℓ(T )]n and ‖v‖Hℓ(T ) :=
∑n

i=1 ‖vi‖Hℓ(T ).

When ℓ = 0, we simply write ‖v‖D instead of ‖v‖H0(D) ≡ ‖v‖L2(D).
Next, we introduce the projection we are going to use to carry out our analysis.

Given a function (w,u, p) in H1(Th)×H1(Th)× H1(Th), we define its projection
(Πw,Πu, Πp) as follows. On an arbitrary element T of the triangulation Th, we
require that

(Πw −w, τ )T = 0 ∀ τ ∈ P k(T ),(2.4a)

(Πu− u,v)T = 0 ∀ v ∈ P k−1(T ),(2.4b)

(Πp − p, q)T = 0 ∀ q ∈ Pk−1(T ),(2.4c)

〈Πp − p + τn(Πu− u) · n, µ〉F = 0 ∀ µ ∈ Pk(F ),(2.4d)

for all faces F of the tetrahedron T .
We see that the Πw is the simple L2-projection ofw into P k(T ). The component

(Πu, Πp) is nothing but the projection used in the analysis of HDG methods for
diffusion problems in [9] with the stabilization parameter τ used therein replaced
by 1/τn. As a consequence, we have the following result.

Theorem 2.1 ([9]). Suppose that k ≥ 0 and that τn|∂T > 0. Then the sys-

tem (2.4b), (2.4c) and (2.4d) is uniquely solvable for Πu and Πp. Furthermore,

when ∇ · u = 0, there is a constant C independent of T and τn such that

‖Πu− u ‖T ≤ C hℓu+1
T |u|Hℓu+1(T ) + C

h
ℓp+1
T

(τn)∗T
|p|Hℓp+1(T ),

‖Πp − p‖T ≤ C h
ℓp+1
T |p|Hℓp+1(T ),

for ℓp, ℓu in [0, k]. Here (τn)∗T := min τn|∂T\F∗ , where F ∗ is a face of T at which

τn|∂T is minimum.

2.3. The a priori error analysis. We first introduce the following dual problem.
For any given θ ∈ L2(Ω), let (ψ,φ, φ) be the solution of

ψ + ∇× φ = 0 in Ω,(2.5a)

−∇×ψ −∇φ = θ in Ω,(2.5b)

−∇ · φ = 0 in Ω,(2.5c)

φ = 0 on ∂Ω,(2.5d)
∫

Ω

φ = 0.(2.5e)
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We assume that, for some real number s, we have

(2.6) ‖ψ‖Hs+1(Ω) + ‖φ‖Hs+2(Ω) + ‖φ‖Hs+1(Ω) ≤ C‖θ‖Hs(Ω),

In three dimensional case, we have that s ≤ 0 if the domain is convex (cf. [14]).
We are now ready to state our main results, which give estimates of the projection

of the approximation errors, namely, ǫw := Πw−wh, ǫu := Πu−uh, ǫp := Πp−ph

and ǫbu := P ∂u − ûh. Here P ∂ is the L2 projection into Mh. They are going to
be stated in terms of the total average of the projection of the error in the pressure
over Ω which we denote by

Πp − p =
1

|Ω|

∫

Ω

(Πp − p) dx,

and in terms of the quantity

|||(Πw −w,Πu− u)|||τt,∂Th
:= ‖τ

−1/2
t n× (Πw −w) + τ

1/2
t (Πu− u)t‖∂Th

,

which can be easily estimated by mean of the following simple result whose proof
is presented in the Appendix.

Proposition 2.2. For all, (ζ,η) ∈H1(Th) ×H1(Th), we have

|||(Πζ − ζ,Πη − η)|||τt,∂Th
≤ C max

K∈Th

h
1/2
T ‖τ−1

t ‖
1/2
L∞(∂T ) E(Πζ, ζ)

+ C max
K∈Th

h
1/2
T ‖τt‖

1/2
L∞(∂T ) E(Πη,η),

where

E2(Θ,θ) := inf
S∈W h

∑

K∈Th

(
h−2

T (‖Θ − θ‖2
T + ‖S − θ‖2

T ) + ‖∇(S − θ)‖2
T

)
,

and C is a constant depending on the shape-regularity constant of the elements and

on the polynomial degree k.

