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Abstract
A finite difference method is proposed for solving the compressible reduced cou-
pled model, in which the flow is governed by Forchheimer’s law in the fracture and
Darcy’s law in the surrounding porous media. By using the averaging technique, the
fracture is reduced to a lower dimensional interface and a more complicated trans-
mission condition is derived on the fracture-interface. Different degrees of freedom
are located on both sides of fracture-interface in order to capture the jump of velocity
and pressure. Second-order error estimates in discrete norms are derived on nonuni-
form staggered grids for both pressure and velocity. The proposed scheme can also be
extended to nonmatching spatial and temporal grids without loss of accuracy. Numer-
ical experiments are performed to demonstrate the efficiency and accuracy of the
numerical method. It is shown that the parameter ξ has little influence on the fluid
flow, and the permeability tensor of fracture has a significant impact on the flow rate
in both the surrounding porous and fracture-interface.
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1 Introduction

The fractures are considered to be the storage spaces of drinkable groundwater and
occurrence sites of environmental pollution in Karst aquifer system. It is important to
gain a better understanding of groundwater flow in aquifer with fractures, in order to
assess groundwater risk and control pollution. Due to the close connection between
the fracture and surrounding medium, a coupled model is usually applied to demon-
strate the groundwater flow process in fractured media aquifer system, where the flux
exchange at the junction between the fracture and surrounding medium is treated as
a coupling term (see [1–4] for details).

The permeability of the fracture may differ greatly from that of the surrounding
medium. It has a very important influence on the flow rate in the whole domain. Under
the condition that the fluid flow in the fracture is sufficiently rapid, the linear relationship
between the velocity and the pressure gradient is invalid [5–8]. By adding a quadratic
term in velocity, the Forchheimer equation is used to model the flow of fluid in the
fracture. It indicates that a coupled model demonstrating the flow in the fractured
media is quite different from Darcy’s model in [9–13]. Due to the fact that the thick-
ness of fracture is much smaller than characteristic diameters of surrounding porous
medium, the fracture can be reduced into an interface of co-dimension one. The dimen-
sion reducing process can be carried out by averaging across the fracture as in [9, 12–18].
As a result, one can reduce the cost of computation without losing the physical
properties of fractured media and avoid from refining locally around the fracture.

In the past, researchers have studied the reduced Darcy flow in fracture theoreti-
cally and numerically such as by finite volume method in [9, 11, 19, 20], by extended
finite element method in [10], and by RT0 mixed finite element method in [12, 13].
Recently, the Forchheimer model in the fracture starts to receive a great deal of atten-
tion. Frih et al. [21] gave the incompressible reduced model with the Darcy equation
in porous medium and the Forchheimer equation in fracture. The discrete formula-
tion was derived by using mixed finite element method and some numerical examples
were presented therein. Knabner et al. [22] considered the steady model problem
with the Darcy flow in the porous media and the Forchheimer flow. The existence and
uniqueness of the solutions were established for the problem. However, the flow in
the fracture along the direction normal to the fracture was described by Darcy’s law
in [22], and the pressure was assumed to be continuous across the fracture-interface
in [21]. The convergence analysis was not given in both [21] and [22].

In this paper, we consider the case where the Forchheimer law governs the flow
along both directions normal and tangential to the fracture. Our model problem is dif-
ferent from the ones in [21] and [22]. By using averaging across the fracture, a more
complicated transmission condition on the fracture-interface is obtained to describe
the process of flux exchange between the fracture and surrounding medium, which
makes sense in practice. An additional term corresponding to the flux of surrounding
medium in and out of the fracture-interface is added to the fracture-interface equa-
tion. The reduced coupled model is no longer assumed to have continuous pressure
across the fracture-interface. The flow of fluid in surrounding domain is considered
to obey Darcy’s law. In other words, reduced coupled model will be analyzed and
simulated in this paper (cf. Fig. 1).
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Fig. 1 The sketch figure of whole domain. Left: the convex domain is divided by the fracture region �f

with the thickness δ into �1 and �2. Right: �f is treated as a fracture-interface �γ between subdomains
�1 and �2

As far as we know, there is no study of finite difference method for compressible
Forchheimer fractured models with Neumann boundary condition. In this paper, we
use the coupled block-centered finite difference scheme to solve the reduced cou-
pled model. The block-centered finite difference method [23–29] is also considered
as the lowest order Raviart-Thomas mixed element method with proper quadrature
formulation. The application of the finite difference enables us to approximate both
the velocity and pressure with second-order accuracy. Moreover, the block-centered
finite difference method transfers the saddle point system of the mixed element
method into a symmetric positive definite system. Based on the high-order interpo-
lation operators, the finite difference scheme proposed in this work can be applied
efficiently to solve the reduced coupled model with a complicated transmission con-
dition. Its novelty is that degrees of freedom are introduced separately on both sides
of fracture domain to capture the jump in the normal component of the velocity. When
the flow moves rapidly in the fracture, smaller grids in space and time may need to
be employed in fracture domain than in the surrounding medium. Such requirement
brings a multi-scale challenge to the numerical methods for the reduced model. The
finite difference method studied in this paper can be easily extended to solve the
reduced models on nonmatching spatial and temporal grids, which is another advan-
tage of the proposed scheme. In order to preserve accuracy of the extended methods
on nonmatching grids, some properly defined interpolation operators are applied in
different domains.

In the numerical experiments, second-order convergence rates are verified for the
finite difference approximations of the reduced coupled model. For the fractured
system, one can observe that the numerical solutions are discontinuous across the
fracture-interface, and the behavior of velocity and pressure is clearly different on
two sides of domain. It is also illustrated that there is little influence of the parameter
ξ on the numerical solutions for the reduced coupled model. Moreover, the normal
and tangential components of permeability tensor play important roles in affecting
the flow rates in the surrounding porous media and fracture-interface, respectively.

The rest of the paper is organized as follows. In Section 2, the reduced coupled
model is derived for the Forchheimer flow in the fracture and the Darcy flow in the
surrounding porous media. In Section 3, a coupled block-centered finite difference
method is introduced for the compressible reduced coupled model in fractured media
aquifer system. The method is then extended to nonmatching grids for fracture and
surrounding porous media in both space and time. The error analysis of the schemes
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is derived in Section 4. In Section 5, several numerical examples are presented to
illustrate the method’s accuracy and efficiency. The numerical results of some prac-
tical problems demonstrate the desired physical properties of compressible reduced
coupled model. The conclusions are given in Section 6.

Throughout this paper, we use C to denote a generic positive constant indepen-
dent of the discretization parameters, which may take different values in different
appearances.

2 The reduced coupledmodel

In this section, we describe the original model and derive the reduced coupled model
for the flow in the Forchheimer fractured system.

We suppose that the flow in convex domains �1 and �2 is governed by a mass
conservation equation and the Darcy equation connecting the pressure p and veloc-
ity u. The flow in the fracture �f is governed by Forchheimer’s law describing a
nonlinear relationship between the velocity uf and pressure pf . For slightly com-
pressible fluid, the density ρf depends on the pressure pf , i.e., ρf = ρf (pf ). Then,
the original coupled model with Neumann boundary condition is given as follows,

where the time interval J = (0, T ]. s is the storage coefficient, K is the perme-
ability tensor (or hydraulic conductivity), q is the source or sink term, g ∈ L2(∂�)

is the given flux through the boundary, p0 are the given pressure on the initial time
level, respectively. Let p|�i

= pi,u|�i
= ui , s|�i

= si,K|�i
= Ki , g|�i

=
gi, q|�i

= qi, p|0�i
= p0

i , �i is the boundary of �i , νi is unit outer normal vector to

�i (i = 1, 2, f ). Here, we assume that Ki =
(

Kx
i 0

0 K
y
i

)
, and there exist positive

constants κx
i and κ

y
i for i = 1, 2, f such that

κx
1 ≤ Kx

i ≤ κx
2 , κ

y

1 ≤ K
y
i ≤ κ

y

2 .

The notation | · | represents the Euclidean norm, i.e., |uf |2 = uf · uf . The constant
μf denotes the viscosity coefficient of the fluid in fracture; the constant βf denotes
the Forchheimer number; the constant φf is the porosity and CF

f is the coefficient of
compressibility. The parameters of Forchheimer equation in fracture are assumed to
be constants.

Numerical Algorithms (2020) 84:133–163136



Next, we use the technique of averaging across the fracture in order to reduce the
model to be one-dimensional.

For the conservation (2.3) in the fracture, we have the following equations such as
in [12]

divτ uγ = qγ + (u1 · n1|�γ + u2 · n2|�γ ), on �γ , (2.9)

by using (2.5). Here, divτ denotes the tangential divergence, uγ = ∫ δ
2

− δ
2
uτ

f dn and

qγ = ∫ δ
2

− δ
2
qf dn.

Equation (2.9) models the mass conservation equation inside fracture-interface
�γ . A source term (u1 ·n1|�γ +u2 ·n2|�γ ) is introduced to characterize the difference
between the flow in and out of the fracture.

