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Abstract In this article, we study a finite element approximation for a model free
boundary plasma problem. Using a mixed approach (which resembles an optimal
control problemwith control constraints), we formulate a weak formulation and study
the existence and uniqueness of a solution to the continuous model problem. Using
the same setting, we formulate and analyze the discrete problem. We derive optimal
order energy norm a priori error estimates proving the convergence of the method.
Further, we derive a reliable and efficient a posteriori error estimator for the adap-
tive mesh refinement algorithm. Finally, we illustrate the theoretical results by some
numerical examples.
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1 Introduction

Let� ⊂ R
2 be a bounded polygonal domain with boundary denoted by ∂�. However

the results are applicable for any bounded polyhedral domain in R
n (n ≥ 1), where

R
n denotes the Euclidean space of dimension n. We consider the following model

problem which arises in plasma physics, see [5, page 521] :

− �u + λu− = 0 in �, (1.1)

u|∂� = c ∈ R on ∂� (i.e., u ≡ constant on ∂�), (1.2)∫
∂�

∂u

∂n
ds = I, (1.3)

where λ, I are given positive real numbers and u−(x) = max{0, −u(x)}, the negative
part of u. Hereafter ∂u/∂n denotes the normal derivative of u on the boundary in
the sense of the trace. A slightly more general but similar problem is studied in [2].
The plasma problem consists of finding u and a constant c such that u ≡ c on ∂�

and they satisfy (1.1)–(1.3). It is shown in [5] by some minimization formulation that
the above model problem has a solution. Further under an additional assumption that
λ < λ2 it is shown [5, Theorem 11.2] that the solution is unique, where λ2 is the
second smallest eigen-value corresponding to −� on � with homogeneous Dirichlet
boundary condition. The set �p = {x ∈ � : u(x) < 0} is called the plasma set and
the set �v = {x ∈ � : u(x) > 0} is called the vacuum set. Further the sets �p and
�v are connected sets in �, see [5, Theorem 12.1]

For the rest of the discussion, we introduce some notation. Let L2(D) be the stan-
dard space of measurable and square integrable functions defined on the open set
D ⊆ �. The L2(D) inner-product and norm are denoted by (·, ·)D and ‖ · ‖L2(D),
respectively. When D = �, we denote the L2(�) inner-product and norm by (·, ·)
and ‖ · ‖, respectively. We denote by |D|, the 2-dimensional measure of an open sub-
set D ⊆ �. The Sobolev-Hilbert space of order m ≥ 0 on D ⊆ � is denoted by
Hm(D) with the norm and semi-norm,

‖v‖2Hm(D) =
∑

|α|≤m

‖Dαv‖2
L2(D)

and |v|2Hm(D) =
∑

|α|=m

‖Dαv‖2
L2(D)

, respectively,

where α is a multi-index and Dα is the distribution derivative of order |α|, see [6]. Let
D(D) be the topological vector space consisting of C∞(D) functions with compact
support in D. Further let H 1

0 (D) be the closure of D(D) in H 1(D). Finally C(D̄)

denotes the space of continuous function on D̄, the closure of D ⊆ �.
We briefly discuss the proof of existence of a solution to the model problem (1.1)–

(1.3) by the approach in [5]. Let K be a closed and convex subset of L2(�) defined
by

K = {p ∈ L2(�) : p ≥ 0 a.e. in �,

∫
�

p dx = I }. (1.4)

It is easy to prove that the set K is nonempty. For instance, let p ∈ L2(�) with
p > 0 in �. If t = (p, 1), then p̃ = Ip/t ∈ K. Let G(x, y) denote the Green’s
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function for −� on � with homogeneous Dirichlet boundary condition. Define the
functional J̃ : L2(�) → R by

J̃ (p) = 1

2λ

∫
�

p2 dx − 1

2

∫
�

∫
�

G(x, y)p(x)p(y) dx dy. (1.5)

It is proved in [5, Theorem 11.1] that the minimization problem

J̃ (q) = min
p∈K J̃ (p).

has a solution q. Let J̃ ′ be the Frechet derivative of J̃ which is given by

J̃ ′(p) = 1

λ
p −

∫
�

G(x, y)p(y) dy ∀p ∈ K.

Then the first order optimality condition implies that

J̃ ′(q)(p − q) ≥ 0 ∀p ∈ K,

or in other words,∫
�

(
1

λ
p(x) −

∫
�

G(x, y)p(y) dy

)
(p − q)(x) dx ≥ 0 ∀p ∈ K. (1.6)

If the function u is defined by

u(x) = −
∫

�

G(x, y)q(y) dy + c,

for some constant c ∈ R satisfying

J̃ ′(q) := −c in {x ∈ � : q(x) > 0},
≥ −c in {x ∈ � : q(x) = 0},

then u is a solution of Eqs. 1.1–1.3 and q = λu−, see [5, page 523].
The direct numerical approximation of Eq. 1.5 requires either closed form Green’s

function (although it is known for Laplace operator, in general it is not available)
or requires a discrete version of it. Even if the Green’s function is explicitly known,
the optimality condition (1.6) appears in a nonlocal fashion which results in a dense
matrix in its discrete version. Therefore in the upcoming discussion in this article,
we introduce a mixed formulation to study the model problem and its approximation.
This approach resembles an optimal control problem with control constraints, see for
example [7] for the fundamental literature on optimal control problems.

