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Abstract. We propose a new numerical approach for two-dimensional Maxwell’s equations
that is based on the Hodge decomposition for divergence-free vector fields. In this approach
an approximate solution for Maxwell’s equations can be obtained by solving standard second
order scalar elliptic boundary value problems. This new approach is illustrated by a P1 finite
element method.

1. Introduction

Let Ω be a (connected) bounded polygonal domain in R
2, f ∈ [L2(Ω)]2, and µ, ε be positive

functions in C1(Ω̄). Consider the problem of finding u ∈ H0(curl; Ω) ∩ H(div0; Ω; ε) such
that

(1.1) (µ−1∇× u,∇× v) + α(εu, v) = (f , v) ∀ v ∈ H0(curl; Ω) ∩H(div0; Ω; ε),

where (·, ·) denotes the L2 inner product, and the spaces H0(curl; Ω) and H(div0; Ω; ε) are
defined as follows:

H(curl; Ω) =
{

v =

[

v1

v2

]

∈ [L2(Ω)]2 : ∇× v =
∂v2

∂x1
−
∂v1

∂x2
∈ L2(Ω)

}

,

H0(curl; Ω) = {v ∈ H(curl; Ω) : n × v = 0 on ∂Ω},

where n is the outward pointing unit normal along ∂Ω,

H(div; Ω) =
{

v =

[

v1

v2

]

∈ [L2(Ω)]2 : ∇ · v =
∂v1

∂x1
+
∂v2

∂x2
∈ L2(Ω)

}

,

H(div0; Ω) = {v ∈ H(div; Ω) : ∇ · v = 0},

and

H(div0; Ω; ε) =
{

v ∈ [L2(Ω)]2 : εv ∈ H(div0; Ω)
}

.
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Remark 1.1. H(div0; Ω; 1) is identical with H(div0; Ω). H(div0; Ω; ε) is the orthogonal com-
plement of ∇H1

0 (Ω) in [L2(Ω; ε)]2, which is the space of square integrable vector fields
equipped with the weighted inner product

(v,w)L2(Ω;ε) =

∫

Ω

ε(v · w)dx.

The problem (1.1) is related to the time-harmonic Maxwell’s equations for α ≤ 0 and the
time-domain Maxwell’s equations for α > 0 (cf. [16, 19, 10, 6, 7, 8]), where µ and ε are
respectively the permeability and permittivity. We assume that (1.1) is uniquely solvable,
i.e., −α is not a Maxwell eigenvalue. In particular, we assume α 6= 0 when Ω is not simply
connected.

In this paper we develop a new numerical approach to (1.1) using the Hodge decomposition
of u. In this approach an approximation of u can be obtained by solving standard second
order scalar elliptic boundary value problems.

More precisely, we use the Hodge decomposition for H(div0; Ω; ε) to write

(1.2) u = ε−1∇× φ+
m

∑

j=1

cj∇ϕj,

where φ ∈ H1(Ω) satisfies (φ, 1) = 0,

∇× φ =









∂φ

∂x2

−
∂φ

∂x1









,

the non-negative integer m is the Betti number for Ω (m = 0 if Ω is simply connected), and
the functions ϕ1, . . . , ϕm are defined as follows.

Let the outer boundary of Ω be denoted by Γ0 and them components of the inner boundary
be denoted by Γ1, . . . ,Γm. Then the functions ϕj are determined by

(ε∇ϕj,∇v) = 0 ∀ v ∈ H1
0 (Ω),(1.3a)

ϕj

∣

∣

Γ0
= 0,(1.3b)

ϕj

∣

∣

Γk
= δjk =

{

1 j = k

0 j 6= k
for 1 ≤ k ≤ m.(1.3c)

We will show that the function φ in (1.2) is determined by

(1.4) (∇× φ, ε−1∇× ψ) = (µξ, ψ) ∀ψ ∈ H1(Ω)

and the constraint

(1.5) (φ, 1) = 0,

where the function ξ = µ−1∇× u ∈ H1(Ω) is determined by

(1.6) (∇× ξ, ε−1∇× ψ) + α(µξ, ψ) = (f , ε−1∇× ψ) ∀ψ ∈ H1(Ω)
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when α 6= 0, and by (1.6) together with the constraint