For the Forchheimer equation (2.4), we divide it into two parts according to the
tangential and normal directions as follows,

μf uτ
f + Kτ

f βf ρf (pf )|uf |uτ
f + Kτ

f ∇τpf = 0, (2.10)

μf un
f + Kn

f βf ρf (pf )|uf |un
f + Kn

f ∇npf = 0. (2.11)

where ∇τ denotes the tangential gradient. Note that our equation (2.11) is different
from (9b) in [21] and (13) in [22], in which the flow in the fracture along normal
direction satisfies Darcy’s law.

By using the constant assumption of the parameters in Forchheimer equations and
integrating both sides of (2.10) on the section (− δ

2 , δ
2 ), we get

μγ

∫ δ
2

− δ
2

uτ
f dn + Kτ

γ βγ

∫ δ
2

− δ
2

ρf (pf )|uf |uτ
f dn + Kτ

γ ∇τ

∫ δ
2

− δ
2

pf dn = 0. (2.12)

Under the condition that the thickness of fracture δ is very small and δuτ
f ≈ uγ ,

we have

|uf | =
√

(uτ
f )2 + (un

f )2 ≈
√

(
uγ

δ
)2 + (

uf · n|γ1 + uf · n|γ2

2
)2 ≈ 1

δ
|uγ |. (2.13)

Note that ρf (pf ) = ρ0
f e

CF
f (pf −p0

f )≈ ρ0
f (1 + CF

f (pf − p0
f )), then ρf (pf ) can be

approximated as a linear function of pf . We can then apply rectangle quadrature
formula and (2.13) to (2.12) and obtain

μγ uγ + Kτ
γ βγ ργ (pγ )

δ
|uγ |uγ + Kτ

γ δ∇τpγ = 0. (2.14)

Here pγ = 1
δ

∫ δ
2

− δ
2
pf dn, which represents the average pressure along the nor-

mal direction cross the fracture. Equation (2.14) describes Forchheimer’s law in the
direction tangential to the fracture-interface �γ .

In order to derive the interior boundary condition on �γ , we use three different
approaches to cope with (2.11).
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(I). By integrating both sides of (2.11) across the fracture over interval (− δ
2 , δ

2 ), we
have

μγ

∫ δ
2

− δ
2

un
f dn + Kn

γ βγ

∫ δ
2

− δ
2

ρf (pf )|uf | un
f dn + Kn

γ (p2|�γ − p1|�γ ) = 0, (2.15)

which is obtained by the pressure relationship (2.6).

By trapezoidal integral formula, (2.5) and (2.13), we get

μγ

δ

2
(uf · n|γ1 + uf · n|γ2) + Kn

γ βγ ργ (pγ )|uγ | (uf · n|γ1 + uf · n|γ2)

2
+Kn

γ (p2|�γ − p1|�γ ) = 0. (2.16)

Setting αγ = 2Kn
γ /δ and using (2), we arrive at

μγ (u1 · n1|�γ − u2 · n2|�γ ) + αγ βγ ργ (pγ )|uγ |
2

(u1 · n1|�γ − u2 · n2|�γ )

+ αγ (p2|�γ − p1|�γ ) = 0. (2.17)

Together with pγ ≈ p2|�γ +p1|�γ

2 , we obtain

− 1

2
(μγ + αγ βγ ργ (pγ )|uγ |

2
) u1 · n1|�γ + αγ p1|�γ

= −1

2
(μγ + αγ βγ ργ (pγ )|uγ |

2
)u2 · n2|�γ + αγ pγ , (2.18)

−1

2
(μγ + αγ βγ ργ (pγ )|uγ |

2
) u2 · n2|�γ + αγ p2|�γ

= −1

2
(μγ + αγ βγ ργ (pγ )|uγ |

2
)u1 · n1|�γ + αγ pγ . (2.19)

(II). By integrating (2.11) on interval (− δ
2 , 0) and (0, δ

2 ), respectively, we get

μγ

∫ 0

− δ
2

un
f dn + Kn

γ βγ

∫ 0

− δ
2

ρf (pf )|uf |un
f dn + Kn

γ

∫ 0

− δ
2

∇npf dn = 0, (2.20)

μγ

∫ δ
2

0
un

f dn + Kn
γ βγ

∫ δ
2

0
ρf (pf )|uf |un

f dn + Kn
γ

∫ δ
2

0
∇npf dn = 0. (2.21)

By trapezoidal integral formula,

− 3

4
(μγ + αγ βγ ργ (pγ )|uγ |

2
) u1 · n1|�γ + αγ p1|�γ

= − 1

4
(μγ + αγ βγ ργ (pγ )|uγ |

2
)u2 · n2|�γ + αγ pγ , (2.22)

− 3

4
(μγ + αγ βγ ργ (pγ )|uγ |

2
) u2 · n2|�γ + αγ p2|�γ

= − 1

4
(μγ + αγ βγ ργ (pγ )|uγ |

2
)u1 · n1|�γ + αγ pγ . (2.23)
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(III). By using rectangular integrate formula to (2.20) and (2.21), we obtain

(μγ + αγ βγ ργ (pγ )|uγ |
2

)u1 · n1|�γ − Kn
γ

p1|�γ − pγ

δ/2
= 0, (2.24)

(μγ + αγ βγ ργ (pγ )|uγ |
2

)u2 · n2|�γ − Kn
γ

p2|�γ − pγ

δ/2
= 0. (2.25)

Then,

− (μγ + αγ βγ ργ (pγ )|uγ |
2

)u1 · n1|�γ + αγ p1|γ1 = αγ pγ , (2.26)

−(μγ + αγ βγ ργ (pγ )|uγ |
2

)u2 · n2|�γ + αγ p2|γ2 = αγ pγ . (2.27)

Combining the above three cases, we have the following general transmission
condition on the fracture-interface,

− ξ(μγ + αγ βγ ρf (pγ )|uγ |
2

) u1 · n1|�γ + αγ p1|�γ

= −(1 − ξ)(μγ + αγ βγ ργ (pγ )|uγ |
2

)u2 · n2|�γ + αγ pγ ,(2.28)

−ξ(μγ + αγ βγ ργ (pγ )|uγ |
2

) u2 · n2|�γ + αγ p2|�γ

= −(1 − ξ)(μγ + αγ βγ ργ (pγ )|uγ |
2

)u1 · n1|�γ + αγ pγ ,(2.29)

where ξ = 1/2, ξ = 3/4, ξ = 1. For the purpose of general applications, we take
the range of parameter ξ from 1/2 to 1, i.e., ξ ∈ (1/2, 1].

Combining the conservation equation (2.9), Forchheimer equation (2.14), and
fracture-interface condition (2.28)–(2.29), we obtain the reduced coupled model as
follows,

Equation (2.32) describes the mass conservation on fracture-interface �γ with an
additional source term (u1 · n1|�γ + u2 · n2|�γ ). This extra source term corresponds
to the contribution of the surrounding porous media flows into the fracture-interface.
Equation (2.33) is Forchheimer’s law on one-dimensional fracture-interface �γ . The
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transmission conditions (2.4)–(2.35) denote the coupling relationship between the
fracture-interface �γ and surrounding subdomains �1, �2. The exchanging flux for
Forchheimer flow depends on the difference of the pressure in the fracture-interface
and surrounding medium, which makes sense from the practical application point
of view. Based on the assumption that the flow in fracture obeys Forchheimer’s law
along both normal and tangential directions of the fracture-interface, the conditions
(2.4)–(2.35) are different from (9b) in [21] and (13) in [22]. It is obvious that the pres-
sure is no longer continuous across the fracture-interface. The influence of parameter
ξ on the numerical solutions will be shown in Section 5. The roles of parameters Kτ

γ

and Kn
γ on the fluid flow in the fractured media will also be illustrated for a fixed

fracture thickness.

3 A coupled finite differencemethod

In this section, we design a block-centered finite difference method to solve (2.30)–
(2.37) on matching grids in Section 3.1 and nonmatching grids in Section 3.2.

3.1 Coupled scheme onmatching grids

Let the two-dimensional porous media �1 = [xa, xb] × [ya, yc), �2 = [xa, xb] ×
(yc, yb] and one-dimensional fracture-interface �γ = [xa, xb] × {y = yc}. The
regular space partitions �1h = �x × �

y

1 , �2h = �x × �
y

2 and �γh = �x for the
domains �1, �2 and �γ are given as follows.

�x : xa = x1/2 < x3/2 < · · · < xNx−1/2 < xNx+1/2 = xb,

�
y

1 : ya = y1/2 < y3/2 < · · · < yÑy−1/2 < yÑy+1/2 = yc,

�
y

2 : yc = yÑy+1/2 < yÑy+3/2 < · · · < yNy−1/2 < yNy+1/2 = yb.