The contribution of this article can be described as follows:

• Using a mixed formulation, we formulate the continuous model problem as an
optimal control problem with control constraints.

• We derive an explicit formula for the constant c which appears in Eq. 1.2 that
will be quite useful to design its discrete counterpart.

• We propose a finite element method and study the convergence of the method.
Further, we derive a reliable and efficient a posteriori error estimator.

• Finally, we illustrate the theoretical results by some numerical examples using a
primal dual active-set method.
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There is hardly any literature on numerical approximation of the aforementioned
free boundary plasma problem. This article makes an attempt to study a finite element
approximation and some of its analysis. The rest of the article is organized as follows.
In Section 2, we discuss the continuous problem in a mixed formulation. In Section
3, we study the finite element approximation and derive both a priori and a posteriori
error estimates. We discuss some numerical examples in Section 4 and finally we
conclude the article in Section 5.

2 Mixed formulation

In this section, we rewrite the formulation of [5] as in [2] as a mixed formulation
which appears like an optimal control problem with control constraints. We begin
with defining a cost functional J : L2(�) × H 1

0 (�) → R by

J (p, w) = 1

2λ
‖p‖2 + 1

2
(w, p). (2.1)

For given p ∈ L2(�), let w ∈ H 1
0 (�) be the unique weak solution of

(∇w, ∇z) = −(p, z) ∀z ∈ H 1
0 (�). (2.2)

We can associate a solution map S : L2(�) → H 1
0 (�) by assigning for p ∈

L2(�) the solution S(p) = w with w satisfying (2.2). Then restricting to such pairs
{p,w}, we can introduce the reduced functional j : L2(�) → R as

j (p) = 1

2λ
‖p‖2 + 1

2
(S(p), p). (2.3)

Then the mathematical model problem is to find q ∈ K such that

j (q) = min
p∈K j (p), (2.4)

where K is defined as in Eq. 1.4.
The following assumption is made for the rest of the article.

Assumption-L There holds 0 < λ < λ1, where λ1 is the best constant that appears in
the Poincaré inequality (or the smallest eigen-value of −� on � with homogeneous
Dirichlet boundary condition):

‖v‖2 ≤ 1

λ1
‖∇v‖2 ∀v ∈ H 1

0 (�). (2.5)

Before proving the existence of a unique solution for Eq. 2.4, we prove the
following lemma:

Lemma 2.1 There holds for all p ∈ L2(�) that

‖S(p)‖ ≤ 1

λ1
‖p‖ and ‖∇S(p)‖ ≤ 1√

λ1
‖p‖.
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Proof Note by the definition of S, the Cauchy-Schwarz inequality and Eq. 2.5 that

‖∇S(p)‖2 = |(p, S(p))| ≤ ‖p‖ ‖S(p)‖ ≤ 1√
λ1

‖p‖‖∇S(p)‖.

The remaining proof follows by applying Eq. 2.5.

In [5], it is assumed that 0 < λ < λ2 to prove the uniqueness of the solution,
where λ2 is the second smallest eigen-value of−� on�with homogeneous Dirichlet
boundary condition. However, our assumption is more restrictive than that in [5]. This
is due to fact that the arguments in [5] for the continuous problem seems to suggest
to use discrete maximum principles of finite element methods in order to analyze the
discrete problem. Therefore the subject of investigation for the case λ1 < λ < λ2 is
postponed to the future. However the subsequent derivation of explicit constant c is
valid once the solution exists. Further the numerical method is useful in computations
without restriction on λ.

Theorem 2.2 Let λ < λ1. Then the minimization problem (2.4) has a unique solution
denoted by q ∈ K. Further the following first order optimality condition holds:

(S(q) + 1

λ
q, p − q) ≥ 0 ∀p ∈ K,

where S(q) ∈ H 1
0 (�) satisfies

(∇S(q),∇z) = −(q, z) ∀z ∈ H 1
0 (�).

Proof Using Eq. 2.3 and Lemma 2.1, we find

j (p) = 1

2λ
‖p‖2 − 1

2
‖∇S(p)‖2 ≥

(
1

2λ
− 1

2λ1

)
‖p‖2 ≥ 0.

The existence and uniqueness of a solution for Eq. 2.4 follow from the standard
theory of optimal control problems [7]. The necessary first order optimality condition
is given by

j ′(q)(p − q) = lim
t→0

j (q + t (p − q)) − j (q)

t
≥ 0 ∀p ∈ K,

with

j ′(q) = S(q) + 1

λ
q.

To verify this, consider

j (q + t (p − q)) − j (q)

t
= 1

λ
(q, p − q) + 1

2
(S(p − q), q) + 1

2
(S(q), p − q)

+ t

2λ
(p − q, p − q) + t

2
(S(p − q), p − q).

Then

j ′(q)(p − q) = 1

λ
(q, p − q) + 1

2
(S(p − q), q) + 1

2
(S(q), p − q) ∀p ∈ K.
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Now from the definition of S,

(S(p − q), q) = −(∇S(q),∇S(p − q)) = −(S(q), p − q).

