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Hybridizable discontinuous Galerkin (HDG) methods retain the main advantages of standard discontin-
uous Galerkin (DG) methods, including their flexibility in meshing, ease of design and implementation,
ease of use within an hp-adaptive strategy and preservation of local conservation of physical quantities.
Moreover, HDG methods can significantly reduce the number of degrees of freedom, resulting in
a substantial reduction of computational cost. In this paper, we study an HDG method for the
second-order elliptic problem with discontinuous coefficients. The numerical scheme is proposed on
general polygonal and polyhedral meshes with specially designed stabilization parameters. Robust a
priori and a posteriori error estimates are derived without a full elliptic regularity assumption. The
proposed a posteriori error estimators are proved to be efficient and reliable without a quasi-monotonicity
assumption on the diffusion coefficient.

Keywords: hybridizable discontinuous Galerkin methods; a priori error estimates; a posteriori error
estimates; discontinuous coefficient.

1. Introduction

Let Ω ⊂ R
d (d = 2 or 3) be a polygonal or polyhedral domain with Lipschitz boundary ∂Ω := Γ =

ΓD ∪ ΓN , where meas(ΓD) > 0 and ΓD ∩ ΓN = ∅. We consider the following second-order elliptic
problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a−1p − ∇u = 0, in Ω ,

∇ · p = f , in Ω ,

u = gD, on ΓD,

p · n = gN , on ΓN ,

(1.1)

where f ∈ L2(Ω), gD ∈ L2(ΓD) and gN ∈ L2(ΓN) are given scalar-valued functions; n is the outward
unit normal vector; and the diffusion coefficient a := a(x) ∈ L∞(Ω) is positive and piecewise constant
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1578 G. CHEN AND J. CUI

on polygonal/polyhedral subdomains of Ω with possible large jumps across subdomain boundaries
(interfaces).

For problem (1.1) with a discontinuous coefficient a or on a nonconvex domain Ω , the solutions may
not be piecewise H2 smooth. Especially when the coefficient a is discontinuous, the solutions of (1.1)
may only have H1+s regularity with small s > 0 (Kellogg, 1975; Grisvard, 1985), and are not piecewise
H1+s smooth with s > 1/2. However, the standard a priori error analysis of the discontinuous Galerkin
(DG) methods requires the solution to be piecewise H1+s smooth with s > 1/2. This theoretical gap is
filled by the work of Cai et al. (2011), where the authors relax the regularity requirement to s > 0.

In the robust analysis of a posteriori error estimates, a quasi-monotonicity assumption on the
diffusion coefficient is usually required. The concept of quasi-monotonicity has been introduced and
exploited in Dryja et al. (1996) to obtain the robust interpolation properties of finite element methods
in terms of weighted norms. Recently, robust a posteriori error estimates were given in Cai et al. (2017)
without the quasi-monotonicity assumption. The error analysis only requires the solution to be in H1+s

with s > 0.
Since the late 1970s, DG methods have become increasingly popular due to their attractive features,

including their flexibility in meshing, and preserving local conservation of physical quantities: see
Arnold (1982) and Arnold et al. (2002) for elliptic boundary value problems. DG methods are also sui
for parallel computation and ease of use within an hp-adaptive strategy. As pointed out in Demkowicz
& Gopalakrishnan (2011), an inconvenient feature of DG methods is that they may require the
penalization parameter to be ‘sufficiently’ large (practically unknown) for stability. This inconvenience
was avoided by local discontinuous Galerkin (LDG) methods (Cockburn & Shu, 1998; Castillo et al.,
2000; Cockburn et al., 2005; Carrero et al., 2006), which have an additional property that fluxes
can be eliminated locally. Later, hybridizable discontinuous Galerkin (HDG) methods (Cockburn
et al., 2009, 2010) were devised, which can also overcome this difficulty. HDG methods retain the
advantages of standard DG methods and can significantly reduce the number of degrees of freedom,
therefore allowing for a substantial reduction of computational cost. In Cockburn et al. (2010), an
HDG method for second-order elliptic problems was studied, where the analysis requires H2 regularity.
In Li & Xie (2016), another HDG method for second-order elliptic problems was analyzed under
H1 regularity, where the constants in error estimates depend on the lower and upper bounds of the
diffusion coefficient. The error analyses in both Cockburn et al. (2010) and Li & Xie (2016) are all
derived based on simplicial meshes. HDG methods that allow polygonal meshes were first proposed
in Lehrenfeld (2010) for elliptic problems. This approach has been extended and extensively studied
for different problems, such as convection–diffusion problems (Qiu & Shi, 2016a), Navier–Stokes
equations (Qiu & Shi, 2016b), Maxwell’s equations (Chen et al., 2017), elasticity problems (Qiu et al.,
2018), etc.

A posteriori error estimates for DG methods for (1.1) with H1 regularity and smooth coefficient
were given in Gudi (2010). The error analysis therein cannot be extended to the case of a non-
smooth coefficient unless quasi-monotonicity of the coefficient is assumed. In Wihler & Rivière (2011),
a posteriori error estimates for DG methods based on W2,p(Ω), p ∈ (1, 2] regularity for (1.1) with
smooth coefficient were derived in two dimensions. In Di Pietro & Ern (2012), a posteriori error

estimates for DG methods based on W
2d

d+2 ,p(Ω), p ∈ (1, 2] regularity for (1.1) with non-smooth
coefficient were provided. Note that by Sobolev embedding theory, the regularity requirements in
Wihler & Rivière (2011) and Di Pietro & Ern (2012) are actually stronger than H1+s(Ω), s > 0.
Recently, a posteriori error estimates for HDG methods for second-order elliptic problems with smooth
coefficients were studied in Cockburn & Zhang (2012, 2013). The error analysis therein is also based
on simplicial meshes.
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HDG METHOD FOR THE SECOND-ORDER ELLIPTIC PROBLEM 1579

In this paper, we propose and analyze an HDG method on general polygonal or polyhedral meshes
for second-order elliptic problems with discontinuous coefficients. Robust a priori and a posteriori
error estimates are given under low regularity assumptions. Our numerical scheme uses piecewise-
polynomial approximations of degrees k + 1, k and k (k � 0) for the scalar, the flux and the scalar on
the inter-element boundaries, respectively. The a posteriori error estimates provide global upper bounds
and local lower bounds for the error in terms of the error estimator, without the quasi-monotonicity
assumption. Numerical experiments show that the errors converge at the same rates as for H2-regular
problems.

The rest of this paper is organized as follows: in section 2, we introduce our notational conventions
and derive the a priori error estimates for the HDG method. In Section 3 we present the a posteriori
error analysis for the HDG method. In Section 3, several numerical experiments are performed in order
to confirm the theoretical results.

Throughout this paper, we use C to denote a positive constant independent of mesh size and a, which
may take on different values at each occurrence. We use a � b (a � b) to represent a � Cb (a � Cb),
and a ∼ b to represent a � b � a.

2. Notation and the HDG method

2.1 Notation

For any bounded domain Λ ⊂ R
s (s = d, d−1), let Hm(Λ) and Hm

0 (Λ) denote the usual Sobolev spaces
on Λ, and ‖ · ‖m,Λ (| · |m,Λ, resp.) denote the norm (semi-norm, resp.) on these spaces. We use (·, ·)m,Λ to
denote the inner product of Hm(Λ), with (·, ·)Λ := (·, ·)0,Λ. When Λ = Ω , we denote ‖ · ‖m := ‖ ·‖m,Ω ,
| · |m := | · |m,Ω and (·, ·) := (·, ·)Ω . In particular, when Λ ∈ R

d−1, we use 〈·, ·〉Λ to replace (·, ·)Λ. For
an integer k � 0, Pk(Λ) denotes the set of all polynomials defined on Λ with degree less than or equal
to k.