(1.7) (µξ, 1) = 0

when Ω is simply connected and α = 0.
Note that α 6= 0 when m ≥ 1 since 0 is a Maxwell eigenvalue for domains that are not

simply connected. In this case we will show that the coefficients cj in (1.2) are determined
by the symmetric positive-definite system

(1.8)

m
∑

j=1

(ε∇ϕj,∇ϕk)cj =
1

α
(f ,∇ϕk) for 1 ≤ k ≤ m.

We can therefore solve (1.1) by the following procedure.

(1) Compute a numerical approximation ξ̃ of ξ by solving (1.6) when α 6= 0, and by
solving (1.6) with the constraint (1.7) when Ω is simply connected and α = 0.

(2) Compute a numerical approximation φ̃ of φ by solving (1.4) under the constraint

(1.5), where ξ is replaced by ξ̃.
(3) Compute numerical approximations ϕ̃1, . . . , ϕ̃m of ϕ1, . . . , ϕm by solving the boundary

value problems in (1.3).
(4) Compute numerical approximations c̃1, . . . , c̃m of c1, . . . , cm by solving (1.8), where

ϕ1, . . . , ϕm are replaced by ϕ̃1, . . . , ϕ̃m.
(5) The numerical approximation ũ for u is given by

ũ = ε−1∇× φ̃+

m
∑

j=1

c̃j∇ϕ̃j.

Remark 1.2. The function ξ̃ computed in Step (1) provides an approximation for µ−1∇×u.

Remark 1.3. Since the functions ϕj depend only on the domain Ω, Step (3) can be carried
out once Ω is given. Hence the solution of (1.1) is essentially reduced to the solution of the
two elliptic boundary value problems in Steps (1)–(2).

Remark 1.4. The equations (1.4) and (1.6) can be rewritten as

(∇φ, ε−1∇ψ) = (µξ, ψ) ∀ψ ∈ H1(Ω),

(∇ξ, ε−1∇ψ) + α(µξ, ψ) = (f , ε−1∇× ψ) ∀ψ ∈ H1(Ω).

Hence the boundary value problems for φ and ξ are Neumann problems for the Laplace
operator.

Remark 1.5. The Hodge decomposition has also been applied to other electromagnetic prob-
lems [2, 3, 5].

Since the boundary value problems in Steps (1)–(3) are standard second order scalar
elliptic boundary value problems, they can be solved by many methods. For simplicity, we
will demonstrate this new numerical approach by a P1 finite element method.
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The rest of the paper is organized as follows. We first provide detailed justifications of
the new approach in Sections 2 and 3. Then in Section 4 we discuss a numerical method for
(1.1) based on P1 finite elements. We end with some concluding remarks in Section 5.

For convenience in later sections we state here two useful facts concerning H(curl; Ω) and
H(div; Ω). The first is that (cf. [14, Theorems 2.11 and 2.12])

(1.9) v ∈ H(curl; Ω) belongs to H0(curl; Ω) iff (∇× v, ψ) = (v,∇× ψ) ∀ψ ∈ H1(Ω).

The second is that (cf. [14, Theorem 2.5]) the normal trace n · v ∈ H−1/2(∂Ω) is well-
defined for v ∈ H(div; Ω). Moreover, we have

(1.10) (v,∇ζ) + (∇ · v, ζ) =

∫

∂Ω

ζ n · v ds ∀ v ∈ H(div; Ω), ζ ∈ H1(Ω).

2. Hodge Decomposition

Discussions of Hodge decompositions for three dimensional vector fields can be found
for example in [4, 19]. To make the present article more self-contained we provide here a
derivation of the Hodge decomposition for two dimensional vector fields and justify equations
(1.4) and (1.8).

Recall that Γ0 is the outer boundary of Ω and Γ1, . . . ,Γm are the components of the inner
boundary of Ω. The following result (cf. [14, Theorem 3.1]) is crucial for the derivation of
the Hodge decomposition.