This completes the proof.

Note that by introducing v = S(q), we find that the following is satisfied by q and
v:

(∇v, ∇z) = −(q, z) ∀z ∈ H 1
0 (�), (2.6)

(v + 1

λ
q, p − q) ≥ 0 ∀p ∈ K. (2.7)

It is easy to deduce that the model problem (2.6)–(2.7) has a unique solution. The
following theorem finds a solution for Eqs. 1.1–1.3 with an explicit constant c such
that u ≡ c on ∂�.

Theorem 2.3 Let v ∈ H 1
0 (�) and q ∈ L2(�) be the solutions of Eqs. 2.6–2.7.

Define

u(x) = v(x) + c, (2.8)

where c is defined by

c = −1

|�1|
∫

�1

(
v(y) + 1

λ
q(y)

)
dy, (2.9)

and �1 := {x ∈ � : q(x) > 0}. Assume that q ∈ C(�̄). Then, u is the solution of
Eqs. 1.1–1.3.

Proof Let x0 be a point in �1. As �1 is an open set, there is a neighborhood B0 =
Bδ(x0) such that B0 ⊂ �1. By the definition of �1, there holds q > 0 on B0. Let
φ ∈ D(B0) with maxB0 |φ| ≤ 1 and (φ, 1)B0 = 0. Extend φ to � by zero outside of
B0. Then for sufficiently small ε > 0, the functions p± = q ± εφ ∈ K. Substituting
p± in Eq. 2.7, we find

(v + 1

λ
q, φ)�1 = (v + 1

λ
q, φ)B0 = 0.

Since (φ, 1)�1 = (φ, 1)B0 = 0, there holds

(v + 1

λ
q + c, φ)�1 = 0,

for any c ∈ R. We take in particular c to be the constant defined in Eq. 2.9. By scaling
there holds

(v + 1

λ
q + c, φ)�1 = 0 ∀φ ∈ D(B0) with (φ, 1)�1 = 0.
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Using this argument, we conclude that

(v + 1

λ
q + c, φ)�1 = 0 ∀φ ∈ D(�1) with (φ, 1)�1 = 0,

and further

(v + 1

λ
q + c, φ + r)�1 = 0 ∀r ∈ R and ∀φ ∈ D(�1) with (φ, 1)�1 = 0.

From the fact that the function space D0(�1) := {φ ∈ D(�1) : (φ, 1)�1 = 0}
is dense in the space L2

0(�1) := {φ ∈ L2(�1) : ∫
�1

φ dx = 0} with respect to the

L2-norm, we conclude that

(v + 1

λ
q + c, φ + r)�1 = 0 ∀r ∈ R and ∀φ ∈ L2

0(�1).

Let φ̃ ∈ L2(�1) and define the function φ by

φ := φ̃ − 1

|�1|
∫

�1

φ̃ dx.

Then φ ∈ L2
0(�1) and

0 = (v + 1

λ
q + c, φ)�1 = (u + 1

λ
q, φ̃)�1 ,

which proves that

(u + 1

λ
q, φ̃)�1 = 0 ∀φ̃ ∈ L2(�1).

Therefore q = −λu on �1. Now let the set �0 = {x ∈ � : q(x) = 0}. Then since
(1, p − q) = 0 for any p ∈ K, we find

0 ≤
∫

�

(v + 1

λ
q)(p − q) dx =

∫
�

(v + 1

λ
q + c)(p − q) dx =

∫
�

(u+ 1

λ
q)(p−q) dx

=
∫

�1

(u + 1

λ
q)(p − q) dx +

∫
�0

(u + 1

λ
q)(p − q) dx

=
∫

�0

(u + 1

λ
q)(p − q) dx =

∫
�0

up dx. (2.10)

If p ∈ L2(�) with p �≡ 0 and p ≥ 0 a.e. in �, then p̃ = Ip/(p, 1) ∈ K. By
taking p̃ in Eq. 2.10, we conclude that∫

�0

up dx ≥ 0 ∀p ∈ {p ∈ L2(�) : p ≥ 0 a.e. in �}.
This implies that u ≥ 0 on the set �0 and proves that q = λu− on �. Further

since q = �v = �u and q ∈ K, we conclude that∫
∂�

∂u

∂n
ds =

∫
�

�udx =
∫

�

q dx = I.

This proves that u is the solution of Eqs. 1.1–1.3.

Remark 2.4 The characterization of c in Eq. 2.9 is useful in defining its discrete
counterpart and in deriving error estimates of finite element approximation.
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Note that since q ∈ L2(�), the solution v ∈ H 1
0 (�) of Eq. 2.6 will be in

H 3/2+ε(�) for any ε > 0, by the well known shift theorem [6]. As we are in 2D, the
Sobolev imbedding theorem that H 1+ε(�) ⊂ C(�̄) for any ε > 0 holds true [6]. We
conclude that v ∈ C(�̄) and hence u ∈ C(�̄). Since u ∈ H 3/2+ε(�) ∩ C(�̄), there
holds q = −λu− ∈ H 1(�) ∩ C(�̄). If we assume further that the domain � is con-
vex, then v ∈ H 2(�) and hence u ∈ H 2(�) by the elliptic regularity theory [6]. In
general due to the free boundary, the boundary of the set�1, the solution q �∈ H 2(�).