Let Th = ⋃{T} be a shape regular partition (to be defined later) of the domain Ω consisting of
arbitrary polygons or polyhedra for d = 2 or 3, respectively. Note that Th can be a conforming partition
or a nonconforming partition, which allows hanging nodes.

For each T ∈ Th, we let hT be the infimum of the diameters of circles (or spheres) containing T and
denote the mesh size h := maxT∈Th

hT . An edge (or face) E on the boundary ∂T of T is called a proper
edge (or face) if all endpoints (or vertices) of the edge (or face) E are nodes of Th and no other nodes
of Th are on E. In Fig. 1, for example EF, FH and HI are proper edges, while EH, FI and EI are not.
Let Eh = ⋃{E} be the union of all proper edges (faces) of T ∈ Th and EB

h = Eh ∩ Γ (ED
h = Eh ∩ ΓD,

EN
h = Eh ∩ ΓN) be the union of all proper edges (faces) of T ∈ Th on boundary Γ (ΓD, ΓN). Let E I

h
be the set of all interior proper edges (faces). We denote by hE the length of edge E if d = 2 and the
infimum of the diameters of circles containing face E if d = 3. For all T ∈ Th and E ∈ Eh, we denote
by nT and nE the unit outward normal vectors along ∂T and E, respectively. Let [[v]] and {{v}} denote the
usual jump and mean values of a function v across every proper edge E ∈ Eh.

The partition Th is called shape regular when the following conditions hold:

• M1 (Star-shaped elements). For each element T ∈ Th, there exists a positive constant θ∗ and a point
MT ∈ T such that T is star-shaped with respect to every point inside the circle (or sphere) whose
center is MT and radius is θ∗hT .

• M2 (Edges or faces). For each element T ∈ Th, there exists a positive constant l∗ such that the
distance between any two vertices (including the hanging nodes) is greater than or equal to l∗hT .
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1580 G. CHEN AND J. CUI

Fig. 1. Demonstration of edges in a two-dimensional mesh.

We also assume the partition Th satisfies the following compatibility conditions:

• T1. Each boundary edge (or face) E ∈ EB
h belongs to ΓD or ΓN .

• T2. For each element T ∈ Th, aT := a|T is a constant.

When d = 2, for each T ∈ Th, we connect MT and the vertices of T (including the hanging nodes)
to get a set of triangles w(T). When d = 3, for each face E ⊂ ∂T , we choose one vertex A of E and
connect A and the other vertices of E to get a set of triangles v(E); then we connect MT and all vertices
of the triangles in v(E) to get a set of tetrahedrons w(T). Let Mh := ⋃

T∈Th
w(T) and Fh be the union

of all the edges (faces) of Mh. Note that Mh is shape regular due to M1 and M2.
We use ∇h and ∇h· to denote the broken gradient and broken divergence with respect to Th or Mh.

The following inverse inequality and trace inequality will be used in the error analysis.

Lemma 2.1 For all T ∈ Th and any given nonnegative integer j, the following inequalities hold true:

|w|1,T � h−1
T ‖w‖0,T ∀ w ∈ Pj(T), (2.1)

‖w‖0,∂T � h−1/2
T ‖w‖0,T + h1/2

T |w|1,T ∀ w ∈ H1(T). (2.2)

Proof. By using an inverse inequality on the shape regular simplicial mesh Mh, we have

|w|21,T =
∑

M∈Mh:M⊂T

|w|21,M �
∑

M∈Mh:M⊂T

h−1
M ‖w‖2

0,M � h−1
T ‖w‖2

0,T ∀ w ∈ Pj(T),

which proves (2.1).
By using a trace inequality on the shape regular simplicial mesh Mh, for all w ∈ H1(T), it holds that

‖w‖2
0,∂T �

∑
M∈Mh:M⊂T

‖w‖2
0,∂M

�
∑

M∈Mh:M⊂T

(
h−1

M ‖w‖2
0,M + hM|w|21,M

)

� h−1
T ‖w‖2

0,T + hT |w|21,T ,

which proves (2.2). �
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HDG METHOD FOR THE SECOND-ORDER ELLIPTIC PROBLEM 1581

Let γT := hT
ρT ,max

be the chunkiness parameter of T ∈ Th, where ρT ,max denotes the supremum of
the radius of a sphere with respect to that T is star-shaped. Then, in view of M1, we have 2 � γT �

hT
θ∗hT

= θ−1∗ , i.e. γT is independent of hT . Thus, from Brenner & Scott (2008, Lemma 4.3.8) we obtain

the following estimate.

Lemma 2.2 For all T ∈ Th and v ∈ Hm(T) with m � 1, there exists Im−1v ∈ Pm−1(T) such that

|v − Im−1v|s,T � hm−s
T |v|m,T , for 0 � s � m. (2.3)

In order to derive error estimates in Sections 3 and 4, we introduce the following results from
Cai et al. (2017).

Lemma 2.3 Let E be an edge (or face) of T ∈ Th, nT be the unit vector normal to E and s > 0. Assume
that v is a given function in H1+s(T) and Δv ∈ L2(T). Then for any wh ∈ Pj(T) with a fixed nonnegative
integer j, we have

〈∇v · nT , wh〉E � Ch−1/2
E ‖wh‖0,E

(‖∇v‖0,T + hT‖Δv‖0,T

)
.

Remark 2.4 In Cai et al. (2017, Lemma 2.7), the above lemma holds for simplicial elements. Note that
for every T ∈ Th, we can decompose T into several simplexes whose diameters are of order hT ; hence,
Lemma 2.3 holds on T .

2.2 An HDG finite element method

For any T ∈ Th, E ∈ Eh and any nonnegative integer j, let Πo
j : L2(T) → Pj(T) and Π∂

j : L2(E) →
Pj(E) be the usual L2-projection operators. Vector and tensor analogs of Πo

j and Π∂
j are also denoted

by Πo
j and Π∂

j , respectively.
For any integer k � 0, we introduce the following finite-dimensional spaces:

Vh :=
{
vh ∈ L2(Ω) : vh|T ∈ Pk+1(T), ∀ T ∈ Th

}
,

V̂h :=
{̂

vh ∈ L2(Eh) : v̂h|E ∈ Pk(E)], ∀ E ∈ Eh

}
,

V̂ g̃
h :=

{̂
vh ∈ V̂h : v̂h|E = Π∂

k g̃, ∀ E ∈ ED
h

}
, with g̃ = 0, gD,

Qh :=
{

qh ∈ [L2(Ω)]d : qh|T ∈ [Pk(T)]d, ∀ T ∈ Th

}
.

Then the HDG method for (1.1) reads as follows. For all (vh, v̂h, rh) ∈ Vh × V̂0
h × Qh, find

(uh, ûh, ph) ∈ Vh × V̂gD
h × Qh such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a−1ph, rh) + (uh, ∇h · rh) − 〈̂uh, rh · n〉∂Th
= 0,

− (vh, ∇h · ph) + 〈 v̂h, ph · n〉∂Th

+
〈
τ

(
Π∂

k uh − ûh, Π∂
k vh − v̂h

)〉
∂Th

= −( f , vh) + 〈gN , v̂h〉ΓN
,

(2.4)
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1582 G. CHEN AND J. CUI

where

τ |E = WEh−1
E , ∀ E ∈ Eh,

and WE satisfies the following property:

WE ∼ max
E⊂∂T

{aT}.