Lemma 2.1. Let w ∈ [L2(Ω)]2. There exists φ ∈ H1(Ω) such that

w = ∇× φ

if and only if w ∈ H(div0; Ω) and
∫

Γj

w · n ds = 0 for 0 ≤ j ≤ m.

Let H(Ω; ε) be the space of ε-harmonic functions spanned by the functions ϕ1, . . . , ϕm

defined in (1.3). Note that, by the elliptic regularity theory on non-smooth domains (cf.
[15, 13, 20]), there exists τ ∈ (1/2, 1] such that ϕj ∈ H1+τ (Ω) for 1 ≤ j ≤ m.

Lemma 2.2. Let ϕ ∈ H(Ω; ε). Then

(2.1)

∫

Γj

ε
∂ϕ

∂n
ds = 0 for 1 ≤ j ≤ m

if and only if ϕ = 0.

Proof. Let ϕ =
∑m

j=1 bjϕj satisfy (2.1). It follows from (1.3) that

(ε∇ϕ,∇ϕ) =

m
∑

j=1

∫

Γj

ε
∂ϕ

∂n
ϕ ds =

m
∑

j=1

bj

∫

Γj

ε
∂ϕ

∂n
ds = 0,

which implies ϕ = 0 since ϕ vanishes on the outer boundary Γ0. �



HODGE DECOMPOSITION AND TWO-DIMENSIONAL MAXWELL’S EQUATIONS 5

Lemma 2.3. Given any v ∈ H(div0; Ω; ε), there exist a unique φ ∈ H1(Ω) and m unique

real numbers c1, . . . , cm such that (φ, 1) = 0 and

(2.2) v = ε−1∇× φ+
m

∑

j=1

cj∇ϕj.

Proof. It follows from Lemma 2.2 that the map

ϕ −→







∫

Γ1
ε(∂ϕ/∂n) ds

...
∫

Γm
ε(∂ϕ/∂n) ds







is an isomorphism from H(Ω; ε) into R
m. Therefore there exist unique constants c1, . . . , cm

such that

(2.3)

∫

Γk

ε
(

v −
m

∑

j=1

cj∇ϕj

)

· n ds = 0 for 1 ≤ k ≤ m.

Since εv ∈ H(div0; Ω) by the definition of H(div0; Ω; ε) and ε∇ϕj ∈ H(div0; Ω) by con-
struction (cf. (1.3a)), we can apply (1.10) with ζ = 1 to obtain

∫

∂Ω

ε
(

v −
m

∑

j=1

cj∇ϕj

)

· n ds = 0,

which together with (2.3) implies

(2.4)

∫

Γ0

ε
(

v −
m

∑

j=1

cj∇ϕj

)

· n ds = 0.

It then follows from Lemma 2.1 and (2.3)–(2.4) that

ε
(

v −
m

∑

j=1

cj∇ϕj

)

= ∇× φ

for some φ ∈ H1(Ω), which of course can be chosen to satisfy the constraint (φ, 1) = 0.
The uniqueness of the decomposition (2.2) follows from the fact (cf. Lemma 2.1) that

(2.3) must hold for any such decomposition, which implies that the coefficients c1, . . . , cm
are unique. The uniqueness of φ then follows immediately. �

We need the following lemma for the derivation of (1.4) and (1.8).

Lemma 2.4. Let ζ ∈ H1(Ω) such that the trace of ζ on Γj is a constant γj for 0 ≤ j ≤ m.

Then we have

(2.5) (∇× ψ,∇ζ) = 0 ∀ψ ∈ H1(Ω).
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Proof. From Lemma 2.1, we have

∫

Γj

n · (∇× ψ) ds = 0 for 0 ≤ j ≤ m,

which together with (1.10) (where v is taken to be ∇× ψ) implies

(∇× ψ,∇ζ) =

m
∑

j=0

∫

Γj

ζ n · (∇× ψ) ds =

m
∑

j=0

γj

∫

Γj

n · (∇× ψ) ds = 0.