Set 0 = t0 < t1 < · · · < tNt = T and define

�tk = tk − tk−1, �t = max
k

{�tk},

xm = xm−1/2 + xm+1/2

2
, yn = yn−1/2 + yn+1/2

2
,

hx
m = xm+1/2 − xm−1/2, h

y
n = yn+1/2 − yn−1/2,

hx
m+1/2 = hx

m+1 + hx
m

2
= xm+1 − xm, h

y

n+1/2 = h
y

n+1 + h
y
n

2
= yn+1 − yn,

hx = max
m

{hx
m+1/2, h

x
m}, hy = max

n
{hy

n+1/2, h
y
n},

where m = 1, · · · , Nx − 1, n = 1, · · · , Ny − 1, k = 1, · · · , Nt .
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For ϕk
s,l = ϕ(xs, yl, t

k) at a node-point (xs, yl, t
k), denote

[dtϕ]km,n = ϕk
m,n − ϕk−1

m,n

�tk
,

[dxϕ]km+1/2,n = ϕk
m+1,n − ϕk

m,n

hx
m+1/2

, [Dxϕ]km,n = ϕk
m+1/2,n − ϕk

m−1/2,n

hx
m

,

[dyϕ]km,n+1/2 = ϕk
m,n+1 − ϕk

m,n

h
y

n+1/2

, [Dyϕ]km,n = ϕk
m,n+1/2 − ϕk

m,n−1/2

h
y
n

.

Denote

�γ,m+1/2,Ñy+1/2 = (xm, xm+1) × yÑy+1/2,

with 1 ≤ m ≤ Nx − 1,

�γ,m,Ñy+1/2 = (xm−1/2, xm+1/2) × yÑy+1/2,

with 1 ≤ m ≤ Nx,

�i,m,n = (xm−1/2, xm+1/2) × (yn−1/2, yn+1/2),

with 1 ≤ m ≤ Nx, 1 ≤ n ≤ Ñy for i = 1; 1 ≤ m ≤ Nx, Ñy + 1 ≤ n ≤ Ny for i = 2,
�i,m+1/2,n = (xm, xm+1) × (yn−1/2, yn+1/2),

with 1 ≤ m ≤ Nx − 1, 1 ≤ n ≤ Ñy for i = 1; 1 ≤ m ≤ Nx − 1, Ñy + 1 ≤ n ≤ Ny for i = 2,

�i,m,n+1/2 = (xm−1/2, xm+1/2) × (yn, yn+1),

with 1 ≤ m ≤ Nx, 1 ≤ n ≤ Ñy − 1 for i = 1; 1 ≤ m ≤ Nx, Ñy + 1 ≤ n ≤ Ny for i = 2,

Note that n �= Ñy for �i,m,n+1/2.

For discrete functions ϕ and θ , define the midpoint quadrature formula on different
domains such as

(ϕi, θi)M,�i,m,n
= hx

mh
y
nϕi,m,nθi,m,n,

(ϕi, θi)X,�i,m+1/2,n
= hx

m+1/2h
y
nϕi,m+1/2,nθi,m+1/2,n,

(ϕi, θi)Y,�i,m,n+1/2 = hx
mh

y

n+1/2ϕi,m,n+1/2θi,m,n+1/2,

(ϕγ , θγ )γM,�γ,m+1/2,Ñy+1/2
= hx

mϕγ,m,Ñy+1/2θγ,m,Ñy+1/2,

(ϕγ , θγ )γX,�γ,m,Ñy+1/2
= hx

m+1/2ϕγ,m+1/2,Ñy+1/2θγ,m+1/2,Ñy+1/2. (3.1)

Next, we give the following definitions of the discrete inner products and semi-norms
based on the above quadrature formula

(ϕ1, θ1)M =
∑
m,n

(ϕ1, θ1)M,�1,m,n
=

Nx∑
m=1

Ñy∑
n=1

hx
mh

y
nϕ1,m,nθ1,m,n,

(ϕ2, θ2)M =
∑
m,n

(ϕ2, θ2)M,�2,m,n
=

Nx∑
m=1

Ny∑
n=Ñy+1

hx
mh

y
nϕ2,m,nθ2,m,n,
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(ϕ1, θ1)X =
∑
m,n

(ϕ1, θ1)X,�1,m+1/2,n
=

Nx−1∑
m=1

Ñy∑
n=1

hx
m+1/2h

y
nϕ1,m+1/2,nθ1,m+1/2,n,

(ϕ2, θ2)X =
∑
m,n

(ϕ2, θ2)X,�2,m+1/2,n
=

Nx−1∑
m=1

Ny∑
n=Ñy+1

hx
m+1/2h

y
nϕ2,m+1/2,nθ2,m+1/2,n,

(ϕ1, θ1)Y =
∑
m,n

(ϕ1, θ1)Y,�1,m,n+1/2 =
Nx∑

m=1

Ñy∑
n=1

hx
mh

y

n+1/2ϕ1,m,n+1/2θ1,m,n+1/2,

(ϕ2, θ2)Y =
∑
m,n

(ϕ2, θ2)Y,�2,m,n+1/2 =
Nx∑

m=1

Ny−1∑
n=Ñy

hx
mh

y

n+1/2ϕ2,m,n+1/2θ2,m,n+1/2,

(ϕγ , θγ )γM =
∑
m

(ϕγ , θγ )γM,�γ,m+1/2,Ñy+1/2
=

Nx∑
m=1

hx
mϕγ,m,Ñy+1/2θγ,m,Ñy+1/2,

(ϕγ , θγ )γX =
∑
m

(ϕγ , θγ )γX,�γ,m,Ñy+1/2
=

Nx−1∑
m=1

hx
m+1/2ϕγ,m+1/2,Ñy+1/2θγ,m+1/2,Ñy+1/2,

‖ϕ‖2
M =

2∑
i=1

(ϕi, ϕi)M, ‖ϕ‖2
X =

2∑
i=1

(ϕi, ϕi)X, ‖ϕ‖2
Y =

2∑
i=1

(ϕi, ϕi)Y ,

‖ϕ‖2
XY = ‖ϕ‖2

X + ‖ϕ‖2
Y , ‖ϕ‖2

γM = (ϕγ , ϕγ )γM, ‖ϕ‖2
γX = (ϕγ , ϕγ )γX .

The freedom of pressure p is defined on the center of element. In order to get
the pressure approximation of the porous media on the fracture-interface, we use the
extrapolation operators I

p

1 in �1 and I
p

2 in �2, respectively, such that

I
p

1 ϕ1,m,Ñy+1/2 =
2h

y

Ñy
+ h

y

Ñy−1

h
y

Ñy
+ h

y

Ñy−1

ϕ1,m,Ñy
−

h
y

Ñy

h
y

Ñy
+ h

y

Ñy−1

ϕ1,m,Ñy−1, (3.2)

I
p

2 ϕ2,m,Ñy+1/2 =
2h

y

Ñy+1
+ h

y

Ñy+2

h
y

Ñy+1
+ h

y

Ñy+2

ϕ2,m,Ñy+1−
h

y

Ñy+1

h
y

Ñy+1
+ h

y

Ñy+2

ϕ2,m,Ñy+2. (3.3)

Set

|Û |k
γ,m,Ñy+1/2

=
|Uk

γ,m+1/2,Ñy+1/2
| + |Uk

γ,m−1/2,Ñy+1/2
|

2
, (3.4)

P γ,m+1/2,Ñy+1/2 = 1

2hx
m+1/2

(hx
m+1Pγ,m,Ñy+1/2 + hx

mPγ,m+1,Ñy+1/2), (3.5)

and

ax
γ (pγ ) = Kx

γ βγ ργ (pγ )

δ
, bγ (pγ ) = αγ βγ ργ (pγ )

2
.

The block-centered finite difference scheme with a backward difference in time
is given to approximate ux

i (xm+1/2, yn, t
k), u

y
i (xm, yn+1/2, t

k), pi(xm, yn, t
k) (i =
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1, 2), uγ (xm+1/2, yc, t
k) and pγ (xm, yc, t

k) by U
x,k
i,m+1/2,n, U

y,k

i,m,n+1/2, P k
i,m,n (i =

1, 2), Uk

γ,m+1/2,Ñy+1/2
and P k

γ,m,Ñy+1/2
as follows:

si [dtPi ]km,n + [DxUx
i ]km,n + [DyU

y
i ]km,n = qk

i,m,n, (3.6)

U
x,k
i,m+1/2,n + Kx

i [dxPi ]km+1/2,n = 0, (3.7)

U
y,k

i,m,n+1/2 + K
y
i [dyPi ]km,n+1/2 = 0, (3.8)

φγ CF
γ [dtPγ ]k

m,Ñy+1/2
+ [DxUγ ]k

m,Ñy+1/2
= qk

γ,m,Ñy+1/2
+ U

y,k

1,m,Ñy+1/2
− U

y,k

2,m,Ñy+1/2
, (3.9)

(μγ + ax
γ (P γ )|Uγ |k

m+1/2,Ñy+1/2
)Uk

γ,m+1/2,Ñy+1/2
+ Kx

γ δ[dxPγ ]k
m+1/2,Ñy+1/2

= 0, (3.10)

(μγ + bγ (Pγ )|Ûγ |k
γ,m,Ñy+1/2

)(U
y,k

1,m,Ñy+1/2
− U

y,k

2,m,Ñy+1/2
)

= αγ

2ξ − 1
(I1P

k

1,m,Ñy+1/2
+ I2P

k

2,m,Ñy+1/2
− 2P k

γ,m,Ñy+1/2
), (3.11)