Remark 2.5 There are two simple choices for WE:

(1) WE = aT , when E ⊂ ∂T ∩ ∂Ω ,

WE = aT+ + aT−
2

, when E is shared by T + and T − .

(2) WE = max
E⊂∂T

{aT}, ∀ E ⊂ Eh.

To simplify notation, we define

Bh( p, u, û; q, v, v̂) = (a−1p, q) + (u, ∇h · q) − 〈̂u, q · n〉∂Th

− (v, ∇h · p) + 〈̂v, p · n〉∂Th
+ 〈τ(Π∂

k u − û), Π∂
k v − v̂〉∂Th

. (2.5)

Then (2.4) can be rewritten in a compact form as follows: find (uh, ûh, ph) ∈ Vh × V̂gD
h × Qh such that

Bh( ph, uh, ûh; rh, vh, v̂h) = −( f , vh) + 〈gN , v̂h〉ΓN
, (2.6)

for all (vh, v̂h, rh) ∈ Vh × V̂0
h × Qh. Let (u, p) ∈ H1(Ω) × H(div, Ω) be the solution of (1.1). It follows

from the definition of Bh and integration by parts that

Bh( p, u, u; rh, vh, v̂h) = −( f , vh) + 〈gN , v̂h〉ΓN
, (2.7)

for all (rh, vh, v̂h) ∈ Qh × Vh × V̂0
h .

By (2.6) and (2.7), we have the following orthogonality result.

Theorem 2.6 (Orthogonality). Let (u, p) ∈ H1(Ω) × H(div, Ω) be the solution of (1.1) and
(uh, ûh, ph) ∈ Vh × V̂gD

h × Qh be the solution of (2.6). Then for all (vh, v̂h, rh) ∈ Vh × V̂0
h × Qh, we

have

Bh( p − ph, u − uh, u − ûh; rh, vh, v̂h) = 0. (2.8)

2.3 Projections

To establish error estimates for the proposed HDG method, we need the following approximation and
stability results for the L2-projections Πo

j and Π∂
j with nonnegative integer j.
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HDG METHOD FOR THE SECOND-ORDER ELLIPTIC PROBLEM 1583

Lemma 2.7 Let m be an integer with 1 � m � j + 1. For all T ∈ Th, E ∈ Eh, it holds that

‖Πo
j v‖0,T � ‖v‖0,T ∀ v ∈ L2(T), (2.9)

‖Π∂
j v‖0,E � ‖v‖0,E ∀ v ∈ L2(E), (2.10)

‖v − Π∂
j v‖0,∂T � hm−1/2

T |v|m,T ∀ v ∈ Hm(T), (2.11)

|v − Πo
j v|s,T � hm−s

T |v|m,T ∀ v ∈ Hm(T), 0 � s � m, (2.12)

‖∇s(v − Πo
j v)‖0,∂T � hm−s−1/2

T |v|m,T ∀ v ∈ Hm(T), 1 � s + 1 � m, (2.13)

where s is an integer.

Proof. The stability results (2.9–2.10) follow from the definitions of L2-projections. The approximation
result (2.13) follows directly from (2.2) and (2.12). Since ‖v −Π∂

j v‖0,∂T � ‖v −Πo
j v‖0,∂T , the estimate

(2.11) follows from (2.13) with s = 0. It only remains to prove (2.12). In fact, by combining (2.3), the
inverse estimate (2.1) and the stability estimate (2.9), we have

|v − Πo
j v|s,T � |v − Im−1v|s,T + |Πo

j (v − Im−1v)|s,T

� |v − Im−1v|s,T + h−s
T ‖Πo

j (v − Im−1v)‖0,T

� |v − Im−1v|s,T + h−s
T ‖v − Im−1v‖0,T

� hm−s
T |v|m,T .

�
Lemma 2.8 For any nonnegative integer j, it holds that

‖v − Πo
j v‖0,∂T � h1/2

T |v − Πo
j v|1,T . (2.14)

Proof. By the trace inequality (2.2) and the approximation property (2.12), we get

‖v − Πo
k v‖0,∂T � h−1/2

T ‖v − Πo
k v‖0,T + h1/2

T |v − Πo
k v|1,T

= h−1/2
T ‖v − Πo

k v − Πo
k (v − Πo

k v)‖0,T + h1/2
T |v − Πo

k v|1,T

� h1/2
T |v − Πo

k v|1,T .

�
Next, we recall the following classical results.

Theorem 2.9 (Adams & Fournier, 2003, Page 220, Theorem 7.23 and Brenner & Scott, 2008, Page
373, Proposition 14.1.5) Given Banach spaces A1 ↪→ A0 and B1 ↪→ B0, let K : (A0 + A1) → (B0 + B1)
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1584 G. CHEN AND J. CUI

be a bounded linear operator from Ai into Bi (i = 0, 1). Then K : Aθ ,p → Bθ ,p is a bounded linear
operator for any 0 < θ < 1, 1 � p � ∞. Moreover,

‖K ‖Aθ , p→Bθ , p
� ‖K ‖1−θ

A0→B0
‖K ‖θ

A1→B1
,

where Aθ , p := [A0, A1]θ , p, Bθ , p := [B0, B1]θ , p. See Brenner & Scott (2008, Page 372) for detailed
definitions of Aθ , p and Bθ , p.

Theorem 2.10 (Brenner & Scott, 2008, Page 375, Theorem 14.2.7) If Ω has a Lipschitz boundary,
then

[Hm(Ω), H
(Ω)]θ ,2 = H(1−θ)m+θ
(Ω),

for all real numbers m and 
, with 0 < θ < 1.

With the above results, we are ready to derive the following fractional approximation properties of
the L2-projection Πo

j .

Lemma 2.11 Let j be a nonnegative integer, and let real numbers α, β satisfy 0 � α < β � j + 1. Then
for all v ∈ Hβ(T) and T ∈ Th, ∥∥∥(Id − Πo

j

)
v
∥∥∥

α,T
� hβ−α

T ‖v‖β,T ,

where Id is the identity operator.

Proof. Let r � β be an integer. When r − 1 < α < r, we take A0 = A1 = Hr(Ω), B0 = Hr−1(Ω),
B1 = Hr(Ω) and θ = α + 1 − r in Theorem 2.9. Then by combining (2.12) and Theorems 2.9 and 2.10,
we have ∥∥∥(

Id − Πo
j

)
v
∥∥∥

α,T

‖v‖r,T
�

∥∥∥(
Id − Πo

j

)∥∥∥
Hr(T)→Hα(T)

�
∥∥∥(

Id − Πo
j

)∥∥∥1−θ

Hr(T)→Hr−1(T)

∥∥∥(
Id − Πo

j

)∥∥∥θ

Hr(T)→Hr(T)

� h1−θ
T

= hr−α
T .