�

Note that (1.9) (with v = ∇ζ) and (2.5) imply that ∇ζ ∈ H0(curl; Ω) for any ζ satisfying
the assumptions of Lemma 2.4. The following corollary is therefore immediate.

Corollary 2.5. We have ∇H1
0 (Ω) ⊂ H0(curl; Ω) and ∇H(Ω; ε) ⊂ H0(curl; Ω)∩H(div0; Ω; ε).

Remark 2.6. Because of Corollary 2.5, the decomposition (2.2) can be viewed as a decom-
position in H0(curl; Ω) ∩H(div0; Ω; ε) if v ∈ H0(curl; Ω) ∩ H(div0; Ω; ε). In this case φ has
higher regularity and ∂φ/∂n = 0 on ∂Ω.

Remark 2.7. There are other decompositions ofH0(curl; Ω)∩H(div0; Ω) that can be exploited
for the purpose of preconditioning H(curl; Ω) conforming methods [22, 17].

We can now use (1.2), (1.9) and Lemma 2.4 to justify (1.4) as follows. Let ψ ∈ H 1(Ω) be
arbitrary. We have

(∇× φ, ε−1∇× ψ) =
(

∇× φ+ ε

m
∑

j=1

cj∇ϕj, ε
−1∇× ψ

)

= (εu, ε−1∇× ψ) = (u,∇× ψ) = (∇× u, ψ) = (µξ, ψ).

To justify (1.8) when m ≥ 1, we take v = ∇ϕk in (1.1) (cf. Corollary 2.5) and replace u

by the Hodge decomposition (1.2). We arrive at the equation

α
(

∇× φ+ ε

m
∑

j=1

cj∇ϕj,∇ϕk

)

= (f ,∇ϕk) for 1 ≤ k ≤ m,

which together with Lemma 2.4 implies (1.8).
Finally we observe that the bilinear form (ϕ, %) → (ε∇ϕ,∇%) is symmetric positive-definite

on H(Ω; ε), because (ε∇ϕ,∇ϕ) = 0 implies ϕ = 0 since ϕ vanishes on the outer boundary
Γ0 of Ω. Hence the system (1.8) is symmetric positive-definite.
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3. Equation for ξ = µ−1∇× u

In this section we derive the equation (1.6). We begin with the strong form of (1.1).

Lemma 3.1. The solution u of (1.1) satisfies

(3.1) ∇× (µ−1∇× u) + α(εu) = εQ(ε−1f)

in the sense of distributions, where Q : [L2(Ω; ε)]2 −→ H(div0; Ω; ε) is the orthogonal projec-

tion.

Proof. Let ζ ∈ [C∞
c (Ω)]2 be a C∞ vector field with compact support in Ω. We have ζ ∈

H0(curl; Ω), Qζ ∈ H(div0; Ω; ε) and ζ −Qζ = ∇H1
0 (Ω) (cf. Remark 1.1).

Since ∇H1
0 (Ω) ⊂ H0(curl; Ω) (cf. Corollary 2.5), we have ζ −Qζ ∈ H0(curl; Ω) and hence

Qζ = ζ − (ζ −Qζ) ∈ H0(curl; Ω). It follows that

(3.2) Qζ ∈ H0(curl; Ω) ∩H(div0; Ω; ε).

Furthermore, from ∇×
(

∇H1
0 (Ω)

)

= {0} and u ∈ H(div0; Ω; ε), we have

(3.3) ∇× (ζ −Qζ) = 0 = (u, ζ −Qζ)L2(Ω;ε) = (εu, ζ −Qζ).

Using (1.1), (3.2) and (3.3), we can complete the proof of the lemma as follows:

(µ−1∇× u,∇× ζ) + α(εu, ζ) =
(

µ−1∇× u,∇× (Qζ + (ζ −Qζ)
)

+ α
(

εu, Qζ + (ζ −Qζ)
)

= (µ−1∇× u,∇×Qζ) + α(εu, Qζ)

= (f , Qζ) = (ε−1f , Qζ)L2(Ω;ε) =
(

Q(ε−1f), ζ
)

L2(Ω;ε)
=

(

εQ(ε−1f), ζ).