(μγ + bγ (Pγ )|Ûγ |k
γ,m,Ñy+1/2

)(U
y,k

1,m,Ñy+1/2
+ U

y,k

2,m,Ñy+1/2
)

= αγ (I1P
k

1,m,Ñy+1/2
− I2P

k

2,m,Ñy+1/2
), (3.12)

U
x,k
i,1/2,n = −gi(xa, yn, t

k), U
x,k
i,Nx+1/2,n = gi(xb, yn, t

k), (3.13)

U
y,k

1,m,1/2 = −g1(xm, ya, t
k), U

y,k

2,m,Ny+1/2 = g2(xm, yb, t
k), (3.14)

Uk

γ,1/2,Ñy+1/2
= gγ (xa, t

k), Uk

γ,Nx+1/2,Ñy+1/2
= gγ (xb, t

k), (3.15)

P 0
i,m,n = p0

i (xm, yn, 0), (3.16)

P 0
γ,m,Ñy+1/2

= p0
γ (xm, yc, 0), (3.17)

where

1 ≤ n ≤ Ñy for i = 1, Ñy + 1 ≤ n ≤ Ny for i = 2,

and 1 ≤ m ≤ Nx for both i = 1, 2 in (3.6);
1 ≤ n ≤ Ñy for i = 1, Ñy + 1 ≤ n ≤ Ny − 1 for i = 2,

and 1 ≤ m ≤ Nx − 1 for both i = 1, 2 in (3.7);
1 ≤ n ≤ Ñy − 1 for i = 1, Ñy + 1 ≤ n ≤ Ny − 1 for i = 2,

and 1 ≤ m ≤ Nx − 1 for both i = 1, 2 in (3.8);
1 ≤ m ≤ Nx in (3.9), (3.11), (3.12), (3.17s);
1 ≤ n ≤ Ñy for i = 1, Ñy + 1 ≤ n ≤ Ny for i = 2 in (3.13);
1 ≤ m ≤ Nx in (3.14); 1 ≤ m ≤ Nx − 1 in (3.10);
1 ≤ n ≤ Ñy for i = 1, Ñy + 1 ≤ n ≤ Ny for i = 2,

and 1 ≤ m ≤ Nx for both i = 1, 2 in (3.16);
k ≥ 1 for all k in (3.6) − (3.15).

In the above scheme, we place the different degrees of freedom of numerical veloc-
ity on the both sides of fracture-interface. As a result, the jump of velocity along
the direction normal to fracture, which arises from the velocity across the fracture
(u1 · n1|�γ + u2 · n2|�γ ), can be captured easily. This is one of the major advan-
tages of the proposed numerical approach. In order to show the grids with degrees
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of freedom in Fig. 2, a small thickness of fracture is plotted for the convenience of
describing the position of U

y,k

1,m,Ñy+1/2
and U

y,k

2,m,Ñy+1/2
, whose values are not equal

in general. In both the theoretical analysis and numerical computation, the fracture is
considered as one-dimensional interface between two two-dimensional subdomains.

Remark In order to better observe the flow of fluid in fracture-interface, one might
need to use smaller grids in the fracture-interface compared with those in the sur-
rounding porous media. This will lead to nonmatching spatial and temporal grids
for one-dimensional fracture-interface and two-dimensional surrounding medium.
By means of appropriate interpolation and extrapolation operators in space and time,
we can adapt the proposed finite difference scheme to the nonmatching grids in
Section 3.2.

3.2 Extension to nonmatching grids

In this subsection, we extend the block-centered finite difference method to non-
matching grids in both space and time.

Considering the fracture acts as a fast path in the aquifer system, the flow moves
very rapidly in the fracture. Then, smaller scale of meshes in space and time might
be employed in fracture domain than in the surrounding medium in order to simulate
the rapid changes of flow velocity and pressure in the fracture. Such requirement
brings a multi-scale challenge to numerically solve the reduced model, which will

Fig. 2 Grids with labeled degrees of freedom of block-centered scheme
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lead to nonmatching spatial and temporal mesh grids. In this subsection, we modify
and extend the block-centered finite difference scheme to nonmatching grids in both
space and time.

Suppose

�γh : xa = x1/2 < x3/2 < · · · < xl+1/2 < · · · < xNx
γ −1/2 < xNx

γ +1/2 = xb,

where Nx
γ > Nx . Then, the spacial grids of fracture domain do not match those of

surrounding porous media (see Fig. 3).
For the purpose of constructing the block-centered finite difference scheme, we

define �u
i and �

p
i as the bilinear interpolation and extrapolation operators for �i

with i = 1, 2. Take �u
1 and �

p

1 for example:

• For each point (x, y) ∈ [x1/2, x1) × {yÑy+1/2}, we define �u
1u

y

1(x, y) to be the

bilinear extrapolation by using u
y

1,1,Ñy+1/2
, u

y

1,2,Ñy+1/2
, and define �

p

1 p1(x, y)

as the bilinear extrapolation by using p1,1,Ñy+1, p1,1,Ñy+2, p1,2,Ñy+1, p1,2,Ñy+2.

• For each point (x, y) ∈ [xm, xm+1] × {yÑy+1/2} with m = 1, · · · , Nx − 1,

we define �u
1u

y

1(x, y) to be the bilinear interpolation by using u
y

1,m,Ñy+1/2
,

u
y

1,m+1,Ñy+1/2
, and define �

p

1 p1(x, y) as the bilinear extrapolation by using
p1,m,Ñy+1, p1,m,Ñy+2, p1,m+1,Ñy+1, p1,m+1,Ñy+2.

• For each point (x, y) ∈ (xNx , xNx+1/2] × {yÑy+1/2}, we define �u
1u

y

1(x, y)

to be the bilinear extrapolation by using u
y

1,Nx,Ñy+1/2
, u

y

1,Nx−1,Ñy+1/2
, and

define �
p

1 p1(x, y) as the bilinear extrapolation by using p1,Nx,Ñy+1, p1,Nx,Ñy+2,
p1,Nx−1,Ñy+1, p1,Nx−1,Ñy+2.

Similarly, we can define the bilinear operators �u
2 and �

p

2 on u
y

2(x, y) and p2(x, y),
respectively.

When the temporal grids of fracture domain do not match those of surrounding
porous media (see Fig. 4), we use tj with j = 0, 1, · · · , Nt

γ to denote the temporal
grids of fracture region and �tj = tj − tj−1 to represent the time step. In order to
preserve accuracy, we set t0 = t0 and t1 = t1, and subdivide the remaining part of
time grid according to r�tj = �tk (r ∈ Z+). For tj ∈ (tk, tk+1] with k ≥ 1, we

Fig. 3 Sketch of nonmatching
spatial grids
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Fig. 4 Sketch of nonmatching
temporal grids

define �t
γ uy,j as the linear extrapolation to tj by using uy,k and uy,k−1, and �t

γ pj

as the linear extrapolation to tj by using pk and pk−1.
Then, the block-centered finite difference scheme on the nonmatching grids is

given to approximate ux
i (xm+1/2, yn, t

k), u
y
i (xm, yn+1/2, t

k), pi(xm, yn, t
k) (i =

1, 2), uγ (xl+1/2, yc, t
j ) and pγ (xl, yc, t

j ) by U
x,k
i,m+1/2,n, U

y,k

i,m,n+1/2, P k
i,m,n (i =

1, 2), U
j

γ,l+1/2,Ñy+1/2
and P

j

γ,l,Ñy+1/2
as follows:

φγ CF
γ [dtPγ ]j

l,Ñy+1/2
+ [DxUγ ]j

l,Ñy+1/2

= q
j

γ,l,Ñy+1/2
+ �t

γ �u
1U

y,j

1,l,Ñy+1/2
− �t

γ �u
2U

y,j

2,l,Ñy+1/2
, (3.18)

(μγ + ax
γ (P γ )|Uγ |j

l+1/2,Ñy+1/2
)U

j

γ,l+1/2,Ñy+1/2

+Kx
γ δ[dxPγ ]j

l+1/2,Ñy+1/2
= 0, (3.19)

(μγ + bγ (Pγ )|Ûγ |j
l,Ñy+1/2

)(�t
γ �u

1U
y,j

1,l,Ñy+1/2
− �t

γ �u
2U

y,j

2,l,Ñy+1/2
)

= αγ

2ξ − 1
(�t

γ �
p

1 P
j

1,l,Ñy+1/2
+ �t

γ �
p

2 P
j

2,l,Ñy+1/2
− 2P

j

γ,l,Ñy+1/2
), (3.20)

(μγ + bγ (Pγ )|Ûγ |j
γ,l,Ñy+1/2

)(�t
γ �u

1U
y,j

1,l,Ñy+1/2
+ �t

γ �u
2U

y,j

2,l,Ñy+1/2
)

= αγ (�t
γ �

p

1 P
j

1,l,Ñy+1/2
− �t

γ �
p

2 P
j

2,l,Ñy+1/2
), (3.21)

U
j

γ,1/2,Ñy+1/2
= gγ (xa, t

j ), U
j

γ,Nx
γ +1/2,Ñy+1/2

= gγ (xb, t
j ), (3.22)

P 0
γ,l,Ñy+1/2

= p0
γ (xl, yc, 0), (3.23)

where the discretized scheme on the surrounding porous media is the same as (3.6)–
(3.8), (3.13)–(3.14), (3.16), and

1 ≤ l ≤ Nx
γ in (3.18), (3.20), (3.21), (3.23);

1 ≤ l ≤ Nx
γ − 1 in (3.19); 1 ≤ j ≤ Nt

γ in (3.18) − (3.22).
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4 Error estimates

In this section, we derive the prior errors theorem 1 of the block-centered finite dif-
ference scheme (3.6)–(3.17) for the reduced coupled model (2.30)–(2.37). Firstly, we
give some lemmas.