When α = r − 1 or α = r, it follows from (2.12) that∥∥∥(
Id − Πo

j

)
v
∥∥∥

α,T
� hr−α

T ‖v‖r,T . (2.15)

Therefore, (2.15) holds for r − 1 � α � r. In view of (2.12) and (2.15), we have∥∥∥(
Id − Πo

j

)
v
∥∥∥

α,T
=

∥∥∥(
Id − Πo

j

)
v − Πo

j

(
Id − Πo

j

)
v
∥∥∥

α,T

� h1−α
T

∥∥∥(
Id − Πo

j

)
v
∥∥∥

0,T

� hr−α
T ‖v‖r,T .
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HDG METHOD FOR THE SECOND-ORDER ELLIPTIC PROBLEM 1585

In particular, when r = β we have∥∥∥(
Id − Πo

j

)
v
∥∥∥

α,T
� hβ−α

T ‖v‖β,T .

Next, we assume α < β < r and take A0 = Hα(Ω), A1 = Hr(Ω), B0 = B1 = Hr(Ω), θ = β−α
r−α

. From
(2.12), Theorems 2.9 and 2.10 and (2.15), we have∥∥∥(

Id − Πo
j

)
v
∥∥∥

α,T

‖v‖β,T
�

∥∥∥(
Id − Πo

j

)∥∥∥
Hβ(T)→Hα(T)

�
∥∥∥(

Id − Πo
j

)∥∥∥1−θ

Hα(T)→Hα(T)

∥∥∥(
Id − Πo

j

)∥∥∥θ

Hr(T)→Hα(T)

� h(r−α)θ
T

= hβ−α
T ,

which completes the proof. �

3. A priori error estimates

Lemma 3.1 Let (u, p) ∈ H1(Ω)× H(div, Ω) be the solution of (1.1) and (uh, ûh, ph) ∈ Vh × V̂gD
h × Qh

be the solution of (2.6). The following estimate holds:

a1/2
T |u − uh|1,T � a−1/2

T

∥∥ p − ph

∥∥
0,T + a1/2

T h−1/2
T

∥∥∥Π∂
k uh − ûh

∥∥∥
0,∂T

, (3.1)

for any T ∈ Th.

Proof. We apply integration by parts to the first equation of (2.4) and use the definition of Π∂
k to get

(
a−1ph, rh

)
− (∇huh, rh) −

〈̂
uh − Π∂

k uh, rh · n
〉
∂Th

= 0.

For any T ∈ Th, we take rh = a−1ph − ∇huh ∈ [Pk(T)]d and rh = 0 on Ω/T in the equation above and
use an inverse inequality to get

∥∥∥a−1
T ph − ∇uh

∥∥∥2

0,T
=

〈̂
uh − Π∂

k uh,
(

a−1ph − ∇uh

)
· n

〉
∂T

�
∥∥∥a−1

T ph − ∇uh

∥∥∥
0,T

h−1/2
T

∥∥∥Π∂
k uh − ûh

∥∥∥
0,∂T

,

which leads to ∥∥∥a−1
T ph − ∇uh

∥∥∥
0,T

� h−1/2
T

∥∥∥Π∂
k uh − ûh

∥∥∥
0,∂T

. (3.2)

By multiplying a1/2
T to both sides of (3.2), we get

∥∥∥a−1/2
T ph − a1/2

T ∇uh

∥∥∥
0,T

� a1/2
T h−1/2

T

∥∥∥Π∂
k uh − ûh

∥∥∥
0,∂T

. (3.3)
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Note that p = a∇u. It then follows from (3.3) and the triangle inequality that

a1/2
T ‖∇u − ∇uh‖0,T =

∥∥∥a−1/2
T p − a1/2

T ∇uh

∥∥∥
0,T

� a−1/2
T

∥∥p − ph

∥∥
0,T +

∥∥∥a−1/2
T ph − a1/2

T ∇uh

∥∥∥
0,T

� a−1/2
T

∥∥p − ph

∥∥
0,T + a1/2

T h−1/2
T

∥∥∥Π∂
k uh − ûh

∥∥∥
0,∂T

,

which proves the estimate (3.1). �
Lemma 3.2 Let (u, p) ∈ H1(Ω)× H(div, Ω) be the solution of (1.1), and (uh, ûh, ph) ∈ Vh × V̂gD

h × Qh
be the solution of (2.6). Then

‖a−1/2( p − ph)‖2
0 +

∥∥∥τ 1/2
(
Π∂

k uh − ûh

)∥∥∥2

0,∂Th
= E(u, p; u, ûh, ph), (3.4)

where

E(u, p; u, ûh, ph) =
(

a−1( p − ph), p − Πo
r p

)
− (∇h(u − uh), p − Πo

r p
)

+ (∇h

(
u − Πo

k+1u
)

, p − Πo
r p

) −
〈
Π∂

k uh − ûh,
(

p − Πo
r p

) · n
〉
∂Th

+
〈
Πo

k+1(u − uh) − Π∂
k (u − uh),

(
p − Πo

r p
) · n

〉
∂Th

−
〈
τ

(
Π∂

k uh − ûh

)
, Π∂

k u − Πo
k+1u

〉
∂Th

, (3.5)

and r = min{k, m}. Here, m is the integer part of s.

Proof. By the orthogonality of Π∂
k , we have

∥∥∥Π∂
k (u − uh) − (u − ûh)

∥∥∥2

0,E
=

∥∥∥(
Π∂

k u − u
)

−
(
Π∂

k uh − ûh

)∥∥∥2

0,E

=
∥∥∥Π∂

k u − u
∥∥∥2

0,E
+

∥∥∥Π∂
k uh − ûh

∥∥∥2

0,E
. (3.6)

It follows from (3.6), the definition of Bh and Lemma 2.1 that

‖a−1/2( p − ph)‖2
0 +

∥∥∥τ 1/2
(
Π∂

k uh − ûh

)∥∥∥2

0,∂Th
+

∥∥∥τ 1/2
(
Π∂

k u − u
)∥∥∥2

0,∂Th

= ‖a−1/2( p − ph)‖2
0 +

∥∥∥τ 1/2
(
Π∂

k (u − uh) − (u − ûh)
)∥∥∥2

0,∂Th

= Bh

(
p − ph, u − uh, u − ûh; p − ph, u − uh, u − ûh

)
= Bh

(
p − ph, u − uh, u − ûh; p − Πo

r p, u − Πo
k+1u, u − Π∂

k u
)

, (3.7)
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where we used the fact that ûh − Π∂
k u = 0 on ΓD. In view of the definition of Bh in (2.5), we have

Bh

(
p − ph, u − uh, u − ûh; p − Πo

r p, u − Πo
k+1u, u − Π∂

k u
)

=
(

a−1( p − ph), p − Πo
r p

)
+ (

u − uh, ∇h · (
p − Πo

r p
)) − 〈

u − ûh,
(

p − Πo
r p

) · n
〉
∂Th

− (
u − Πo

k+1u, ∇h · ( p − ph)
) +

〈
u − Π∂

k u, ( p − ph) · n
〉
∂Th

+
〈
τ

(
Π∂

k (u − uh) − (u − ûh)
)

, Π∂
k

(
u − Πo

k+1u
) −

(
u − Π∂

k u
)〉

∂Th

=:
6∑
1

Ri. (3.8)

Integrating by parts gives

R2 + R3 = − (∇h(u − uh), p − Πo
r p

) − 〈
uh − ûh,

(
p − Πo

r p
) · n

〉
∂Th

= − (∇h(u − uh), p − Πo
r p

) −
〈
Π∂

k uh − ûh,
(

p − Πo
r p

) · n
〉
∂Th

−
〈
uh − Π∂

k uh,
(

p − Πo
r p

) · n
〉
∂Th

. (3.9)

Using integration by parts and the orthogonality of Π∂
k , we arrive at

R4 = (∇h

(
u − Πo

k+1u
)