3 Finite element approximation

Let Th be a regular triangulation of � (see [1, 4]) and T be a generic triangle in Th

with diameter denoted by hT . Set h = maxT ∈Th
hT .

Let Vh ⊂ V be a finite element subspace defined by

Vh = {v ∈ H 1
0 (�) : v|T ∈ P1(T ) ∀T ∈ Th},

where Pr (T ) is the space of polynomials of degree less than or equal to r . Let Qh be
another finite element space defined by

Qh = {p ∈ L2(�) : p|T ∈ P0(T ) ∀T ∈ Th}.
The discrete closed and convex set Kh is defined as

Kh = {p ∈ Qh : p ≥ 0 a.e. in �,

∫
�

p dx = I }.

It is obvious that Kh ⊂ K and Kh is nonempty.
Let E i

h be the set of all interior edges in Th and a generic edge is denoted by e

whose length is denoted by he. For any e∈ E i
h, there are two triangles T e

1 and T e
2 in

Th such that e = ∂T e
1 ∩ ∂T e

2 . Then set Te = T e
1 ∪ T e

2 . For any vh ∈ Vh, the jump of
∇vh on any edge e∈ E i

h is defined as

[[∇vh]] = ∇vh|T e
1
n1 + ∇vh|T e

2
n2,

where ni is the unit outward normal to ∂T e
i on the edge e for i = 1, 2.

Finite element method Find vh ∈ Vh and qh ∈ Kh such that

(∇vh, ∇zh) = −(qh, zh) ∀zh ∈ Vh, (3.1)

(vh + 1

λ
qh, ph − qh) ≥ 0 ∀ph ∈ Kh. (3.2)

The discrete solution uh is then defined to be

uh = vh + ch, (3.3)

ch = −1

|�1h|
∫

�1h

(
vh(y) + 1

λ
qh(y)

)
dy (3.4)

where �1h = {x ∈ � : qh(x) > 0}. Since qh is piecewise constant, it is easy to
find the set �1h. As in the case of continuous problem, it can be shown that the
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discrete problem (3.1)–(3.2) has a unique solution for λ < λ1. Indeed, If Sh(ph) is
the solution of

(∇Sh(ph),∇zh) = −(ph, zh) ∀zh ∈ Vh,

then the minimization problem

jh(qh) = min
ph∈Kh

jh(ph), (3.5)

where

jh(ph) = 1

2λ
‖ph‖2 + 1

2
(Sh(ph), ph), (3.6)

has a unique solution qh. Then by setting vh = Sh(qh), we find a unique solution for
the discrete problem (3.1)–(3.2).

A priori error analysis For the purpose of error analysis, let 
h : L2(�) → Qh be
the L2(�)-projection defined as 
hp ∈ Qh for p ∈ L2(�) and∫

T


hp dx =
∫

T

p dx ∀T ∈ Th.

Note that if p ∈ K, then it is clearly true that 
hp ∈ K. Similarly, we define the
projection Ph : H 1

0 (�) → Vh as follows: For given v ∈ H 1
0 (�), find Phv ∈ Vh such

that
(∇Phv, ∇zh) = (∇v, ∇zh) ∀zh ∈ Vh.

From Cea’s Lemma [1, 4], it is well-known that

‖∇(v − Phv)‖ = min
zh∈Vh

‖∇(v − zh)‖,
‖q − 
hq‖ = min

ph∈Qh

‖q − ph)‖.
These projections play a crucial role in obtaining error estimates under the

assumption that λ < λ1 (the assumption made for the continuous problem). We now
prove some a priori error estimates.

Theorem 3.1 There holds

‖∇(v − vh)‖ + ‖q − qh‖ ≤ C (‖∇(v − Phv)‖ + ‖q − 
hq‖ + ‖v − 
hv‖) .

Proof First of all, from the Eqs. 2.6 and 3.1, we find that

(∇(v − vh),∇zh) = −(q − qh, zh) ∀zh ∈ Vh.

Then using the definition of Ph, we find

‖∇(Phv − vh)‖2 = (∇(v − vh),∇(Phv − vh)) = −(q − qh, Phv − vh)

≤ ‖q − qh‖ ‖Phv − vh‖.
By applying the Poincaré inequality (2.5), we derive

‖∇(Phv − vh)‖ ≤ 1√
λ1

‖q − qh‖. (3.7)
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From the inequalities Eqs. 2.7 and 3.2, we note since Kh ⊂ K that

(v + 1

λ
q, qh − q) ≥ 0,

(vh + 1

λ
qh, q − qh) ≥ (vh + 1

λ
qh, q − ph) ∀ph ∈ Kh.

Adding the above two inequalities,

(v − vh + 1

λ
(q − qh), qh − q) ≥ (vh + 1

λ
qh, q − ph) ∀ph ∈ Kh,

which implies with ph = 
hq that

1

λ
‖q − qh‖2 ≤ (v − vh, qh − q) − (vh − v, q − ph) − (v, q − ph)

≤ ‖Phv − vh‖‖q − qh‖
+|(v − Phv, qh − q) − (vh − v, q − ph) − (v, q − ph)|.