Theorem 2.3. Suppose that k ≥ 0 and that τn, τt > 0 on ∂Th. Then we have

‖ǫw‖Ω ≤|||(Πw −w,Πu− P ∂u)|||τt,∂Th
,

‖ǫp‖Ω ≤(Πp − p)|Ω|1/2 + Cτt
|||(Πw −w,Πu− P ∂u)|||τt,∂Th

,

where

Cτt
:= 1 +

(
max
T∈Th

hT ‖τt‖L∞(∂T

)1/2
.

Moreover, if the elliptic regularity inequality (2.6) holds with s = 0, we have

‖ǫu‖Ω ≤ C Hτ |||(Πw −w,Πu− P ∂u)|||τt,∂Th
,

where

Hτ := max
T∈Th

h
1/2
T ‖τ−1

t ‖
1/2
L∞(∂T )

+ max
T∈Th

h
1/2
T ‖τt‖

1/2
L∞(∂T )(max

T∈Th

h
min{1,k}
T + max

T∈Th

‖(τ∗
n)−1‖L∞(∂T )).

Combining the above result with the Proposition 2.2, the approximation prop-
erties of the projection (Π , Π), see Theorem 2.1, and those of the L2-projection
Π, we immediately obtain the errors we sought. Thus, under the hypotheses of
Theorem 2.3, and when the solution is very smooth, we have that

‖w −wh‖Ω ≤C hk+1/2,
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‖p − ph‖Ω ≤C hk+1/2,

‖u− uh‖Ω ≤C hk+1,

provided τt, 1/τt and 1/τ∗
n remain of order one on ∂Th. Thus, we see that the

approximate vorticity and pressure converge with an order which is suboptimal by
1/2, whereas the velocity converges with optimal order.

3. Proofs

We denote Sτµ := τtn×µ×n+ τnµ ·nn, and vt := v− (v ·n)n = n× v×n.

3.1. The equations satisfied by the projection of the errors. We begin by
obtaining the equations satisfied by the projection of the errors.

Lemma 3.1. We have

(ǫw, τ )Th
− (ǫu,∇× τ )Th

− 〈ǫbu, τ × n〉∂Th
= 0,(3.1a)

(ǫw,∇× v)Th
− (ǫp,∇ · v)Th

(3.1b)

+〈n× ǫw + ǫpn+ Sτ (ǫu − ǫbu),v〉∂Th
=

〈n× (Πw −w) + Sτ (Πu− P ∂u),vt〉∂Th
,

−(ǫu,∇q)Th
+ 〈ǫbu

h , qn〉∂Th
= 0,(3.1c)

〈n× ǫw + ǫpn+ Sτ (ǫu − ǫbu), µ〉∂Th\∂Ω =(3.1d)

〈n× (Πw −w) + Sτ (Πu− P ∂u),µt〉∂Th\∂Ω,

〈ǫbu,µ〉∂Ω = 0,(3.1e)

(ǫp, 1)Th
= (Πp − p, 1)Th

,(3.1f)

for all (τ ,v, q,µ) ∈W h × V h × Ph ×Mh.

Proof. Note that the exact solution satisfies the following equations

(w, τ )Th
− (u,∇× τ )Th

− 〈u, τ × n〉∂Th
= 0,

(w,∇× v)Th
− (p,∇ · v)Th

+ 〈n×w + pn,v〉∂Th
= (f ,v)Th

,

−(u,∇q)Th
+ 〈u, qn〉∂Th

= 0,

〈n×w + pn,µ〉∂Th\∂Ω = 0,

〈u,µ〉∂Ω = 〈g,µ〉∂Ω,

(p, 1)Th
= 0,

for all (τ ,v, q,µ) ∈W h × V h × Ph ×Mh.
Applying the definition of the projections Π and (Π , Π), (2.4), and taking into