, p − Πo
r p

) − 〈
u − Πo

k+1u,
(

p − Πo
r p

) · n
〉
∂Th

, (3.10)

R5 =
〈
u − Π∂

k u,
(

p − Πo
r p

) · n
〉
∂Th

. (3.11)

Then from (3.9, 3.10–3.11), we have

R2 + R3 + R4 + R5 = − (∇h(u − uh), p − Πo
r p

) + (∇h

(
u − Πo

k+1u
)

, p − Πo
r p

)
−

〈
Π∂

k uh − ûh,
(

p − Πo
r p

) · n
〉
∂Th

+
〈
Πo

k+1(u − uh) − Π∂
k (u − uh),

(
p − Πo

r p
) · n

〉
∂Th

. (3.12)

It follows from the orthogonality and the definition of Π∂
k that

R6 =
〈
τ

(
Π∂

k u − u
)

, Π∂
k

(
u − Πo

k+1u
) −

(
u − Π∂

k u
)〉

∂Th

−
〈
τ

(
Π∂

k uh − ûh

)
, Π∂

k

(
u − Πo

k+1u
) −

(
u − Π∂

k u
)〉

∂Th

=
∥∥∥τ 1/2

(
Π∂

k u − u
)∥∥∥2

0,∂Th
−

〈
τ

(
Π∂

k uh − ûh

)
, Π∂

k u − Πo
k+1u

〉
∂Th

. (3.13)
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The desired result (3.4) is then proved by combining (3.7), (3.8), (3.12) and (3.13). �
Theorem 3.3 Let (u, p) ∈ H1+s(Ω)× H(div, Ω)∩ [Hs(Ω)]d (with s > 0) be the solution of (1.1), and
(uh, ûh, ph) ∈ Vh × V̂gD

h × Qh be the solution of (2.6). It holds that

‖a−1/2( p − ph)‖2
0 + ‖a1/2(∇u − ∇huh)‖2

0 + ‖τ 1/2(Π∂
k uh − ûh)‖2

0,∂Th

�
∑

T∈Th

aT |u − Πo
k+1u|21,T +

∑
T∈Th

a−1
T ‖p − Πo

r p‖2
0,T +

∑
T∈Th

a−1
T h2

T‖∇ · p − ∇ · Πo
r p‖2

0,T , (3.14)

where r = min{k, m}, and m is the integer part of s.

Proof. To simplify notation, we define

E1 =
(

a−1( p − ph), p − Πo
r p

)
,

E2 = − (∇h(u − uh), p − Πo
r p

)
,

E3 = (∇h

(
u − Πo

k+1u
)

, p − Πo
r p

)
,

E4 = −
〈
Π∂

k uh − ûh,
(

p − Πo
r p

) · n
〉
∂Th

,

E5 =
〈
Πo

k+1(u − uh) − Π∂
k (u − uh),

(
p − Πo

r p
) · n

〉
∂Th

,

E6 = −
〈
τ

(
Π∂

k uh − ûh

)
, Π∂

k u − Πo
k+1

〉
∂Th

.

It follows from the Cauchy–Schwarz inequality that

E1 �
∑

T∈Th

a−1
T ‖p − ph‖0,T‖ p − Πo

r p‖0,T

� ‖a−1/2( p − ph)‖0

⎛
⎝ ∑

T∈Th

a−1
T ‖ p − Πo

r p‖2
0,T

⎞
⎠

1/2

, (3.15)

E2 �
∑

T∈Th

‖∇(u − uh)‖0,T‖ p − Πo
r p‖0,T

� ‖a1/2∇h(u − uh)‖0

⎛
⎝ ∑

T∈Th

a−1
T ‖p − Πo

r p‖2
0,T

⎞
⎠

1/2

, (3.16)

E3 �
∑

T∈Th

‖∇(u − Πo
k+1u)‖0,T‖p − Πo

r p‖0,T

�

⎛
⎝ ∑

T∈Th

aTh2s
T ‖u‖2

1+s,T

⎞
⎠

1/2 ⎛
⎝ ∑

T∈Th

a−1
T ‖p − Πo

r p‖2
0,T

⎞
⎠

1/2

. (3.17)
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Next we use the Cauchy–Schwarz inequality, the inverse inequality (2.1) and Lemma 2.3 with
∇v = p to derive

E4 �
∑

T∈Th

∑
E⊂∂T

h−1/2
E

∥∥∥Π∂
k uh − ûh

∥∥∥
0,E

(‖p − Πo
r p‖0,T + hT‖∇ · (

p − Πo
r p

) ‖0,T

)

�
∥∥∥τ 1/2

(
Π∂

k uh − ûh

)∥∥∥
0,∂Th

⎛
⎝ ∑

T∈Th

a−1
T ‖p − Πo

r p‖2
0,T +

∑
T∈Th

a−1
T h2

T‖∇ · p − ∇ · Πo
r p‖2

0,T

⎞
⎠

1/2

.

(3.18)

From the Cauchy–Schwarz inequality, Lemma 2.3 and the approximation properties of Πo
k+1 and

Π∂
k , we obtain

E5 �
∑

T∈Th

∑
E⊂∂T

h−1/2
T ‖Πo

k+1(u − uh) − Π∂
k (u − uh)‖0,E

(‖p − Πo
r p‖0,T + hT‖∇ · ( p − Πo

r p)‖0,T

)

� ‖a1/2(∇u − ∇huh)‖0

⎛
⎝ ∑

T∈Th

a−1
T ‖p − Πo

r p‖2
0,T +

∑
T∈Th

a−1
T h2

T‖∇ · p − ∇ · Πo
r p‖2

0,T

⎞
⎠

1/2

. (3.19)

Similarly, we have

E6 = −
〈
τ

(
Π∂

k uh − ûh

)
, u − Πo

k+1u − Πo
k+1

(
u − Πo

k+1u
)〉

∂Th

�
∑

E∈Eh

WEh−1
E ‖Π∂

k uh − ûh‖0,E

∥∥u − Πo
k+1u − Πo

k+1

(
u − Πo

k+1u
)∥∥

0, E

�
∑

E∈Eh

WEh−1
E ‖Π∂

k uh − ûh‖0,Eh1/2
E |u − Πo

0 u|1,Tmax

�
∥∥∥τ 1/2

(
Π∂

k uh − ûh

)∥∥∥
0,∂Th

⎛
⎝ ∑

T∈Th

aT |u − Πo
k+1u|21,T

⎞
⎠

1/2

, (3.20)

where E ⊂ ∂Tmax, and Tmax ∈ Th is the element such that aTmax
= maxE⊂∂T aT . The desired estimate

(3.14) follows from Lemma 3.2 and (3.15–3.20). �
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We can then derive the a priori error estimates in the next theorem.