Using Eqs. 3.7 and 2.5, we find

(
1

λ
− 1

λ1

)
‖q − qh‖2 ≤ |(v − Phv, qh − q) − (vh − v, q − ph) − (v, q − ph)|

= |(v − Phv, qh − q) − (vh − v, q − ph) − (v − 
hv, q − ph)|
≤ ‖v − Phv‖ ‖q − qh‖ + ‖q − ph‖ (‖v − Phv‖ + ‖v − 
hv‖)

+‖q − ph‖ ‖Phv − vh‖
≤ ‖v − Phv‖ ‖q − qh‖ + ‖q − ph‖ (‖v − Phv‖ + ‖v − 
hv‖)

+ 1

λ1
‖q − ph‖ ‖q − qh‖,

which implies

‖q − qh‖2 ≤ C
(
‖v − Phv‖2 + ‖v − 
hv‖2 + ‖q − ph‖2

)
.

This completes the proof.

If λ < λ1, the solution u defined in Eq. 2.8 is the unique solution of the mode
problem (1.1)–(1.3). By using [5, Theorem 12.1], we note that �p = �. But since
�p = �1, we can redefine ch in Eq. 3.4 by

ch = −1

|�|
∫

�

(
vh(y) + 1

λ
qh(y)

)
dy. (3.8)

Further note that c defined in Eq. 2.9 is given by

c = −1

|�|
∫

�

(
v(y) + 1

λ
q(y)

)
dy. (3.9)

The following theorem proves estimates for u − uh.

Theorem 3.2 There holds

‖∇(u−uh)‖+‖u−uh‖+|c−ch| ≤ C (‖∇(v − Phv)‖ + ‖q − 
hq‖ + ‖v − 
hv‖) ,

where c and ch are defined by Eqs. 3.9 and 3.8, respectively.
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Proof Since u = v + c and uh = vh + ch, there holds

‖∇(u − uh)‖ = ‖∇(v − vh)‖.
By the definition of c and ch in Eqs. 3.9 and 3.8, respectively, and the Cauchy-

Schwarz inequality, we have

|c − ch| ≤ |�|−1/2
(

‖v − vh‖ + 1

λ
‖q − qh‖

)

≤ |�|−1/2
(

1√
λ1

‖∇(v − vh)‖ + 1

λ
‖q − qh‖

)

≤ C|�|−1/2 (‖∇(v − Phv)‖ + ‖q − 
hq‖ + ‖v − 
hv‖) .

This proves the desired estimate since ‖u−uh‖ ≤ ‖v − vh‖+ |�|1/2|c − ch|.

We deduce the following result on the order of convergence:

Corollary 3.3 There holds

‖∇(v − vh)‖ + ‖q − qh‖ ≤ C
(
hs |u|H 1+s (�) + h

(|q|H 1(�) + |v|H 1(�)

))
,

‖u − uh‖H 1(�) + |c − ch| ≤ C
(
hs |u|H 1+s (�) + h

(|q|H 1(�) + |v|H 1(�)

))
,

where s ∈ (0, 1] is the elliptic regularity index of v (or u). If the domain � is a convex
polygon, then s = 1.

A posteriori error analysis Since the model problem can exhibit free boundary,
the boundary of the set {x ∈ � : q(x) > 0}, and corner singularities, it is appro-
priate to use adaptive finite element method to resolve the solution around the free
boundary. This can be done by deriving a residual based a posteriori error estimate
and use it for adaptive mesh refinement. In this case a posteriori error estimates can
be derived efficiently by using suitable auxiliary problems. We define an auxiliary
solution denoted by v̄ as follows: Find v̄ ∈ H 1

0 (�) such that

(∇v̄, ∇z) = −(qh, z) ∀z ∈ H 1
0 (�). (3.10)

This auxiliary solution plays a crucial role in deriving an error estimator under the
assumption that λ < λ1 (the assumption made for the continuous problem). Note that
vh is the Galerkin approximation of v̄. Therefore the following residual based error
estimate for ‖∇(v̄ − vh)‖ is well known [1, 8]:

‖∇(v̄ − vh)‖ ≤ C

⎛
⎜⎝ ∑

T ∈Th

h2T ‖qh‖2L2(T )
+

∑
e∈E i

h

∫
e

he[[∇uh]]2 ds

⎞
⎟⎠

1/2

, (3.11)

since uh = vh + ch. Define for T ∈ Th and e∈ E i
h,

ηT = hT ‖qh‖L2(T ) + inf
wh∈P0(T )

‖λuh + qh − wh‖L2(T ),

ηe = h
1/2
e ‖[[∇uh]]‖L2(e),
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and set

η =
⎛
⎜⎝ ∑

T ∈Th

η2T +
∑
e∈E i

h

η2e

⎞
⎟⎠

1/2

.

The following theorem derives reliable a posteriori error estimates.

Theorem 3.4 There holds

‖∇(v − vh)‖ + ‖q − qh‖ ≤ Cη,

‖u − uh‖H 1(�) + |c − ch| ≤ Cη,

where c and ch are defined by Eqs. 3.9 and 3.8, respectively.

Proof First of all, from the Eqs. 2.6 and 3.10, we find that

(∇(v − v̄), ∇z) = −(q − qh, z) ∀z ∈ H 1
0 (�).