�

As a corollary, we have ξ = µ−1∇× u ∈ H1(Ω) and

(3.4) ∇× ξ + αεu = ε(Qε−1f).

Let ψ ∈ H1(Ω) be arbitrary. We have (cf. Lemma 2.1) ε−1∇ × ψ ∈ H(div0; Ω; ε), which
together with (1.9) and (3.4) implies that

(f , ε−1∇× ψ) = (ε−1f , ε−1∇× ψ)L2(Ω;ε)

=
(

Q(ε−1f), ε−1∇× ψ
)

L2(Ω;ε)

=
(

εQ(ε−1f), ε−1∇× ψ
)

=
(

∇× ξ + α(εu), ε−1∇× ψ
)

= (∇× ξ, ε−1∇× ψ) + α(∇× u, ψ) = (∇× ξ, ε−1∇× ψ) + α(µξ, ψ),

i.e., equation (1.6) is valid. The constraint (1.7) follows immediately from (1.9).
Next we turn to a relation between the solvability of (1.1) and the solvability of (1.6)

that will guarantee the well-posedness of (1.6) under the condition that −α (6= 0) is not a
Maxwell eigenvalue. Note that a discussion on the relation between the Maxwell eigenvalues
and Laplace eigenvalues can also be found in [12].



8 S.C. BRENNER, J. CUI, Z. NAN, AND L.-Y. SUNG

Lemma 3.2. For α 6= 0, the problem (1.1) is uniquely solvable if and only if the problem

(1.6) is uniquely solvable.

Proof. Let α be nonzero. Since H1(Ω) is compactly embedded in L2(Ω) by the Rellich-
Kondrachov theorem [1] and H0(curl; Ω) ∩H(div0; Ω; ε) is compactly embedded in [L2(Ω)]2

by a result of Weber [25], we can apply the Fredholm alternative to consider only the homo-
geneous equation corresponding to (1.1)

(3.5) (µ−1∇× w,∇× v) + α(εw, v) = 0 ∀ v ∈ H0(curl; Ω) ∩H(div0; Ω),

and the homogeneous equation corresponding to (1.6)

(3.6) (∇× η, ε−1∇× ψ) + α(µη, ψ) = 0 ∀ψ ∈ H1(Ω).

We will show that (3.5) has a nontrivial solution w ∈ H0(curl; Ω)∩H(div0; Ω; ε) if and only
if (3.6) has a nontrivial solution η ∈ H1(Ω).

Suppose there exists a nontrivial w ∈ H0(curl; Ω) ∩ H(div0; Ω; ε) that satisfies (3.5) and
η = µ−1∇ × w. Then η ∈ H1(Ω) and (3.6) holds as a special case of (1.6) where f = 0.
Moreover it follows from the Poincaré-Friedrichs inequality (cf. [19, Corollary 4.8])

‖w‖L2(Ω) ≤ CΩ,ε‖∇ × w‖L2(Ω) = CΩ,ε‖µη‖L2(Ω)

that η 6= 0.
Suppose there exists a nontrivial η ∈ H1(Ω) that satisfies (3.6). Since α 6= 0, we deduce

from (3.6) that (µη, 1) = 0. Hence we can write (cf. [14, Corollary 2.4])

(3.7) µη = ∇× w

for some w ∈ H0(curl; Ω)∩H(div0; Ω; ε). Indeed we can take w = ε−1∇×ρ, where ρ ∈ H1(Ω)
is defined by the Neumann problem

(ε−1∇× ρ,∇× ψ) = (µη, ψ) ∀ψ ∈ H1(Ω),(3.8a)

(ρ, 1) = 0.(3.8b)

Then (3.7) follows from (3.8a) and w ∈ H(div0; Ω; ε) by Lemma 2.1. Since (3.8a) can be
written as

(w,∇× ψ) = (∇× w, ψ) ∀ψ ∈ H1(Ω),

we also have w ∈ H0(curl; Ω) by (1.9). It follows that w ∈ H0(curl; Ω) ∩H(div0; Ω; ε).
Clearly w is nontrivial. To see that it satisfies (3.5), we take an arbitrary v ∈ H0(curl; Ω)∩

H(div0; Ω; ε) and write its Hodge decomposition (cf. Lemma 2.3) as

(3.9) v = ε−1∇× φ+ ∇ϕ,

where φ ∈ H1(Ω) and ϕ ∈ H(Ω; ε). Note that, by Lemma 2.4, we have

(3.10) (∇× η,∇ϕ) = 0 and (εw,∇ϕ) = (∇× ρ,∇ϕ) = 0.