account that P ∂ is nothing but the L2-projection into Mh, we easily get that

(Πw, τ )Th
− (Πu,∇× τ )Th

− 〈P ∂u, τ × n〉∂Th
= 0,

(Πw,∇× v)Th
− (Πp,∇ · v)Th

+〈n× Πw + Πpn+ τn(Πu− P ∂u) · nn,v〉∂Th
= (f ,v)Th

+ 〈n× (Πw −w),v〉∂Th
,

−(Πu,∇q)Th
+ 〈P ∂u, qn〉∂Th

= 0,

〈n× Πw + Πpn+ τn(Πu− P ∂u) · nn,µ〉∂Th\∂Ω = 〈n× (Πw −w),µ〉∂Th\∂Ω,

〈P ∂u,µ〉∂Ω = 〈g,µ〉∂Ω,



AN ANALYSIS OF HDG METHODS FOR STOKES 7

(Πp, 1)Th
= (Πp − p, 1)Th

,

and since, by definition of Sτ , τnµ · nn = Sτµ− τtn× µ× n, we obtain

(Πw, τ )Th
− (Πu,∇× τ )Th

− 〈P ∂u, τ × n〉∂Th
= 0,

(Πw,∇× v)Th
− (Πp,∇ · v)Th

+〈n× Πw + Πpn+ Sτ (Πu− P ∂u),v〉∂Th
=

(f ,v)Th
+ 〈n× (Πw −w) + τtn× (Πu− P ∂u) × n,v〉∂Th

=

(f ,v)Th
+ 〈n× (Πw −w) + Sτ (Πu− P ∂u),vt〉∂Th

,

−(Πu,∇q)Th
+ 〈P ∂u, qn〉∂Th

= 0,

〈n× Πw + Πpn+ Sτ (Πu− P ∂u),µ〉∂Th\∂Ω =

〈n× (Πw −w) + τtn× (Πu− P ∂u) × n,µ〉∂Th\∂Ω =

〈n× (Πw −w) + Sτ (Πu− P ∂u),µt〉∂Th\∂Ω,

〈P ∂u,µ〉∂Ω = 〈g,µ〉∂Ω,

(Πp, 1)Th
= (Πp − p, 1)Th

.

Finally, the error equations follow by subtracting the equations defining the
HDG method, (2.2), from the above equations and applying the definitions of the
projection of the errors. This completes the proof of Lemma 3.1. �

3.2. Estimate of the projection of the error in the vorticity. Define the
seminorm

‖µ‖Sτ
:= 〈Sτµ,µ〉

1/2
∂Th

=
[
〈τtµt,µt〉∂Th

+ 〈τnµ · n,µ · n〉∂Th

]1/2
.

Lemma 3.2. We have

‖ǫw‖2
Ω + ‖ǫu − ǫbu‖2

Sτ
=〈n× (Πw −w) + τt(Πu− P ∂u)t, (ǫ

u − ǫbu)t〉∂Th
.

Proof. We take τ := ǫw, v := ǫu and q := ǫp in the first three equations of the
error equation (3.1), µ := −ǫbu in (3.1d), and µ := −

(
n× ǫw + ǫpn+Sτ (ǫu − ǫbu)

)

in (3.1e). Adding the resulting equations, we obtain

(ǫw, ǫw)Th
+ Θh =〈n× (Πw −w) + Sτ (Πu− P ∂u), (ǫu − ǫbu)t〉∂Th

=〈n× (Πw −w) + τt(Πu− P ∂u)t, (ǫ
u − ǫbu)t〉∂Th

,

where

Θh = − (ǫu,∇× ǫw)Th
− 〈ǫbu, ǫw × n〉∂Th

+ (ǫw,∇× ǫu)Th
− (ǫp,∇ · ǫu)Th

+ 〈n× ǫw + ǫpn+ Sτ (ǫu − ǫbu), ǫu〉∂Th

− (ǫu,∇ǫp)Th
+ 〈ǫbu, ǫpn〉∂Th

− 〈n× ǫw + ǫpn+ Sτ (ǫu − ǫbu), ǫbu〉∂Th\∂Ω

− 〈n× ǫw + ǫpn+ Sτ (ǫu − ǫbu), ǫbu〉∂Ω.