Lemma 1 Suppose pi ∈ L∞(0, T ; W 3,∞(�i)) for i = 1, 2, γ , then

∂pi,m+1/2,n

∂x
= [dxpi]m+1/2,n − 1

8

[
dx

(
(hx)2 ∂2pi

∂x2

)]
m+1/2,n

+O(h2
x + h2

y)‖pi‖3,∞, (4.1)

∂pi,m,n+1/2

∂y
= [dypi]m,n+1/2 − 1

8

[
dy

(
(hy)2 ∂2pi

∂y2

)]
m,n+1/2

+O(h2
x + h2

y)‖pi‖3,∞, (4.2)

∂pγ,m+1/2,Ñy+1/2

∂x
= [dxpγ ]m+1/2,Ñy+1/2 − 1

8

[
dx

(
(hx)2 ∂2pγ

∂x2

)]
m+1/2,Ñy+1/2

+O(h2
x)‖pγ ‖3,∞, (4.3)

where
1 ≤ n ≤ Ñy for i = 1, Ñy + 1 ≤ n ≤ Ny − 1 for i = 2, and 1 ≤ m ≤ Nx − 1 for both i = 1, 2 in (4.1);

1 ≤ n ≤ Ñy −1 for i = 1, Ñy +1 ≤ n ≤ Ny −1 for i = 2, and 1 ≤ m ≤ Nx −1 for both i = 1, 2 in (4.2);

1 ≤ m ≤ Nx − 1 in (4.3).

Proof According to Taylor expansion, we have

[dxpi ]m+1/2,n = ∂pi,m+1/2,n

∂x
+ 1

hx
m+1/2

(
(hx

m+1)
2

8

∂2pi,m+1,n

∂x2
− (hx

m)2

8

∂2pi,m,n

∂x2

)

+ 1

2hx
m+1/2

(∫ xm+1/2

xm+1

(
(hx

m+1)
2

8
− (x − xm+1)

2

2

)
∂3pi

∂x3
(x, yn)dx

−
∫ xm+1/2

xm

(
(hx

m)2

8
− (x − xm)2

2

)
∂3pi

∂x3
(x, yn)dx

)

+ 1

hx
m+1/2

(
(hx

m+1)
2

8

(
∂2pi,m+1/2,n

∂x2
− ∂2pi,m+1,n

∂x2

)

+ (hx
m)2

8

(
∂2pi,m,n

∂x2
− ∂2pi,m+1/2,n

∂x2

))

= ∂pi,m+1/2,n

∂x
− 1

8

[
dx

(
(hx)2 ∂2pi

∂x2

)]
m+1/2,n

+ O(h2
x + h2

y)‖pi‖3,∞,

where 1 ≤ n ≤ Ñy for i = 1, Ñy + 1 ≤ n ≤ Ny − 1 for i = 2, and 1 ≤ m ≤
Nx − 1 for both i = 1, 2.
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And

[dypi ]m,n+1/2 = ∂pi,m,n+1/2

∂y
+ 1

h
y

n+1/2

(
(h

y

n+1)
2

8

∂2pi,m,n+1

∂y2
− (h

y
n)2

8

∂2pi,m,n

∂y2

)

+ 1

2h
y

n+1/2

(∫ yn+1/2

yn+1

(
(h

y

n+1)
2

8
− (y − yn+1)

2

2

)
∂3pi

∂y3
(xm, y)dx

−
∫ yn+1/2

yn

(
(h

y
n)2

8
− (y − yn)

2

2

)
∂3pi

∂y3
(xm, y)dx

)

+ 1

h
y

n+1/2

(
(h

y

n+1)
2

8

(
∂2pi,m,n+1/2

∂y2
− ∂2pi,m,n+1

∂y2

)

+ (h
y
n)2

8

(
∂2pi,m,n

∂y2
− ∂2pi,m,n+1/2

∂y2

))

= ∂pi,m,n+1/2

∂y
− 1

8

[
dy

(
(hy)2 ∂2pi

∂y2

)]
m,n+1/2

+ O(h2
x + h2

y)‖pi‖3,∞,

where 1 ≤ l ≤ N̂y − 1 for i = 1, N̂y + 1 ≤ l ≤ Ny − 1 for i = 2, and 1 ≤ s ≤
Nx − 1 for both i = 1, 2.

Similarly, we can obtain (4.3).

The following lemma follows directly from Lemma 1.

Lemma 2 Suppose pi ∈ L∞(0, T ; W 3,∞(�i)) for i = 1, 2, γ , then

ux
i,m+1/2,n = −Kx

i [dx(pi − ηi)]m+1/2,n + O(h2
x + h2

y)‖pi‖3,∞, (4.4)

u
y

i,m,n+1/2 = −K
y
i [dy(pi − ηi)]m,n+1/2 + O(h2

x + h2
y)‖pi‖3,∞, (4.5)

μγ uγ,m+1/2,Ñy+1/2 + (ax
γ (pγ )|uγ |uγ )m+1/2,Ñy+1/2

= −Kx
γ δ[dx(pγ − ηγ )]m+1/2,Ñy+1/2 + O(h2

x)‖pγ ‖3,∞, (4.6)

where

ηi,m,n = 1

8

(
(hx)2 ∂2pi

∂x2
+ (hy)2 ∂2pi

∂y2

)
m,n

, (4.7)

ηγ,m,Ñy+1/2 = 1

8

(
(hx)2 ∂2pγ

∂x2

)
m,Ñy+1/2

, (4.8)

and

1 ≤ n ≤ Ñy for i = 1, Ñy + 1 ≤ n ≤ Ny − 1 for i = 2, and 1 ≤ m ≤ Nx − 1 for both i = 1, 2 in (4.4);

1 ≤ n ≤ Ñy −1 for i = 1, Ñy +1 ≤ n ≤ Ny −1 for i = 2, and 1 ≤ m ≤ Nx −1 for both i = 1, 2 in (4.5);

1 ≤ m ≤ Nx − 1 in (4.6).
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Lemma 3 If pi ∈ L∞(0, T ; W 3,∞(�i)) and ui ∈ L∞(0, T ; W 3,∞(�i)) for i =
1, 2, γ , then it holds that

si [dt p̃i ]km,n + [Dxux
i ]km,n + [Dyu

y
i ]km,n

= qk
i,m,n + O(�t)‖pk

i ‖2,∞ + O(h2
x + h2

y)(‖ux,k
i ‖3,∞ + ‖uy,k

i ‖3,∞ + ‖pk
i ‖3,∞), (4.9)

φγ CF
γ [dt p̃γ ]k

m,Ñy+1/2
+ [Dxuγ ]k

m,Ñy+1/2
− (u

y,k

1,m,Ñy+1/2
− u

y,k

2,m,Ñy+1/2
)

= qk

γ,m,Ñy+1/2
+ O(�t)‖pk

γ ‖2,∞ + O(h2
x)(‖uk

γ ‖3,∞ + ‖pk
γ ‖3,∞), (4.10)

where p̃i = pi − ηi with i = 1, 2 and p̃γ = pγ − ηγ , and

1 ≤ n ≤ Ñy for i = 1, Ñy + 1 ≤ n ≤ Ny for i = 2, and 1 ≤ m ≤ Nx for both i = 1, 2 in (4.9);
1 ≤ m ≤ Nx in (4.10).

Proof By the definitions of operators dt , Dx and Dy , we have

si[dt p̃i]km,n + [Dxu
x
i ]km,n + [Dyu

y
i ]km,n

= qk
i,m,n + si[dt (pi − ηi)]km,n − si

∂pk
i,m,n

∂t

+[Dxu
x
i ]km,n − ∂u

x,k
i,m,n

∂x
+ [Dyu

y
i ]km,n − ∂u

y,k
i,m,n

∂y

= qk
i,m,n + O(�t)‖pk

i ‖2,∞ + O(h2
x + h2

y)‖pk
i ‖3,∞

+O(h2
x)‖ux,k

i ‖3,∞ + O(h2
y)‖uy,k

i ‖3,∞, (4.11)

and

φγ CF
γ [dt p̃γ ]k

m,Ñy+1/2
+ [Dxuγ ]k

m,Ñy+1/2
− (u

y,k

1,m,Ñy+1/2
− u

y,k

2,m,Ñy+1/2
)

= qk

γ,m,Ñy+1/2
+ φγ CF

γ [dt (pγ − ηγ )]k
m,Ñy+1/2

− φγ CF
γ

∂pk

γ,m,Ñy+1/2

∂t

+[Dxuγ ]k
m,Ñy+1/2

−
∂uk

γ,m,Ñy+1/2

∂x

= qk

γ,m,Ñy+1/2
+ O(�t)‖pk

γ ‖2,∞ + O(h2
x)‖pk

γ ‖3,∞ + O(h2
x)‖uk

γ ‖3,∞. (4.12)

Then, (4.9) and (4.10) follow from (4.11) and (4.12), respectively.