It follows from (1.9), (3.6), (3.7), (3.9) and (3.10) that

(µ−1∇× w,∇× v) = (η,∇× v) = (∇× η, v)

= (∇× η, ε−1∇× φ+ ∇ϕ)
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=
(

∇× η, ε−1∇× φ)

= −α(µη, φ)

= −α(∇× w, φ)

= −α(w,∇× φ)

= −α(εw, ε−1∇× φ+ ∇ϕ) = −α(εw, v),

i.e., w satisfies (3.5). �

4. A P1 Finite Element Method

Let Th be a quasi-uniform simplicial triangulation of Ω with mesh size h and Vh ⊂ H1(Ω)
be the P1 finite element space associated with Th.

For α 6= 0, the P1 finite element method for (1.6) is to find ξh ∈ Vh such that

(4.1) (∇× ξh, ε
−1∇× v) + α(µξh, v) = (f , ε−1∇× v) ∀ v ∈ Vh.

For α > 0, the problem (4.1) is symmetric positive-definite and hence well-posed. It is
also well-posed for α < 0 provided −α is not a Maxwell eigenvalue and h is sufficiently small
(cf. Lemma 4.2 below).

Note that (4.1) implies

(4.2) (µξh, 1) = 0.

When Ω is simply connected and α = 0, ξh ∈ Vh is determined by (4.1) together with the
constraint (4.2). It is a well-posed problem because of the Poincaré-Friedrichs inequality (cf.
[21])

(4.3) ‖v‖L2(Ω) ≤ C
(

|(µv, 1)| + ‖∇ × v‖L2(Ω)

)

∀ v ∈ H1(Ω).

From here on we use C (with or without subscript) to denote a generic positive constant
independent of h, but which can depend on µ, ε and α.

The P1 finite element approximation φh ∈ Vh of φ (cf. (1.4)) is then determined by

(∇× φh, ε
−1∇× v) = (µξh, v) ∀ v ∈ Vh,(4.4a)

(φh, 1) = 0.(4.4b)

The problem (4.4) is well-posed because of (4.2) and (4.3).
In the case where m ≥ 1 (i.e., Ω is not simply connected), the P1 finite element approxima-

tion ϕj,h ∈ Vh for the ε-harmonic function ϕj in the Hodge decomposition (1.2) is determined
by the following problem (cf. (1.3)):

(ε∇ϕj,h,∇v) = 0 ∀ v ∈ V̊h,(4.5a)

ϕj,h

∣

∣

Γ0
= 0,(4.5b)

ϕj,h

∣

∣

Γk
= δjk =

{

1 j = k

0 j 6= k
for 1 ≤ k ≤ m,(4.5c)
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where V̊h = Vh ∩H
1
0 (Ω) is the P1 finite element space whose members vanish on ∂Ω.

Since the bilinear form

(ϕh, %h) → (ε∇ϕh,∇%h)

is symmetric positive-definite on < ϕ1,h, . . . , ϕm,h >, we can compute c1,h, . . . , cm,h by solving
the symmetric positive-definite system

(4.6)
m

∑

j=1

(ε∇ϕj,h,∇ϕk,h)cj,h =
1

α
(f ,∇ϕk,h) for 1 ≤ k ≤ m.

(Recall that α is assumed to be nonzero when Ω is not simply connected.)
Finally we approximate u by the piecewise constant vector field uh defined by

(4.7) uh = ε−1∇× φh +
m

∑

j=1

cj,h∇ϕj,h.