After simple rearrangements, we get that

Θh = − (ǫu,∇× ǫw)Th
+ 〈ǫu, ǫw × n〉∂Th

+ (ǫw,∇× ǫu)Th

+ (ǫp,∇ · ǫu)Th
− (ǫu,∇ǫp)Th

− 〈ǫu, ǫpn〉∂Th

+ 〈Sτ (ǫu − ǫbu), ǫu − ǫbu〉∂Th

= 〈Sτ (ǫu − ǫbu), ǫu − ǫbu〉∂Th
.
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This completes the proof. �

The following estimate is a direct consequence of the above result.

Corollary 3.3. If τt > 0 on ∂Th, we have that

‖ǫw‖2
Ω + ‖ǫu − ǫbu‖2

Sτ
≤ |||(Πw −w,Πu− P ∂u)|||2τt,∂Th

.

3.3. Estimate of the projection of the error in the pressure. Next, we obtain
an estimate for the projection of the error of the pressure. To do that, we use the
well-known fact that, for any function ζ ∈ L2(Ω) such that (ζ, 1)Ω = 0, we have

‖ζ‖Ω ≤ C sup
w∈H1

0
(Ω)\{0}

(ζ,∇ · w)Ω
‖w‖H1(Ω)

,

and take ζ = ǫp − ǫp. First, we obtain a suitable expression for (ǫp,∇ · w)Ω.

Lemma 3.4. Let P : H1(Th) → V h be any projection such that (Pw−w,v)T = 0
for all v ∈ P k−1(T ) for all T ∈ Th. Then,

(ǫp,∇ · w)Ω =(ǫw,∇× w)Th
+ 〈Sτ (ǫu − ǫbu),Pw − P ∂w〉∂Th

− 〈n× (Πw −w) + Sτ (Πu− P ∂u), (Pw − P ∂w)t〉∂Th
.

Proof. We have

(ǫp,∇ ·w)Ω = 〈ǫp,w · n〉∂Th
− (∇ǫp,w)Th

= 〈ǫp,w · n〉∂Th
− (∇ǫp,Pw)Th

,

since ∇ǫp|T ∈ P k−1(T ) for all T ∈ Th. By the error equation (3.1b) with v := Pw,
we get

(ǫp,∇ · w)Ω =〈ǫp,w · n〉∂Th
+ (ǫw,∇× Pw)Th

+ 〈n× ǫw + Sτ (ǫu − ǫbu),Pw〉∂Th

− 〈n× (Πw −w) + Sτ (Πu− P ∂u),Pwt〉∂Th
.

By the error equation (3.1d) with µ := P ∂w, and taking into account that P ∂w = 0

on Ω, we get

(ǫp,∇ · w)Ω =(ǫw,∇× Pw)Th
+ 〈n× ǫw + Sτ (ǫu − ǫbu),Pw − P ∂w〉∂Th

− 〈n× (Πw −w) + Sτ (Πu− P ∂u), (Pw − P ∂w)t〉∂Th
.

Integrating by parts the first term, and using the property of the auxiliary projection
P , we get

(ǫp,∇ · w)Ω =(∇× ǫw,w)Th
− 〈n× ǫw,P ∂w〉∂Th

+ 〈Sτ (ǫu − ǫbu),Pw − P ∂w〉∂Th

− 〈n× (Πw −w) + Sτ (Πu− P ∂u), (Pw − P ∂w)t〉∂Th
,

and the result follows after integrating by parts the first term of the right-hand
side.This completes the proof. �

Now, following [13], we introduce the operator P : H1(T ) → P k(T ) defined by

(Pw − w,v)T = 0 ∀v ∈ P k−1(T ),(3.3a)

〈(Pw − w) · n,v · n〉∂T = 0 ∀v ∈ P k(T )⊥,(3.3b)

where P k(T )⊥ is the space of polynomials in P k(T ) which are L2(K)-orthogonal
to all polynomials in P k−1(T ).

Lemma 3.5. We have

〈(ǫu − ǫbu) · n, (Pw − P ∂w) · n〉∂T = 0.
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Proof. Note that, by the error equations (3.1c),

〈(ǫu − ǫbu) · n, q〉∂T = 0

for all q ∈ Pk(T ) which is L2(T )−orthogonal to polynomials in Pk−1(T ). By
Lemma 5.1 in [13], this implies that there exists a function v ∈ P k(T )⊥ such
that (ǫu−ǫbu) ·n = v ·n on ∂K. As a consequence, the result follows by the second
equation defining the projection P , (3.3b). This completes the proof. �

Corollary 3.6. We have that

‖ǫp − (Πp − p)‖Ω ≤ CCτt
|||(Πw −w,Πu− P ∂u)|||τt,∂Th

,

where Cτt
is defined in Theorem 2.3.