We refer to Lemma 3.3 in [26] for the proof of the following lemma.

Lemma 4 Let Wx
m+1/2,n, W

y

m,n+1/2, V
x
m+1/2,n, V

y

m,n+1/2, ϕ
x
m,n, and ϕ

y
m,n be discrete

functions with V x
1/2,n = V

y

m,1/2 = V x
Nx+1/2,n = V

y

m,Ny+1/2 = 0 and satisfy
{

(ψxWx)m+1/2,n = −[dxϕ
x]m+1/2,n,

(ψyWy)m,n+1/2 = −[dyϕ
y]m,n+1/2,
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where ψx and ψy are generic discrete functions. Then, we have

(ψxWx, V x)X = (ϕx, DxV
x)M, (ψyWy, V y)Y = (ϕy, DyV

y)M .

Based on the above lemmas, we give the convergence analysis of the scheme (3.6)–
(3.17) for reduced coupled model in the following theorem.

Theorem 1 Let P k
i , U

x,k
i , Uy,k

i with i = 1, 2 and P k
γ , U

k
γ be obtained by the block-

centered finite difference scheme (3.6)–(3.17). Suppose the coefficients in reduced
coupled model are bounded from above and below and the thickness of fracture is
small enough, then there exists a positive constant C independent of hx , hy , and �t

such that

2∑
i=1

‖P Nt

i − p
Nt

i ‖M +
Nt∑

k=1

�tk

(
2∑

i=1

‖Ux,k
i − u

x,k
i ‖2

X + ‖Uy,k
i − u

y,k
i ‖2

Y

)1/2

≤ C(�t + h2
x + h2

y), (4.13)

‖P Nt
γ − pNt

γ ‖γM +
Nt∑

k=1

�tk‖Uk
γ − uk

γ ‖γX

≤ C(�t + h2
x). (4.14)

Proof Denote

E
x,k
i,m+1/2,n = U

x,k
i,m+1/2,n − ux

i (xm+1/2, yn, t
k),

with 1 ≤ n ≤ Ñy for i = 1, Ñy + 1 ≤ n ≤ Ny − 1 for i = 2, and 1 ≤ m ≤ Nx − 1 for both i,

E
y,k

i,m,n+1/2 = U
y,k

i,m,n+1/2 − u
y
i (xm, yn+1/2, t

k),

with 1 ≤ n ≤ Ñy for i = 1, Ñy ≤ n ≤ Ny − 1 for i = 2, and 1 ≤ m ≤ Nx − 1 for both i = 1, 2,

E
p,k
i,m,n = P k

i,m,n − pi(xm, yn, t
k),

with 1 ≤ n ≤ Ñy for i = 1, Ñy + 1 ≤ n ≤ Ny for i = 2, and 1 ≤ m ≤ Nx for both i = 1, 2,

e
u,k

γ,m+1/2,Ñy+1/2
= Uk

γ,m+1/2,Ñy+1/2
− uγ (xm+1/2, yÑy+1/2, t

k), with 1 ≤ m ≤ Nx − 1,

e
p,k

γ,m,Ñy+1/2
= P k

γ,m,Ñy+1/2
− pγ (xm, yÑy+1/2, t

k), with 1 ≤ m ≤ Nx .

According to Lemma 2, we have
E

x,k
i,m+1/2,n + Kx

i [dx(E
p
i + ηi)]km+1/2,n = O(h2

x + h2
y), (4.15)

E
y,k

i,m,n+1/2 + K
y
i [dy(E

p
i + ηi)]km,n+1/2 = O(h2

x + h2
y), (4.16)

μγ e
u,k

γ,m+1/2,Ñy+1/2
+ (ax

γ (P γ )|Uγ |Uγ )k
m+1/2,Ñy+1/2

−(ax
γ (pγ )|uγ |uγ )k

m+1/2,Ñy+1/2
+ Kx

γ δ[dx(ep
γ + ηγ )]k

m+1/2,Ñy+1/2
= O(h2

x), (4.17)

where n �= Ñy in (4.16).
Setting βx

i = 1/Kx
i , β

y
i = 1/K

y
i , and βγ = 1/Kx

γ δ, multiply-

ing (4.15), (4.16), and (4.17) by E
x,k
i,m+1/2,nh

x
m+1/2h

y
n, E

y,k

i,m,n+1/2h
x
mh

y

n+1/2, and
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e
u,k

γ,m+1/2,Ñy+1/2
hx

m+1/2, respectively, and summing up m and n, we get from

Lemma 4 that

2∑
i=1

1

Kx
i

(E
x,k
i , E

x,k
i )X

=
2∑

i=1

(E
p,k
i + ηk

i , DxE
x,k
i )M +

2∑
i=1

(O(h2
x + h2

y), E
x,k
i )X, (4.18)

2∑
i=1

1

K
y
i

(E
y,k
i , E

y,k
i )Y

=
2∑

i=1

(E
p,k
i + ηk

i , DyE
y,k
i )M +

2∑
i=1

(O(h2
x + h2

y), E
y,k
i )Y , (4.19)

μγ

Kx
γ δ

(eu,k
γ , eu,k

γ )γX + (
βγ ργ (P

k

γ )

δ
|Uk

γ |Uk
γ − βγ ργ (pk

γ )

δ
|uk

γ |uk
γ , eu,k

γ )

= (ep,k
γ + ηk

γ , Dxe
u,k
γ )γM + (O(h2

x), e
u,k
γ )γX. (4.20)

By applying Lemma 3 and Taylor expansion to (3.6) and (3.9), we have

si[dt (E
p
i + ηi)]km,n + [DxE

x
i ]km,n + [DyE

y
i ]km,n

= O(�t + h2
x + h2

y), (4.21)

φf CF
γ [dt (e

p
γ + ηγ )]k

m,Ñy+1/2
+ [Dxe

u
γ ]k

m,Ñy+1/2

= E
y,k

1,m,Ñy+1/2
− E

y,k

2,m,Ñy+1/2
+ O(�t + h2

x). (4.22)

Multiplying (4.21) and (4.22) by (E
p
i + ηi)

k
m,nh

x
mh

y
n and (E

p
γ + ηγ )k

m,Ñy+1/2
hx

m,

respectively, and summing up m and n, we have

2∑
i=1

si

(
dt (E

p,k
i + ηk

i ), E
p,k
i + ηk

i

)
M

+ φγ CF
γ

(
dt (e

p,k
γ + ηk

γ ), ep,k
γ + ηk

γ

)
γM

+
2∑

i=1

(DxE
x,k
i , E

p,k
i + ηk

i )M +
2∑

i=1

(DyE
y,k
i , E

p,k
i + ηk

i )M

+(Dxeu,k
γ , ep,k

γ + ηk
γ )γM

≤ (O(�t), E
p,k
i + ηk

i )M + (O(h2
x + h2

y), E
p,k
i + ηk

i )M

+(E
y

1 , ep,k
γ + ηk

γ )γM − (E
y

2 , ep,k
γ + ηk

γ )γM + (O(�t + h2
x), ep,k

γ + ηk
γ )γM . (4.23)
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It follows from (4.18)–(4.20) and (4.23) that

2∑
i=1

si

(
dt (E

p,k
i + ηk

i ), E
p,k
i + ηk

i

)
M

+ φγ CF
γ

(
dt (e

p,k
γ + ηk

γ ), ep,k
γ + ηk

γ

)
γM

+
2∑

i=1

(
1

Kx
i

(E
x,k
i , E

x,k
i )X + 1

K
y
i

(E
y,k
i , E

y,k
i )Y

)
+ μγ

Kx
γ δ

(eu,k
γ , eu,k

γ )γX

+
(

(
βγ ργ (P γ )

δ
|Uγ |Uγ )k

m+1/2,Ñy+1/2
− (

βγ ργ (P γ )

δ
|uγ |uγ )k

m+1/2,Ñy+1/2
, eu,k

γ

)
γX

≤
2∑

i=1

(O(�t), E
p,k
i + ηk

i )M +
2∑

i=1

(O(h2
x + h2

y), E
p,k
i + ηk

i )M

+(E
y

1 , ep,k
γ + ηk

γ )γM − (E
y

2 , ep,k
γ + ηk

γ )γM + (O(�t + h2
x), ep,k

γ + ηk
γ )γM

+
2∑

i=1

(O(h2
x + h2

y), E
x,k
i )X +

2∑
i=1

(O(h2
x + h2

y), E
y,k
i )Y + (O(h2

x), eu,k
γ )γX . (4.24)