Then using the Cauchy-Schwarz inequality, we find

‖∇(v − v̄)‖2 = −(q − qh, v − v̄) ≤ ‖q − qh‖ ‖v − v̄‖,
and using Eq. 2.5,

‖∇(v − v̄)‖ ≤ 1√
λ1

‖q − qh‖, (3.12)

which implies that

‖v − v̄‖ ≤ 1

λ1
‖q − qh‖. (3.13)

As before using the inequalities (2.7), (3.2) and since Kh ⊂ K, we note that

(v + 1

λ
q, qh − q) ≥ 0,

(vh + 1

λ
qh, q − qh) ≥ (vh + 1

λ
qh, q − ph) ∀ph ∈ Kh.

Adding the above two inequalities and using (3.13), (2.5), we obtain for all ph ∈
Kh that

1

λ
‖q − qh‖2 ≤ (v − vh, qh − q) − (vh + 1

λ
qh, q − ph)

≤ 1

λ1
‖q − qh‖2 + |(v̄ − vh, qh − q) − (vh + 1

λ
qh, q − ph)|.

Choose ph = 
hq. Then since (wh, q−ph) = 0 for anywh ∈ Qh and ‖q−ph‖ ≤
‖q − qh‖, we find

‖q − qh‖2 ≤ C|(v̄ − vh, qh − q) − (vh + 1

λ
qh + ch − wh, q − ph)|

≤ C

(
‖∇(v̄ − vh)‖ + inf

wh∈Qh

‖λuh + qh − wh‖
)

‖q − qh‖.
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Using Eq. 3.11, we find the estimate for q − qh. Then using Eqs. 3.12 and 3.11,
we find the estimate for v − vh. The definitions of c, ch together with the estimates
for v and q imply the estimate for c − ch. This completes the proof.

The following theorem proves the local-efficiency estimates of the error estima-
tors:

Theorem 3.5 There holds

hT ‖qh‖L2(T ) ≤ C
(‖∇(v − vh)‖L2(T ) + hT ‖q − qh‖L2(T )

)
,

h
1/2
e ‖[[∇uh]]‖L2(e) ≤ C

(‖∇(v − vh)‖L2(Te)
+ he‖q − qh‖L2(Te)

)
,

inf
wh∈P0(T )

‖λuh + qh − wh‖L2(T ) ≤ C
(‖u − uh‖L2(T ) + ‖q − qh‖L2(T )

)

+C
(‖u − 
hu‖L2(T ) + ‖q − 
hq‖L2(T )

)
.

Proof First note that

inf
wh∈P0(T )

‖λuh + qh − wh‖L2(T ) ≤ inf
wh∈P0(T )

‖λ(uh − u) + (qh − q) − wh‖L2(T )

+ inf
wh∈P0(T )

‖λu + q − wh‖L2(T )

≤ (‖u − uh‖L2(T ) + ‖q − qh‖L2(T )

)
+C

(‖u − 
hu‖L2(T ) + ‖q − 
hq‖L2(T )

)
,

by choosing wh = 
h(λu + q). The first two inequalities follow from the standard
bubble function techniques [8].

4 Numerical examples

In this section, we discuss the modification of the primal-dual active set strategy
introduced in [7, Section 2.12.4] and present some numerical experiments illustrating
the theoretical results.

4.1 Primal-dual active set strategy

We begin by describing the numerical procedure to solve the discrete problem by
a primal-dual active set method [7]. To this end, we introduce the Lagrangian L :
K0h × R → R by

L(ph, r) = jh(ph) + r

(∫
�

ph dy − I

)
ph ∈ K0h, r ∈ R,

and find the solution through the critical point of L, where

K0h := {ph ∈ Qh : ph ≥ 0 a.e. in �}.
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The optimality system then leads to the following system: find vh ∈ Vh, qh ∈ K0h
and ch ∈ R such that

(∇vh, ∇zh) = −(qh, zh) ∀zh ∈ Vh,

(vh + 1

λ
qh + ch, ph − qh) ≥ 0 ∀ph ∈ K0h,

(1, qh − I ) = 0.

We solve the above system by using the primal-dual active set strategy described
in [7, Section 2.12.4]. For completeness, we describe the method here since we have
the additional unknown ch in the system:

Let the triangles in Th be enumerated by {Tj }{1≤j≤N1}. Let N2 be the dimension
of Vh and {φi}{1≤i≤N2} be its canonical Lagrange basis functions. The basis of Qh

denoted by {ψj }{1≤j≤N1} is given by the characteristic functions of Tj , 1 ≤ j ≤ N1,
i.e.,

ψj (x) :=
⎧⎨
⎩
1 if x ∈ Tj ,

0 if x �∈ Tj .

Denote by K = [Kij ]{1≤i,j≤N2} the stiffness matrix, where

Kij = (∇φj , ∇φi).

Define the matrices B = [Bij ]{1≤i≤N1,1≤j≤N2} and D = [Dij ]{1≤i,j≤N1}, where

Bij =
∫

Tj

φi dx and Dij =
∫

�

ψiψj dx.