Proof. By Lemma 3.4 and Lemma 3.5,

(ǫp,∇ · w)Ω =(ǫw,∇× w)Th
+ 〈Sτ (ǫu − ǫbu),Pw − P ∂w〉∂Th

− 〈n× (Πw −w) + Sτ (Πu− P ∂u), (Pw − P ∂w)t〉∂Th

=(ǫw,∇× w)Th
+ 〈Sτ (ǫu − ǫbu), (Pw − P ∂w)t〉∂Th

− 〈n× (Πw −w) + Sτ (Πu− P ∂u), (Pw − P ∂w)t〉∂Th
,

This implies that

(ǫp,∇ · w)Ω ≤‖ǫw‖Th
‖∇ × w‖Th

+ ‖ǫu − ǫbu‖Sτ
‖(Pw − P ∂w)t‖Sτ

|||(Πw −w,Πu− P ∂u)|||τt,∂Th
‖(Pw − P ∂w)t‖Sτ

.

Finally, by Corollary 3.3,

(ǫp,∇ · w)Ω ≤|||(Πw −w,Πu− P ∂u)|||τt,∂Th
Θh

where

Θh =‖∇× w‖Th
+ 2‖(Pw − P ∂w)t‖Sτ

≤ C Cτt
‖w‖H1 ,

by Proposition 4.4 in [13].
The result now follows form the fact that

‖ǫp − ǫp‖Ω ≤ C sup
w∈H1

0
(Ω)\{0}

(ǫp,∇ ·w)Ω
‖w‖H1(Ω)

,

and that ǫp = Πp − p, by the last error equation (3.1f). This completes the proof.
�

3.4. Estimate of the projection of the error in the velocity. In order to
proceed with the estimate estimates of the velocity by using duality argument, we
first present several properties of the projection (Π,Π , Π).

Lemma 3.7. Assume that ψ,φ, φ are arbitrary functions inH1(Th),H1(Th), H1(Th).
Then we have

(w,∇×ψ)Th
=
(
w,∇× (Πψ)

)
Th

− 〈w, (ψ − Πψ) × n〉∂Th
,(3.4a)

(q,∇ · φ)Th
=〈qn,φ〉∂Th

+ (∇q,Πφ)Th
,(3.4b)

(v,∇× φ)Th
=(∇× v,Πφ)Th

+ 〈v × n,φ〉∂Th
,(3.4c)

(v,∇φ)Th
=
(
v,∇(Πφ)

)
Th

+ 〈v, (φ − Πφ)n〉∂Th
,(3.4d)

for all (w,v, q) ∈W h × V h × Ph.
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Proof. We will prove (3.4a) first. By integration by parts and (2.4a), we have

(w,∇×ψ)Th
=(∇×w,ψ)Th

− 〈w,ψ × n〉∂Th

=(∇×w,Πψ)Th
− 〈w,ψ × n〉∂Th

.

Integrating by parts again, we get

(w,∇×ψ)Th
=
(
w,∇× (Πψ)

)
Th

− 〈w, (ψ − Πψ) × n〉∂Th
.

This completes the proof for the first identity. The rest of the identities in (3.4)
can be proven similarly. �

We now use a duality argument to derive the estimate in the velocity.

Proposition 3.8. We have

(ǫu,θ)Th
=〈(ǫu − ǫbu)t, (ψ − Πψ) × n+ τt(P ∂φ−Πφ)t〉∂Th

− 〈n× (Πw −w) + τt(Πu− P ∂u)t, (P ∂φ−Πφ)t〉∂Th
,

where θ, φ and ψ are the functions in the dual problem (2.5).