Combining (4.24), Cauchy-Schwarz inequality, we arrive at

2∑
i=1

si

2
dt‖(Ep

i + ηi)
k‖2

M +
2∑

i=1

si�tk

2
‖dt (E

p
i + ηi)

k‖2
M

+φγ CF
γ

2
dt‖(ep

γ + ηγ )k‖2
γM + φγ CF

γ �tk

2
‖dt (e

p
γ + ηγ )k‖2

γM

+
2∑

i=1

μi

Kx
i

‖Ex,k
i ‖2

X +
2∑

i=1

μi

K
y
i

‖Ey,k
i ‖2

Y + μγ

Kx
γ δ

‖eu,k
γ ‖2

γX

≤ C

(
(�t + h2

x + h2
y)

2 +
2∑

i=1

‖Ep,k
i + ηk

i ‖2
M + ‖ep,k

γ + ηk
γ ‖2

γM

)

+
2∑

i=1

μi

2Kx
i

‖Ex,k
i ‖2

X +
2∑

i=1

μi

2K
y
i

‖Ey,k
i ‖2

Y + μγ

2Kx
γ δ

‖eu,k
γ ‖2

γX. (4.25)

Multiplying (4.25) by 2�tk and summing up k from 1 to Nt , we have
2∑

i=1

‖(Ep
i + ηi)

Nt ‖2
M + ‖(ep

γ + ηγ )Nt ‖2
γM

+
2∑

i=1

Nt∑
k=1

(�tk)2‖dt (E
p
i + ηi)

k‖2
M +

Nt∑
k=1

(�tk)2‖dt (e
p
γ + ηγ )k‖2

γM

+
2∑

i=1

Nt∑
k=1

�tk(‖Ex,k
i ‖2

X + ‖Ey,k
i ‖2

Y ) +
Nt∑

k=1

�tk‖eu,k
γ ‖2

γX

≤ C

(
(�t + h2

x + h2
y)2 +

2∑
i=1

Nt∑
k=1

�tk‖Ep,k
i + ηk

i ‖2
M +

Nt∑
k=1

�tk‖ep,k
γ + ηk

γ ‖2
γM

)
. (4.26)
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Using Gronwall’s lemma, we obtain

2∑
i=1

‖(Ep
i + ηi)

Nt ‖2
M + ‖(ep

γ + ηγ )Nt ‖2
γM

+
2∑

i=1

Nt∑
k=1

�tk(‖Ex,k
i ‖2

X + ‖Ey,k
i ‖2

Y ) +
Nt∑

k=1

�tk‖eu,k
γ ‖2

γX

≤ C(�t + h2
x + h2

y)
2. (4.27)

It follows from (3.4) that

|̂uγ |k
m,Ñy+1/2

= |uγ |k
m,Ñy+1/2

+ O(h2
x)‖uγ ‖2,∞. (4.28)

Combining (2)–(2), (3.11)–(3.12), and (4.28), we have

μγ E
y,k

1,m,Ñy+1/2
+ (bγ (pγ )|uγ |)k

m,Ñy+1/2
E

y,k

1,m,Ñy+1/2

= (bγ (pγ )|Ûγ |)k
m,Ñy+1/2

U
y,k

1,m,Ñy+1/2
− (bγ (Pγ )|Ûγ |)k

m,Ñy+1/2
U

y,k

1,m,Ñy+1/2

+(bγ (pγ )|̂uγ |)k
m,Ñy+1/2

U
y,k

1,m,Ñy+1/2
− (bγ (pγ )|Ûγ |)k

m,Ñy+1/2
U

y,k

1,m,Ñy+1/2

+(bγ (pγ )|uγ |)k
m,Ñy+1/2

U
y,k

1,m,Ñy+1/2
− (bγ (pγ )|̂uγ |)k

m,Ñy+1/2
U

y,k

1,m,Ñy+1/2

+1

2
(

αγ

2ξ − 1
− αγ )I2(E

p

2 + η2)
k

m,Ñy+1/2
+ 1

2
(

αγ

2ξ − 1
+ αγ )I1(E

p

1 + η1)
k

m,Ñy+1/2

− 2αγ

2ξ − 1
(ep

γ + ηγ )k
m+1/2,Ñy+1/2

+ O(h2
x + h2

y)‖pk
i ‖2,∞, (4.29)

μγ E
y,k

2,m,Ñy+1/2
+ (bγ (pγ )|uγ |)k

m,Ñy+1/2
E

y,k

2,m,Ñy+1/2

= (bγ (pγ )|Ûγ |)k
m,Ñy+1/2

U
y,k

2,m,Ñy+1/2
− (bγ (Pγ )|Ûγ |)k

m,Ñy+1/2
U

y,k

2,m,Ñy+1/2

+(bγ (pγ )|̂uγ |)k
m,Ñy+1/2

U
y,k

2,m,Ñy+1/2
− (bγ (pγ )|Ûγ |)k

m,Ñy+1/2
U

y,k

2,m,Ñy+1/2

+(bγ (pγ )|uγ |)k
m,Ñy+1/2

U
y,k

2,m,Ñy+1/2
− (bγ (pγ )|̂uγ |)k

m,Ñy+1/2
U

y,k

2,m,Ñy+1/2

−1

2
(

αγ

2ξ − 1
+ αγ )I2(e

p

2 + η2)
k

m,Ñy+1/2
− 1

2
(

αγ

2ξ − 1
− αγ )I1(e

p

1 + η1)
k

m,Ñy+1/2

− 2αγ

2ξ − 1
(ep

γ + ηγ )k
m+1/2,Ñy+1/2

+ O(h2
x + h2

y)‖pk
i ‖2,∞. (4.30)

Applying (4.27) to (4.29)–(4.30), we have

‖Ey,k

1,m,Ñy+1/2
‖X + ‖Ey,k

2,m,Ñy+1/2
‖X ≤ C(h2

x + h2
y). (4.31)

Finally, the theorem establishes on the basis of (4.7)–(4.8) and (4.27)–(4.31) for
the finite difference scheme (3.6)–(3.17) approximating the reduced coupled model.
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Remark Due to the fact the bilinear interpolation and extrapolation operators remain
the second-order accuracy, the block-centered finite difference scheme (3.18)–(3.22)
on the nonmatching grids for the fracture and surrounding media is without loss of
any accuracy.

5 Numerical examples

In this section, some examples are given to illustrate the efficiency and accuracy
of the coupled finite difference method for the reduced coupled model. In order to
observe the influence of parameter ξ on the flow of fluid, we take different values
of ξ in the reduced coupled model to compare the results. Several experiments are
performed to analyze the roles of the permeability tensor of the fracture in affecting
the flow rate of fluid.

All test cases in this section are based on the following reduced coupled model
(cf. (2)–(2)),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tpi + divui = qi, in �i × J, i = 1, 2,

ui + ∇pi = Gi, in �i × J, i = 1, 2,
∂tpγ + divxuγ = qγ + (u1 · n1|�γ + u2 · n2|�γ ), on �γ × J,

(1 + Kx
γ βγ ργ (pγ )

δ
|uγ |)uγ + Kx

γ δ∇τ pγ = Gγ , on �γ × J,

−ξ(μγ + αγ βγ ργ (pγ )|uγ |
2 )u1 · n1|�γ + αγ p1|�γ

= −(1 − ξ)(μγ + αγ βγ ργ (pγ )|uγ |
2 )u2 · n2|�γ + αγ pγ , on �γ × J,

−ξ(μγ + αγ βγ ργ (pγ )|uγ |
2 )u2 · n2|�γ + αγ p2|�γ

= −(1 − ξ)(μγ + αγ βγ ργ (pγ )|uγ |
2 )u1 · n1|�γ + αγ pγ , on �γ × J,

ui · νi = gi, on � × J, i = 1, 2, γ,

pi(·, 0) = p0
i , in �i, i = 1, 2, γ,

(5.1)

where αγ = 2K
y
γ /δ.

In this section, we shall solve the reduced coupled model (5.1) by block-centered
finite difference scheme on the following domain, as shown in Fig. 5. The values of
other parameters are given in the examples.

5.1 Test cases for convergence rates

In this subsection, one example is given to demonstrate the convergence rate of finite
difference method for the reduced coupled model (5.1). Let h be the maximum of

Fig. 5 The figure of whole domain
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Table 1 Errors for reduced coupled model on nonuniform mesh when t = 0.5

Mesh h ‖Ep‖M ‖Eu‖XY ‖ep
γ ‖γM ‖eu

γ ‖γX

4 × 4 3.7500e−01 6.3813e−01 2.1479e−01 4.5191e−01 8.6113e−06

8 × 8 1.8750e−01 1.3654e−01 5.1204e−02 9.3760e−02 2.0991e−06

16 × 16 9.3750e−02 3.2887e−02 1.2617e−02 2.2161e−02 5.6654e−07

32 × 32 4.6875e−02 8.1481e−03 3.1433e−03 5.4495e−03 1.5594e−07

64 × 64 2.3438e−02 2.0325e−03 7.8517e−04 1.3560e−03 4.3420e−08

rate 2.0656 2.0217 2.0866 1.9014

hx and hy , and Ep, Eu, e
p
γ , eu

γ denote the prior errors obtained by block-centered
finite difference method (3.6)–(3.17) to the example model. The temporal mesh size
is chosen that �t = h2 in all examples on the nonuniform rectangular grids.