Further define M = [Mj ]{1≤j≤N1}, with

Mj =
∫

�

ψj dx = |Tj |.
Let Xa = [Xij ]{1≤i,j≤N1} be the matrix defined by

Xij :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if i = j, j ∈ Aa,

0 if i = j, j �∈ Aa,

0 if i �= j.

(4.1)

where Aa is the index set of the active set in the iteration which will be defined later.
Further define the matrix E by

E =
(
1

λ
D

)−1

(Id − Xa),

with Id is the identity matrix of size N1 × N1. Now, consider the problem of finding
�α ∈ R

N2 , �β ∈ R
N1 and c ∈ R such that

K �α + B �β = 0, (4.2)

EBT �α + �β + EMc = 0, (4.3)

MT �β = I. (4.4)
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Since vh ∈ Vh and qh ∈ Qh, we write

vh =
N2∑
i=1

αiφi and qh =
N1∑
i=1

βiφi,

for scalars αi (i = 1, 2, · · · , N2) and βi (i = 1, 2, · · · , N1). Set �α =
(α1, α2, · · · , αN2) and �β = (β1, β2, · · · , βN1). Define the multiplier �μ =
[μj ]{1≤j≤N1} by

�μ = −(EBT �α + cEM + �β).

The primal-dual active set strategy is defined as follows: Let �μ0 and �β0 are given.
Let r > 0 be some fixed real number and k = 1.

Step 1. Find the set Ak
a by

Ak
a = {1 ≤ j ≤ N1 : βk−1

j + rμk−1
j < 0}.

Step 2. Compute Xk
a using the index set Ak

a and Eq. 4.1.
Step 3. Solve the system (4.2)–(4.4) for finding �αk ∈ R

N2 , �βk ∈ R
N1 and ck ∈ R.

Step 4. Set k = k + 1. Go to Step 1 and compute Ak
a . If Ak

a = Ak−1
a stop the

iteration otherwise continue.

4.2 Numerical experiments

We present numerical experiments for a few model examples to illustrate the theo-
retical results and to draw some conclusions. In all the examples below, we take the
constant r = 1 in the Step 1 of the above algorithm.

Example 1 In this example, we consider the domain � = (0, 1)2, λ = 19 and I = 4.
Note that the eigen-values of

−�φ = λφ in �,

φ = 0 on ∂�,

are given by λn = 2n2π2 for n = 1, 2, 3, · · · . Therefore we have the hypothesis
λ < λ1 = 2π2 fulfilled. We consider a sequence of uniform triangulations of � with
mesh sizes hk = 1/2k , for k = 2, 3, · · · , 7. On this sequence of meshes, we solve

Table 1 Errors and orders of convergence for Example 1

h ‖∇(uk
h − uk−1

h )‖ Order ‖∇(vk
h − vk−1

h )‖ Order ‖qk
h − qk−1

h ‖ Order |ck
h − ck−1

h | Order

1/8 7.1776e-01 – 7.1776e-01 – 2.2080e+00 – 3.5548e-02 –

1/16 4.0720e-01 0.8178 4.0720e-01 0.8178 2.2080e+00 0.9056 1.3097e-02 1.4405

1/32 2.0979e-01 0.9568 2.0979e-01 0.9568 1.1786e+00 1.0179 3.7055e-03 1.8215

1/64 1.0575e-01 0.9883 1.0575e-01 0.9883 2.8817e-01 1.0142 9.6097e-04 1.9471

1/128 5.3003e-02 0.9965 5.3003e-02 0.9965 1.4362e-01 1.0047 2.4271e-04 1.9853
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Table 2 Errors and orders of convergence for Example 2

h ‖∇(uk
h − uk−1

h )‖ Order ‖∇(vk
h − vk−1

h )‖ Order ‖qk
h − qk−1

h ‖ Order |ck
h − ck−1

h | Order

√
2/8 8.0816e-01 – 8.0816e-01 – 1.5461e+00 – 4.1412e-02 –√
2/16 4.8976e-01 0.7226 4.8976e-01 0.7226 9.3499e-01 0.7256 1.6775e-02 1.3037√
2/32 2.7059e-01 0.8559 2.7059e-01 0.8559 4.6154e-01 1.0185 5.4893e-03 1.6117√
2/64 1.4982e-01 0.8529 1.4982e-01 0.8529 2.2375e-01 1.0446 1.6913e-03 1.6985√
2/128 8.5003e-02 0.8177 8.5003e-02 0.8177 1.1009e-01 1.0232 5.2949e-04 1.6755

the discrete solutions vk
h, uk

h and ck
h. Since we do not have the exact solution, we

compute the errors of discrete solutions at successive levels of meshes by computing
‖∇(uk

h−uk−1
h )‖, ‖∇(vk

h−vk−1
h )‖, ‖qk

h−qk−1
h ‖ and |ck

h−ck−1
h | and report them for k =

3, 4, · · · , 7. in the Table 1. The numerical results show clearly the expected order of
convergence. However, we can observe from the table that the orders of convergence
in approximating the constant c is close to 2, which seems to be a super-convergence.