Proof. By the equations defining the dual problem, (2.5a)–(2.5c), we have

(ǫu,θ)Th
=(ǫw,ψ + ∇× φ)Th

− (ǫu,∇×ψ + ∇φ)Th
− (ǫp,∇ · φ)Th

=(ǫw,ψ)Th
− (ǫu,∇×ψ)Th

+ (ǫw,∇× φ)Th
− (ǫp,∇ · φ)Th

− (ǫu,∇φ)Th
.

Applying the orthogonality property (2.4a) to the first term of the right-hand side
and the properties (3.4a)–(3.4d) to the last four terms, we obtain

(ǫu,θ)Th
=(ǫw,Πψ)Th

−
(
ǫu,∇× (Πψ)

)
Th

+ 〈ǫu, (ψ − Πψ) × n〉∂Th

+ (∇× ǫw,Πφ)Th
+ (∇ǫp,Πφ)Th

+ 〈ǫw × n− ǫpn,φ〉∂Th

− (ǫu,∇(Πφ))Th
− 〈ǫu, (φ − Πφ)n〉∂Th

.

Now, by using the first four error equations (3.1) we take τ := Πψ, v := Πφ,
q := Πφ, and µ := P ∂φ, respectively, we get

(ǫu,θ) =〈ǫbu,Πψ × n〉∂Th
+ 〈ǫu, (ψ − Πψ) × n〉∂Th

− 〈Sτ (ǫu − ǫbu),Πφ〉∂Th
+ 〈n× (Πw −w) + Sτ (Πu− P ∂u), (Πφ)t〉∂Th

+ 〈Sτ (ǫu − ǫbu),P ∂φ〉∂Th
− 〈n× (Πw −w) + Sτ (Πu− P ∂u), (P ∂φ)t〉∂Th

+ 〈ǫbu, (Πφ)n〉∂Th
+ 〈ǫu, (φ − Πφ)n〉∂Th

=〈ǫbu,ψ × n〉∂Th
+ 〈ǫu − ǫbu, (ψ − Πψ) × n〉∂Th

+ 〈n× (Πw −w) + Sτ (Πu− P ∂u), (Πφ− P ∂φ)t〉∂Th

+ 〈Sτ (ǫu − ǫbu),P ∂φ−Πφ〉∂Th

+ 〈ǫbu, φn〉∂Th
+ 〈ǫu − ǫbu, (φ − Πφ)n〉∂Th

=〈ǫbu,ψ × n〉∂Th
+ 〈ǫu − ǫbu, (ψ − Πψ) × n+ τt(P ∂φ−Πφ)t〉∂Th

+ 〈n× (Πw −w) + Sτ (Πu− P ∂u), (Πφ− P ∂φ)t〉∂Th

+ 〈ǫbu, φn〉∂Th
+ 〈(ǫu − ǫbu) · n, (φ − Πφ) + τn(φ−Πφ) · n〉∂Th

.

This implies that

(ǫu,θ)Th
=〈(ǫu − ǫbu)t, (ψ − Πψ) × n+ τt(φ−Πφ)t〉∂Th
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+ 〈(Πw −w) × n− Sτ (Πu− P ∂u), (P ∂φ−Πφ)t〉∂Th
+ T1 + T2,

where

T1 =〈ǫbu,ψ × n+ φn〉∂Th

T2 =〈(ǫu − ǫbu) · n, (φ − Πφ) + τn(φ−Πφ) · n〉∂Th
.

But T1 = 〈ǫbu,ψ×n+φn〉∂Ω since ǫbu is a single-valued function on ∂Th. Moreover,
ǫbu|∂Ω = 0 by the error equation (3.1e), and we conclude that T1 = 0.

We also have that T2 = 0, by the orthogonality property of the auxiliary projec-
tion (2.4d). This completes the proof. �

Corollary 3.9. Assume that the elliptic regularity inequality (2.6) holds. Then we

have

‖ǫu‖Th
≤ C Hτ |||(Πw −w,Πu− P ∂u)|||τt,∂Th

,

where Hτ is defined in Theorem 2.3.