Example 1 We determine the right-hand side functions and initial boundary condi-
tions according to the following analytic solutions

⎧⎪⎪⎨
⎪⎪⎩

uγ = x(1 − x), on �γ × J,

pγ = tsin(2πx) − (3tsin(2πx)(50x(x − 1) − 1))/1000, on �γ × J,

p1 = tsin(2πx)(y + 1), in �1 × J,

p2 = −tsin(2πx)(y − 1), in �2 × J,

(5.2)

where J = (0, 0.5], Kγ = 0.1I, βγ = 0.5, ργ = 1, ξ = 4/5.
The errors obtained by using finite difference scheme (3.6)–(3.17) to solve the

reduced coupled model are listed in Table 1. We compute the errors by using the
definitions of norms.

The a priori errors for pressure and velocity in the discrete relative L2 norms
and their corresponding convergence rates are listed in Tables 1 for reduced cou-
pled example 1. The convergence rates are obtained by applying a least-square fitting
method to the numerical errors with respect to the mesh sizes h. From Table 1, it
can be seen that the proposed finite difference approximation has second-order accu-
racy in discrete L2 norms for both pressure and velocity, which is consistent with the
theoretical results in Theorem 1.

5.2 Test cases for influence of ξ

We have assumed that the range of parameter ξ is from 1/2 to 1 in Section 2. In
this subsection, we check the influence of value ξ on the flow of fluid in fractured
system. In Example 2, we compare numerical results obtained by changing the value
of parameter ξ while keeping other parameters unchanged.
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Example 2 Consider a practical model in time interval J = (0, 1]. Here, we choose
the following right-hand side functions and initial boundary conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1 = 0, in �1 × J,

G2 = 0, in �2 × J,

Gγ = 0, on �γ × J,

qγ = 0, on �γ × J,

q1 = 0, in �1 × J,

q2 = 0, in �2 × J,

uγ (0) = uγ (1) = 0;
u1 · ν1|y=−0.5 = 1;
u1 · ν1|x=0 = −1,

u1 · ν1|x=1 = 1,

u2 · ν2|y=0.5 = −1,

u2 · ν2|x=0 = −1,

u2 · ν2|x=1 = 1,

p1(·, 0) = 0, in �1 × J,

p2(·, 0) = 0, in �2 × J,

pγ (·, 0) = 0, on �γ × J,

(5.3)

where βi = 3, ρi = 1(i = 1, 2, γ ) in the fractured media aquifer system (5.1). The
fracture is assumed to be anisotropic.

The numerical results on nonuniform staggered meshes obtained by different val-
ues of ξ are plotted in Figs. 6 and 7 and Figs. 8 and 9 for reduced coupled model.
From the numerical results, it is clear to see that the value of parameter ξ has little
influence on the flow rate of fluid for reduced coupled model, which is independent
of the permeability tensor of the fracture.

Fig. 6 Plots of numerical pressure solutions for Example 2 with Kx
γ = 0.1 and K

y
γ = 100 when t = 1
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Fig. 7 Plots of numerical velocity solutions for Example 2 with Kx
γ = 0.1 and K

y
γ = 100 when t = 1

5.3 Test cases for the impact of permeability tensor in fracture

In practice, the source of contaminants often occur on and near the ground surface.
We will simulate this behavior in Example 3 by introducing one source term at the
top of the the whole domain.

Fig. 8 Plots of numerical pressure solutions for Example 2 with Kx
γ = 100 and K

y
γ = 0.1 when t = 1
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Fig. 9 Plots of numerical velocity solutions for Example 2 with Kx
γ = 100 and K

y
γ = 0.1 when t = 1

Example 3 Consider a practical model in time interval J = (0, 1]. Here, we choose
the following right-hand side functions and initial boundary conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1 = 0, in �1 × J,

G2 = 0, in �2 × J,

Gγ = 0, on �γ × J,

qγ = 0, on �γ × J,

q1 = 0, in �1 × J,

q2 = 10(|(x − 0.5)2 + (y − 0.5)2| < 0.1), in �2 × J,

uγ (0) = uγ (1) = 0;
u1 · ν1|y=−0.5 = 0;
u1 · ν1|x=0 = −1,

u1 · ν1|x=1 = 0,

u2 · ν2|y=0.5 = 0,

u2 · ν2|x=0 = −1,

u2 · ν2|x=1 = 0,

p1(·, 0) = 0, in �1 × J,

p2(·, 0) = 0, in �2 × J,

pγ (·, 0) = 0, on �γ × J,

(5.4)

where ξ = 4
5 , ργ = 1 in the model (5.1).

We report the numerical results in Figs. 10, 11, 12, 13, and 14. The flux exchanging
between the surrounding porous media and fracture-interface is shown to have clear
impact on the fluid flow. When the thickness of fracture is fixed, the permeability
tensor plays an important role in affecting the fluid flow inside the fracture. More
precisely, when the permeability along normal direction of fracture is bigger, the flow
rate in surrounding porous media is higher due to exchanging flux with the fracture.

Numerical Algorithms (2020) 84:133–163158



Fig. 10 Plots of numerical solutions for reduced coupled Example 3 with Kγ = 100I when t = 1. Left:
the figure of numerical pressure solution in surrounding porous media. Right: the figure of numerical
velocity solution in surrounding porous media

If the permeability along tangential direction of fracture is bigger, the flow rate in
fracture is higher, which is consistent with the physical phenomenon.

5.4 Comparison of Darcy fracture model with Forchheimer fracture model

In order to demonstrate the influence of the Forchheimer fracture in Karst aquifer sys-
tem, a comparison of the reduced model presented in this paper with the Darcy model
in [12] is given in this subsection. We still use Example 3 to show the differences of
numerical solutions of the two models.

Fig. 11 Plots of numerical solutions for reduced coupled Example 3 with Kx
γ = 100 and K

y
γ = 0.001

when t = 1. Left: the figure of numerical pressure solution in surrounding porous media. Right: the figure
of numerical velocity solution in surrounding porous media
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Fig. 12 Plots of numerical solutions for reduced coupled Example 3 with Kx
γ = 0.001 and K

y
γ = 100

when t = 1. Left: the figure of numerical pressure solution in surrounding porous media. Right: the figure
of numerical velocity solution in surrounding porous media

By testing the different values of permeability tensor in the fracture, it can be seen
that there are few differences between the two models when the value of K

y
f is big

and there are some differences when the the value of Kx
f is big. From Figs. 15 and 16,

we observe that the pressure shows different behavior in the fracture. The pressures
in the Forchheimer fracture change more than those in the Darcy fracture. Moreover,
we can also observe that the velocity in the former case changes more rapidly that in
the latter one.

From the above numerical tests, one can also observe that the pressure and veloc-
ity show different behavior on two sides of fracture-interface. Therefore, our idea
of allocating different degrees of freedom on the two sides of fracture-interface is
efficient for solving the reduced coupled model.

Fig. 13 Plots of numerical solutions for reduced coupled Example 3 with Kγ = 0.001I when t = 1.
Left: the figure of numerical pressure solution in surrounding porous media. Right: the figure of numerical
velocity solution in surrounding porous media
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Fig. 14 Plots of numerical solutions for reduced coupled Example 3 with different Kγ when t = 1. Left:
the figure of numerical pressure solution in the fracture. Right: the figure of numerical velocity solution
in the fracture

6 Conclusions

In this paper, we consider reduced coupled model with different dimensions in frac-
tured media aquifer system. The Forchheimer’s law is employed for modeling the
flow in the fracture. The flow in the surrounding domain follows Darcy’s law. The
fracture is treated as an interface due to its relatively small thickness, which leads
to reduced coupled model. The nonlinear exchanging condition is imposed on the
fracture-interface. A block-centered finite difference scheme is designed to approx-
imate the flux transmission condition on the fracture-interface without requiring
continuities in pressure and velocity. It is proved theoretically and demonstrated
numerically that the block-centered finite difference method preserves second-order
accuracy for both pressure and velocity. Moreover, we show the permeability tensor
in the fracture has an important impact on the flow rate in both the surrounding porous
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Fig. 15 Plots of numerical solutions for Example 3 with Kγ = 100I when t = 1. Left: the figure of
numerical pressure solution in the fracture. Right: the figure of numerical velocity solution in the fracture
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Fig. 16 Plots of numerical solutions for Example 3 with Kx
γ = 100 and K

y
γ = 0.001 when t = 1. Left:

the figure of numerical pressure solution in the fracture. Right: the figure of numerical velocity solution
in the fracture

media and fracture-interface. It is observed that the tangential direction of perme-
ability tensor determines that flow rate in the fracture and the normal one determines
the flow rate in the surrounding porous media. By using high-order interpolation and
extrapolation operators, it is easy to extend the numerical procedure to the nonmatch-
ing spatial and temporal grids in the whole domain without losing any accuracy. Our
future work is to consider the multiple Forchheimer fractures with orientations by
referring to [30, 31].
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