Theorem 3.4 Let (u, p) ∈ H1+s(Ω)×H(div, Ω)∩ [Hs(Ω)]d (with 0 < s < 1) be the solution of (1.1),
and (uh, ûh, ph) ∈ Vh × V̂gD

h × Qh be the solution of (2.6). It holds that

‖a−1/2( p − ph)‖2
0 + ‖a1/2(∇u − ∇huh)‖2

0 +
∥∥∥τ 1/2

(
Π∂

k uh − ûh

)∥∥∥2

0,∂Th

�
∑

T∈Th

aTh2s
T ‖u‖2

1+s,T +
∑

T∈Th

a−1
T h2s

T ‖p‖2
s,T +

∑
T∈Th

a−1
T h2

T‖ f ‖2
0,T . (3.21)

Proof. Since s ∈ (0, 1), we have r = 0 in Theorem 3.3. Therefore,

‖a−1/2( p − ph)‖2
0 + ‖a1/2(∇u − ∇huh)‖2

0 +
∥∥∥τ 1/2

(
Π∂

k uh − ûh

)∥∥∥2

0,∂Th

�
∑

T∈Th

aT |u − Πo
k+1u|21,T +

∑
T∈Th

a−1
T ‖p − Πo

0 p‖2
0,T +

∑
T∈Th

a−1
T h2

T‖∇ · p‖2
0,T . (3.22)

Since ∇ · p = f , we can obtain the error estimate (3.21) directly from Lemma 2.11:

‖a−1/2( p − ph)‖2
0 + ‖a1/2(∇u − ∇huh)‖2

0 +
∥∥∥τ 1/2

(
Π∂

k uh − ûh

)∥∥∥2

0,∂Th

�
∑

T∈Th

aTh2s
T ‖u‖2

1+s,T +
∑

T∈Th

a−1
T h2s

T ‖p‖2
s,T +

∑
T∈Th

a−1
T h2

T‖ f ‖2
0,T .

�

4. A posteriori error estimates

We first introduce the following oscillation terms:

osc2( f , Th) =
∑

T∈Th

osc2( f , T) =
∑

T∈Th

a−1
T h2

T‖ f − Πo
k+1 f ‖2

0,T ,

osc2
(

gN , E N
h

)
=

∑
E∈E N

h

osc2(gN , E) =
∑

E∈E N
h

a−1
E hE‖gN − Π∂

k gN‖2
0,E.

Then we define the a posteriori error estimators as follows:

ηr1,T = a1/2
T ‖∇uh − a−1ph‖0,T , (4.1)

ηr2,T = a−1/2
T hT‖Πo

k+1 f − ∇ · ph‖0,T , (4.2)

ηus,E = W1/2
E h−1/2

E ‖Π∂
k uh − ûh‖0,E, (4.3)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/40/2/1577/5305590 by The H
ong Kong Polytechnic U

niversity user on 30 April 2020



HDG METHOD FOR THE SECOND-ORDER ELLIPTIC PROBLEM 1591

ηuj,E =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

W1/2
E h−1/2

E

∥∥∥[[(
Id − Π∂

k

)
uh

]]∥∥∥
0,E

, E ∈ E I
h,

W1/2
E h−1/2

E

∥∥∥(
Id − Π∂

k

)
(uh − gD)

∥∥∥
0,E

, E ∈ E D
h ,

0, E ∈ E N
h ,

(4.4)

and

η2
ri

=
∑

T∈Th

η2
ri,T , i = 1, 2, (4.5)

η2
us

=
∑

E∈Eh

η2
us,E, (4.6)

η2
uj

=
∑

E∈ E I
h

η2
uj,E +

∑
E∈E D

h

η2
uj,E, (4.7)

η2 = η2
r1

+ η2
r2

+ η2
us

+ η2
uj

+ osc2( f , Th) + osc2
(

gN , E N
h

)
. (4.8)

Note that there are no explicit oscillation terms for gD in constructing the global a posteriori error
estimator η. Actually, those oscillation terms are involved implicitly by introducing (4.4).

4.1 Reliability

Theorem 4.1 (Upper bound). Let (u, p) ∈ H1+s(Ω) × (H(div, Ω) ∩ [Hs(Ω)]d) with s > 0, be the
solution of (1.1) and (uh, ûh, ph) ∈ Vh × V̂gD

h × Qh be the solution of (2.6). Then

‖a−1/2( p − ph)‖0 + ‖a1/2(∇u − ∇huh)‖0 � η. (4.9)

Proof. Let (γ , w, ŵ) = ( p − ph − rh, u − uh − vh, u − ûh − v̂h), where

rh := Πo
0 ( p − ph) ∈ Qh, (4.10)

vh := Πo
k+1(u − uh) ∈ Vh, (4.11)

v̂h := Π∂
k (u − ûh) ∈ V̂0

h . (4.12)

Note that

‖Π∂
k (u − uh) − (u − ûh)‖2

0,E =
∥∥∥(

Π∂
k u − u

)
−

(
Π∂

k uh − ûh

)∥∥∥2

0,E
= ‖Π∂

k u − u‖0,E + ‖Π∂
k uh − ûh‖2

0,E.

The above equation together with the definition of Bh implies

‖a−1/2( p − ph)‖2
0 + η2

us
= Bh( p−ph, u − uh, u − ûh; p − ph, u − uh, u − ûh)−

∥∥∥τ 1/2
(
Id−Π∂

k

)
u
∥∥∥2

0,∂Th
.
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It then follows from Lemma 2.1 that

‖a−1/2( p − ph)‖2
0 + η2

us
= Bh( p − ph, u − uh, u − ûh; γ , w, ŵ) −

∥∥∥τ 1/2
(

Id − Π∂
k

)
u
∥∥∥2

0,Th

= (a−1( p − ph), γ ) + (u − uh, ∇h · γ ) − 〈u − ûh, γ · n〉∂Th

− (w, ∇ · p − ∇h · ph) + 〈ŵ, p − ph · n〉∂Th

−
〈
τ

(
Π∂

k uh − ûh

)
, Π∂

k w − ŵ
〉
∂Th

,

where we have used the relation

〈τ(Π∂
k (u − uh) − (u − ûh)), Π

∂
k w − ŵ〉∂Th

=
〈
τ

(
Π∂

k u − u
)

, Π∂
k w − ŵ

〉
∂Th

−
〈
τ

(
Π∂

k uh − ûh

)
, Π∂

k w − ŵ
〉
∂Th

=
∥∥∥τ 1/2

(
Id − Π∂

k

)
u
∥∥∥2

0,Th
−

〈
τ

(
Π∂

k uh − ûh

)
, Π∂

k w − ŵ
〉
∂Th

.

By using integration by parts, the relations a−1p = ∇u and ∇·p = f , and the facts (w, Πo
k+1 f −∇h·ph) =

0 and 〈Π∂
k u − u, Πo

0( p − ph) · n〉∂Th
= 0, we get

‖a−1/2( p − ph)‖2
0 + η2

us
= 〈̂uh − uh, γ · n〉∂Th

+ 〈ŵ, ( p − ph) · n〉∂Th

−
〈
τ

(
Π∂

k uh − ûh

)
, w

〉
∂Th

+
(
∇huh − a−1ph, γ

)
+ (

w, f − Πo
k+1 f

)

=
〈̂
uh − uh + u − Π∂

k u, γ · n
〉
∂Th

−
〈
τ

(
Π∂

k uh − ûh

)
, w

〉
∂Th

+
(
∇huh − a−1ph, γ

)
+ (

w, f − Πo
k+1 f

)
=: R1 + R2 + R3 + R4.