Example 2 In this example, we consider an L-shaped domain � = (−1, 1)×(0, 1)∪
(−1, 0) × (−1, 0). Set λ = 9 and I = 4. Since the first eigen-values of

−�φ = λφ in �,

φ = 0 on ∂�,
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Fig. 1 Estimator converges at optimal rate
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Fig. 2 Mesh refinement at intermediate level

is λ1 ≈ 9.639723844, [3, Page 421]. Therefore the assumption λ < λ1 is satisfied.
In the first case, we consider a sequence of uniform triangulations of � with mesh
size hk = 1/(2k

√
2), for k = 2, 3, · · · , 7. We compute the discrete solutions and

the errors as in example 1 and report them in Table 2. The numerical results show
the expected orders of convergence. The order of convergence in uh (or vh) is not
optimal since the solution on L-shaped domain can have corner singularities.

We now test the performance of a posteriori error estimator by using the
successive mesh refinement adaptive algorithm consisting of the steps

SOLVE → ESTIMATE → MARK → REFINE

with Dörfler’s bulk marking strategy with parameter 0.3 and the longest edge bisec-
tion algorithm in the refinement step. The the errors (sum of the errors in the discrete

Table 3 Errors and orders of convergence for Example 3 with λ = 40

h ‖∇(uk
h − uk−1

h )‖ Order ‖∇(vk
h − vk−1

h )‖ Order ‖qk
h − qk−1

h ‖ Order |ck
h − ck−1

h | Order

1/8 1.0768e+00 – 1.0768e+00 – 3.5479e+00 – 8.5863e-02 –

1/16 6.3641e-01 0.7587 6.3641e-01 0.7587 2.5827e+00 0.4581 3.1001e-02 1.4697

1/32 3.3720e-01 0.9164 3.3720e-01 0.9164 1.3304e+00 0.9570 9.3145e-03 1.7348

1/64 1.7105e-01 0.9792 1.7105e-01 0.9792 6.6645e-01 0.9972 2.4852e-03 1.9061

1/128 8.5920e-02 0.9933 8.5920e-02 0.9933 3.3007e-01 1.0137 6.3005e-04 1.9798
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Table 4 Errors and orders of convergence for Example 3 with λ = 78

h ‖∇(uk
h − uk−1

h )‖ Order ‖∇(vk
h − vk−1

h )‖ Order ‖qk
h − qk−1

h ‖ Order |ck
h − ck−1

h | Order

1/8 1.6588e+00 – 1.6588e+00 – 2.0943e+01 – 1.8353e-01 –

1/16 6.2581e-01 1.4063 6.2581e-01 1.4063 9.4903e+00 1.1419 2.6873e-02 2.7718

1/32 5.9125e-01 0.0820 5.9125e-01 0.0820 7.9485e+00 0.2558 3.2962e-02 -0.2946

1/64 1.8561e-01 1.6715 1.8561e-01 1.6715 2.9408e+00 1.4345 1.6807e-03 4.2937

1/128 9.9283e-02 0.9027 9.9283e-02 0.9027 2.9709e+00 -0.0147 2.2620e-03 -0.4285

solutions for u, v and q) which is computed using discrete solutions at two consecu-
tive mesh levels and the computed estimator at each mesh are reported in Fig. 1. The
numerical results clearly show the optimal order of convergence and the estimator
has effectively captured the corner singularity, see Fig. 2.

Example 3 Similar to the example 1, we consider the domain � = (0, 1)2 and I = 4.
But we take two cases with λ = 40 and λ = 78 which lie between the first two least
eigen-values λ1 and λ2 of

−�φ = λφ in �,

φ = 0 on ∂�.

Although the hypothesis λ < λ1 is not satisfied, we would like to check the per-
formance of the method. As in the example 1, we consider a sequence of uniformly
refined meshes and compute the discrete solutions and the errors. In the first case
when λ = 40, we observe the same performance as in the case of example 1, see

0

0.5

1

0

0.5

1
−0.6

−0.4

−0.2

0

0.2

0.4

Discrete Solution uh

0
0.5

1 0

0.5

1

0

5

10

15

20

25

Discrete Solution qh

Fig. 3 Discrete solutions uh (left) and qh (right) for Example 3 with λ = 40
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Table 3. But in the case when λ = 78, we observe deterioration in the performance
which can be seen in Table 4. The discrete solutions uh and qh are shown in Fig. 3
for the example with λ = 40.

5 Conclusions

In this paper, we have studied a mixed formulation of a model free boundary plasma
problem involving two positive constants λ and I . If λ < λ1, where λ1 is the smallest
eigen-value of −� on the domain � with homogeneous Dirichlet boundary condi-
tion, it is shown that the model problem has a unique solution. A result on obtaining
explicit form of the boundary value of the solution is derived. Using the same mixed
formulation setting, we have proposed a finite element method and studied both a pri-
ori and a posteriori error estimates. Using a primal-dual active set strategy, we have
performed numerical experiments which illustrate the theoretical results. The exis-
tence and uniqueness of the solution for the model problem is known when λ < λ2,
where λ2 the second smallest eigen-value of−� on the domain�with homogeneous
Dirichlet boundary condition, see [5, Theorem 11.2]. The discrete problem and its
analysis for the case λ1 < λ < λ2 may require discrete maximum principles and we
investigate this in the future despite our numerical experiments for this case seems to
be inconclusive.
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