Proof. It directly follows from by Corollary 3.3 and Proposition 3.8 that

(ǫu,θ)Th
≤‖ǫu − ǫbu‖Sτ

|||(ψ − Πψ,P ∂φ−Πφ)|||τt,∂Th

+ |||(Πw −w,Πu− P ∂u)|||τt,∂Th
‖(P ∂φ−Πφ)t‖Sτ

≤2 |||ψ − Πψ,P ∂φ−Πφ)|||τt,∂Th
|||(Πw −w,Πu− P ∂u)|||τt,∂Th

.

As a consequence, we get

‖ǫu‖Th
≤ Dτt

|||(Πw −w,Πu− P ∂u)|||τt,∂Th

where

Dτt
:= 2 sup

θ∈L2(Ω)\{0}

|||(ψ − Πψ,P ∂φ−Πφ)|||τt,∂Th

‖θ‖Ω
.

But, by Proposition 2.2,

|||(Πψ −ψ,Πφ− φ)|||τt,∂Th
≤ C max

T∈Th

h
1/2
T ‖τ−1

t ‖
1/2
L∞(∂T ) E(Πψ,ψ)

+ C max
T∈Th

h
1/2
T ‖τt‖

1/2
L∞(∂T ) E(Πφ,φ),

and by the approximation properties of the projections,

|||(Πψ −ψ,Πφ− φ)|||τt,∂Th
≤ C max

T∈Th

h
1/2
T ‖τ−1

t ‖
1/2
L∞(∂T ) ‖ψ‖H1(Ω)

+C max
T∈Th

h
1/2
T ‖τt‖

1/2
L∞(∂T ) (max

T∈Th

h
min{1,k}
T ‖φ‖H2(Ω) + max

T∈Th

‖(τ∗
n)−1‖L∞(∂T ) ‖φ‖H1(Ω)).

Finally, by using the elliptic regularity inequality (2.6) and the definition of the
constant Hτ , we get we get that

|||(Πψ −ψ,Πφ− φ)|||τt,∂Th
≤ C Hτ ‖θ‖Ω.

This completes the proof. �
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4. Concluding remarks

Note that all the estimates of the projection of the errors are independent of the
stabilization function τn. Note also that the approximation errors of the auxiliary
projection do hold in the limit as τn goes to infinity. This suggests that we should
be able to take the limit and obtain H(div)-conforming HDG methods based on
a vorticity-velocity-pressure formulation just as was done for HDG methods based
on velocity gradient-velocity-pressure formulation; see [13]. This constitutes the
subject of ongoing research.

Appendix A. Proof of the approximation result of Proposition 2.2

In this section, we prove Proposition 2.2. To do that, we need to show how to
estimate the error in the border on an element T , ‖Z − ζ‖∂T , in terms of the error
inside the element, ‖Z − ζ‖T .

Lemma A.1. Let ζ be any element of H1(T ) and let Z, S be two arbitrary elements

of Pk(T ). Then

‖Z − ζ‖∂T ≤ C h
−1/2
T (‖Z − ζ‖T + ‖S − ζ‖T ) + C h

1/2
T ‖∇(S − ζ)‖T ,

where the constant C depends only on the shape-regularity constant of the simplex

T and on the polynomial degree k.

Proof. We have

‖Z − ζ‖∂T ≤ ‖Z − S‖∂T + ‖S − ζ‖∂T ≤ C h
−1/2
T ‖Z − S‖T + ‖S − ζ‖∂T ,

by a standard inverse inequality. Then, by the trace inequality,

‖Z − ζ‖∂T ≤ C h
−1/2
T (‖Z − S‖T + ‖S − ζ‖T ) + C h

1/2
T ‖∇(S − ζ)‖T ,

and the result follows by the triangle inequality. �

We are now ready to prove Proposition 2.2.

Proof. Since, by definition of the seminorm |||·|||τt,∂Th
, we have that

|||(Πζ − ζ,Πη − η)|||τt,∂Th
≤ max

K∈Th

h
1/2
T ‖τ−1

t ‖
1/2
L∞(∂T )

(
∑

T∈Th

h−1
T ‖Πζ − ζ‖2

∂T

)1/2

+ max
K∈Th

h
1/2
T ‖τt‖

1/2
L∞(∂T )

(
∑

T∈Th

h−1
T ‖Πη − η‖2

∂T

)1/2

,

the result follows by a componentwise application of Lemma A.1. This completes
the proof. �
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