Next, we estimate each Ri term by term. By the orthogonality of Π∂
k , we have

R1 =
〈̂
uh − Π∂

k uh, γ · n
〉
∂Th

+
〈
Π∂

k uh − uh + u − Π∂
k u, γ · n

〉
∂Th

=
〈̂
uh − Π∂

k uh, γ · n
〉
∂Th

+
〈
Π∂

k uh − uh + u − Π∂
k u, p · n

〉
∂Th

=
〈̂
uh − Π∂

k uh, γ · n
〉
∂Th

+
〈
[[(Π∂

k − Id)uh]], p · n
〉
E I

h

+
〈(

Π∂
k − Id

)
(uh − gD), p · n

〉
E D

h

+
〈(

Π∂
k − Id

)
(uh − u), gN − Π∂

k gN

〉
E N

h

=
〈̂
uh − Π∂

k uh, γ · n
〉
∂Th

+
〈
[[(Π∂

k − Id)uh]], ( p − {{ ph}}) · n
〉
E I

h

+
〈(

Π∂
k − Id

)
(uh − gD), ( p − ph) · n

〉
E D

h

+
〈(

Π∂
k − Id

)
(uh − u), gN − Π∂

k gN

〉
E N

h

.
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Then by the Cauchy–Schwarz inequality and Lemma 2.3, we get

R1 � (ηus
+ ηuj

)
(
‖a−1/2( p − ph)‖0 + ηr2

+ osc( f , Th)
)

+ osc(gN , EN
h )‖a1/2(∇u − ∇huh)‖0

� (ηus
+ ηuj

)
(
‖a−1/2( p − ph)‖0 + ηr2

+ osc( f , Th)
)

+ osc(gN , E N
h )

(
‖a−1/2( p − ph)‖0 + ηr1

)
.

Using Lemma 2.3, we have

R2 �
∑

T∈Th

∑
E⊂∂T

∥∥∥τ 1/2
(
Π∂

k uh − ûh

)∥∥∥
0,E

W1/2
E h−1/2

E ‖w‖0,E

�
∑

T∈Th

∑
E⊂∂T

∥∥∥τ 1/2
(
Π∂

k uh − ûh

)∥∥∥
E

W1/2
E ‖∇u − ∇uh‖0,T

� ηus
‖a1/2(∇u − ∇uh)‖0

� ηus

(
ηr1

+ ‖a−1/2( p − ph)‖0

)
,

R3 �
∑

T∈Th

‖∇huh − a−1ph‖0,T‖p − ph‖0,T � ηr1
‖a−1/2( p − ph)‖0,

R4 � ‖a1/2(∇u − ∇uh)‖0 · osc( f , Th) � osc( f , Th)(‖a−1/2( p − ph)‖0 + ηr1
).

By combining the above estimates for Ri, i = 1, 2, 3, 4, we arrive at

‖a−1/2(p − ph)‖2
0 + η2

us

� (ηus
+ ηuj

)
(
‖a−1/2( p − ph)‖0 + ηr2

+ osc( f , Th)
)

+ osc(gN , E N
h )

(
‖a−1/2( p − ph)‖0 + ηr1

)

+ ηus

(
ηr1

+ ‖a−1/2( p − ph)‖0

)
+ ηr1

‖a−1/2( p − ph)‖0 + osc( f , Th)(‖a−1/2( p − ph)‖0 + ηr1
).

(4.13)

Finally, the estimate (4.9) can be obtained in a straightforward way using Lemma 3.1 and (4.13). �

4.2 Efficiency

In the rest of this section, we show that the proposed a posteriori error estimators are also efficient, i.e.
lower bounds hold.

For any E ∈ Eh, we denote

ωE = {the union of T : E ⊂ ∂T , T ∈ Th}.

Let bM ∈ H1
0(M) be the usual bubble function defined on M ∈ Mh. The following result is a standard

tool for the a posteriori error estimates.
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Lemma 4.2 (Verfürth, 1994). For every M ∈ Mh, it holds that

‖vh‖0,M �
∥∥∥b1/2

M vh

∥∥∥
0,M

� ‖vh‖0,M , ∀ vh ∈ Pk(M), k � 0. (4.14)

Theorem 4.3 (Lower bounds). Let (u, p) ∈ H1+s(Ω) × (H(div, Ω) ∩ [Hs(Ω)]d) (with s > 0) be the
solution of (1.1) and (uh, ûh, ph) ∈ Vh × V̂gD

h × Qh be the solution of (2.6). Then for any T ∈ Th and
E ∈ Eh, it holds that

ηr1,T � ‖a1/2(∇u − ∇uh)‖0,T + ‖a−1/2( p − ph)‖0,T , (4.15)

ηr2,T � ‖a−1/2( p − ph)‖0,T + osc( f , T), (4.16)

ηuj,E � ‖a1/2(∇u − ∇uh)‖0,ωE
, (4.17)

ηus
� ‖a1/2(∇u − ∇uh)‖0 + ‖a−1/2( p − ph)‖0 + osc( f , Th) + osc

(
gN , E N

h

)
. (4.18)

Proof of (4.15). By using the triangle inequality and the fact a−1p = ∇u, we have

ηr1,T � a1/2
T ‖∇u − ∇uh

∥∥∥0,T + a−1/2
T

∥∥∥ p − ph‖0,T

= ‖a1/2(∇u − ∇uh)‖0,T + ‖a−1/2( p − ph)‖0,T .

�
Proof of (4.16). For any M ∈ Mh, we let bM ∈ H1

0(M) be the bubble function. It then follows from
Lemma 4.2, the relation ∇ · p = f , the triangle inequality and integration by parts that

η2
r2,T �

∑
M⊂T

(ηr2,T , bMηr2,T)M

= a−1/2
T hT

∑
M⊂T

(∇ · p − ∇ · ph, bMηr2,T)M + a−1/2
T hT

∑
M⊂T

(
Πo

k+1 f − f , bMηr2,T

)
M

= −a−1/2
T hT

∑
M⊂T

( p − ph, ∇(bMηr2,T))M + a−1/2
T hT

∑
M⊂T

(
Πo

k+1 f − f , bMηr2,T

)
M

.

Then by the Cauchy–Schwarz inequality and the inverse inequality (2.1), we have

η2
r2,T �

(
‖a−1/2( p − ph)‖0,T + osc( f , T)

)
ηr2,T ,

which leads to (4.16). �
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Proof of (4.17). It directly follows from the definition of ηuj,E and WE ∼ maxE⊂∂T{aT} that

η2
uj,E = WEh−1

E

∥∥∥(
Id − Π∂

k

)
(uh − u)

∥∥∥2

0,E

�
∑

E⊂∂T

aTh−1
E

∥∥∥(
Id − Π∂

k

)
(uh − u)

∥∥∥2

0,∂T

�
∑

E⊂∂T

aT‖(∇u − ∇uh)‖2
0,T

= ‖a(∇u − ∇uh)‖2
0,ωE

.
�

Proof of (4.18). By combining (4.13), (4.15), (4.16) and (4.17), we have

η2
us
� η2

r1
+ η2

r2
+ η2

uj
+ ‖a−1/2( p − ph)‖2

0 + osc2( f , Th) + osc2
(

gN , E N
h

)

� ‖a−1/2( p − ph)‖2
0 + ‖a1/2(∇u − ∇huh)‖2

0 + osc2( f , Th) + osc2
(

gN , E N
h

)
.

�

5. Numerical experiments

In this section, we present the results of numerical experiments in two dimensions to demonstrate the
efficiency and reliability of the a posteriori estimators. All tests are programmed in C++ using the
Eigen library (Eigen 3.2.5) and Hypre library (Falgout & Yang, 2002). The numerical results in this
section are obtained by the following adaptive mesh refinement algorithm.

Let

η2
T =

∑
E⊂∂T

(
η2

us,E + η2
uj,E

)
+ η2

r1,T + η2
r2,T + osc2( f , T) +

∑
E⊂EN

h ∩∂T

osc2(gN , E),

and e = ‖a−1/2( p − ph)‖2
0 + ‖a1/2(∇u − ∇huh)‖2

0.

Adaptive Algorithm. Starting with an initial mesh Tl (l = 0), choose a parameter β ∈ [0, 1] and
take the following iterative steps:

(i) Solve the discrete problem on Tl with N degrees of freedom.

(ii) Compute ηT for all T ∈ Tl and η =
(∑

T∈Tl
η2

T

)1/2
.

(iii) Mark a set of elements Rl ⊂ Tl with minimum number of elements such that
∑

T∈Rl
η2

T � βη2.

(iv) Refine all the elements in Rl to get Tl+1.

(v) Further refine the elements to ensure there is at most one hanging node per edge. Update l = l+1
and go to (i).
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1596 G. CHEN AND J. CUI

Fig. 2. Meshes for the smooth problem: levels 0 (left) and 2 (right) with β = 1.0.

Table 1 Results for the smooth problem

k = 1 k = 2 k = 3

Mesh e η η/e e η η/e e η η/e

0 6.0614E+00 8.1840E+00 1.35 3.5025E+00 3.9717E+00 1.13 1.4339E+00 1.5481E+00 1.08
1 2.5069E+00 3.2953E+00 1.31 8.3972E–01 9.6953E–01 1.15 1.8555E–01 2.0584E–01 1.11
2 1.1468E+00 1.5591E+00 1.36 1.9935E–01 2.4057E–01 1.21 2.2714E–02 2.5767E–02 1.13
3 5.5500E–01 7.7380E–01 1.39 4.8625E–02 6.0638E–02 1.25 2.7822E–03 3.2135E–03 1.16
4 2.7420E–01 3.8748E–01 1.41 1.2079E–02 1.5302E–02 1.27 3.4486E–04 4.0209E–04 1.17
5 1.3656E–01 1.9406E–01 1.42 3.0192E–03 3.8477E–03 1.27 4.3030E–05 5.0342E–05 1.17
6 6.8202E–02 9.7123E–02 1.42 7.5540E–04 9.6488E–04 1.28 5.3794E–06 6.2997E–06 1.17

5.1 Smooth problem

Consider the problem (1.1) on the unit square with a = 1, ΓN = ∅, gD = 0, and f is chosen according
to the following exact solution:

u = sin(2πx) sin(2πy), and p = ∇u.

We take β = 1.0 in this experiment; hence, the adaptive mesh refinement algorithm reduces to a
uniform mesh refinement strategy. The computational meshes are depicted in Fig. 2 and the numerical
results are presented in Table 1. It can be observed that η/e ≈ 1.42 when k = 1, η/e ≈ 1.28 when
k = 2, and η/e ≈ 1.17 when k = 3. This illustrates that our a posteriori error estimators are reliable
and efficient on uniformly refined meshes.

5.2 L-shaped domain problem

Consider the problem (1.1) on an L-shaped domain Ω = (−1, 1)2/[0, 1] × [−1, 0]. We take a = 1,
f = 0, ΓN = ∅, and gD is chosen corresponding to the following exact solution:

u(r, θ) = r2/3 sin(2θ/3), and p = ∇u,

where r, θ are the polar coordinates.
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Fig. 3. Adapted meshes for the L-shaped domain problem: levels 0, 6, 12, 18 with β = 0.5.

Table 2 Results for the L-shaped domain problem

Mesh N e N−1/2 η N−1/2/e η/e

0 10 4.3233E–01 3.1623E–01 3.0123E–01 0.7314 0.6968
3 85 1.6443E–01 1.0847E–01 2.0516E–01 0.6597 1.2477
6 358 6.7515E–02 5.2852E–02 1.0923E–01 0.7828 1.6179
9 1594 2.9380E–02 2.5047E–02 5.2453E–02 0.8525 1.7853

12 6906 1.3543E–02 1.2033E–02 2.5220E–02 0.8885 1.8622
15 29283 6.4809E–03 5.8438E–03 1.2241E–02 0.9017 1.8888
16 46337 5.0493E–03 4.6455E–03 9.6411E–03 0.9200 1.9094
17 75053 3.9592E–03 3.6502E–03 7.5997E–03 0.9219 1.9195
18 122065 3.1443E–03 2.8622E–03 5.9920E–03 0.9103 1.9057
19 192199 2.4575E–03 2.2810E–03 4.7279E–03 0.9282 1.9239
20 311507 1.9364E–03 1.7917E–03 3.7318E–03 0.9253 1.9272

We use k = 1 in this experiment. The meshes generated by the adaptive algorithm are depicted
in Fig. 3 with β = 0.5. The numerical results are presented in Table 2. The adaptive meshes illustrate
that the global a posteriori error estimator can effectively capture the singularity of the solution. The
displayed results confirm that the a posteriori error estimators are reliable and efficient.

5.3 Kellogg’s problem

Consider the problem (1.1) on Ω = (0, 1)2, where the coefficient a is piecewise constant such that
a = a1 in the first and third quadrants, and a = a2 in the second and fourth quadrants. We set ΓN = ∅
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Fig. 4. Adapted meshes for Kellogg’s problem: levels 0, 30, 60, 90 with β = 0.3.

Table 3 Results for Kellogg’s problem

Mesh N e N−1/2 η N−1/2/e η/e

0 12 5.7504E–01 2.8868E–01 1.6179E+00 0.5020 2.8135
10 152 5.0574E–01 8.1111E–02 1.5580E+00 0.1604 3.0807
20 292 4.1897E–01 5.8521E–02 1.3767E+00 0.1397 3.2859
30 440 3.3645E–01 4.7673E–02 1.1553E+00 0.1417 3.4338
40 727 2.4631E–01 3.7088E–02 8.7407E–01 0.1506 3.5486
50 1527 1.6251E–01 2.5591E–02 5.2105E–01 0.1575 3.2062
60 3268 1.1905E–01 1.7493E–02 2.7232E–01 0.1469 2.2874
70 7449 7.8859E–02 1.1586E–02 1.4185E–01 0.1469 1.7987
80 19730 4.4845E–02 7.1193E–03 7.1553E–02 0.1588 1.5955
90 60468 2.3788E–02 4.0667E–03 3.6374E–02 0.1710 1.5291

100 207199 1.2295E–02 2.1969E–03 1.8306E–02 0.1787 1.4889

and f = 0. The exact solution in polar coordinates is taken to be u(r, θ) = rγ μ(θ), where

μ(θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cos[(0.5π − σ)γ ] cos[(θ − 0.5π + ρ)γ ], 0 � θ � 0.5π ,

cos(ργ ) cos[(θ − π + σ)γ ], 0.5π � θ � π ,

cos(σγ ) cos[(θ − π − ρ)γ ], π � θ � 1.5π ,

cos[(0.5π − ρ)γ ] cos[(θ − 1.5π − σ)γ ], 1.5π � θ � 2π ,

(5.1)

and the constants are given by γ = 0.1, ρ = 0.25π , σ = −4.75π , a1 = 161.4476387975881 and
a2 = 1. Note that the exact solution u belongs to H1+γ (Ω) (see Kellogg, 1975).
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We use k = 1 in this experiment. The meshes generated by the adaptive algorithm with β = 0.3 are
depicted in Fig. 4. The numerical results are presented in Table 3. The adaptive meshes illustrate that the
global a posteriori error estimator can effectively capture the singularity of the solution. The displayed
error results clearly verify the theoretical results.
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