Since (4.1), (4.4) and (4.5) only involve standard second order scalar elliptic problems,
the P1 finite element method can be analyzed by standard techniques. Below is a brief error
analysis where we provide details only for results that are less standard. The main theorem
(Theorem 4.9) is established under the assumption that f ∈ [L2(Ω)]2. But we will also
remark on various improvements on the rate of convergence under the stronger assumption
that f is piecewise smooth.

Let the index β be defined by

(4.8) β = min
(

1, min
1≤`≤L

π

ω`

)

,

where ω1, ω2, . . . , ωL are the interior angles at the corners of Ω. Note that β = 1 if Ω is
convex.

The following estimate for the solution of (1.3) can be derived from the singular function
representations of these solutions (cf. [15, 13, 20]) and standard interpolation error estimates
[11, 9]:

(4.9) ‖ϕj − Πhϕj‖L2(Ω) + h|ϕj − Πhϕj|H1(Ω) ≤ Ch1+β,

where Πh is the nodal interpolation operator for the P1 finite element.
Similarly, for the solution ζ of the Laplace equation with homogeneous Neumann boundary

condition, we have

(4.10) ‖ζ − Πhζ‖L2(Ω) + h|ζ − Πhζ|H1(Ω) ≤ Ch1+β‖g‖L2(Ω),

where g is the right-hand side function.
We begin by comparing ξh and ξ = µ−1∇× u. The following result is obtained by using

(1.6), (4.1), (4.10) and a standard duality argument.

Lemma 4.1. For α > 0 (general Ω) and α = 0 (simply connected Ω), we have

(4.11) ‖ξ − ξh‖L2(Ω) ≤ Chβ inf
v∈Vh

‖∇ × (ξ − v)‖L2(Ω).
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In the case where α < 0, the following result is obtained by using the approach of Schatz
[23], where the required well-posedness of the continuous problem (1.6) is guaranteed by
Lemma 3.2.

Lemma 4.2. The discrete problem (4.1) is well-posed for α < 0, provided −α is not a

Maxwell eigenvalue and h is sufficiently small. Under these conditions the estimate (4.11)
remains valid.

Under the assumption that f ∈ [L2(Ω)]2, we have the following stability estimate from
the well-posedness of the continuous problem:

(4.12) ‖ξ‖H1(Ω) ≤ C‖f‖L2(Ω),

which together with (4.11) immediately implies the following corollary.

Corollary 4.3. Under the conditions in Lemmas 4.1 and 4.2, we have

(4.13) ‖ξ − ξh‖L2(Ω) ≤ Chβ‖f‖L2(Ω).

Remark 4.4. If f is a piecewise smooth vector field, then it follows from integration by parts
and the trace theorem that

∣

∣(f , ε−1∇× v)
∣

∣ ≤ Cδ‖v‖H(1/2)+δ(Ω) ∀ v ∈ H1(Ω),

where δ > 0 is arbitrary. Hence we have ξ ∈ H (3/2)−δ(Ω) by elliptic regularity and it follows
from (4.11) that the estimate (4.13) can be improved to

(4.14) ‖ξ − ξh‖L2(Ω) ≤ Cδh
β+(1/2)−δ .

Next we compare φh and φ.

Lemma 4.5. For h sufficiently small, we have

(4.15) ‖∇ × (φ− φh)‖L2(Ω) ≤ C
(

hβ inf
v∈Vh

‖∇ × (ξ − v)‖L2(Ω) + inf
v∈Vh

‖∇ × (φ− v)‖L2(Ω)

)

.

Proof. Since (µξ, 1) = 0, we can define φ̃h ∈ Vh to be the unique solution of

(∇× φ̃h, ε
−1∇× v) = (µξ, v) ∀ v ∈ Vh,(4.16a)

(φ̃h, 1) = 0.(4.16b)

It follows from (4.4) and (4.16) that

(4.17)
(

∇× (φ̃h − φh), ε
−1∇× v

)

=
(

µ(ξ − ξh), v
)

∀v ∈ Vh,

and (φh − φ̃h, 1) = 0. We then obtain, by (4.3), (4.11) and (4.17),

‖ε−
1
2∇× (φ̃h − φh)‖

2
L2(Ω) =

(

µ(ξ − ξh), φ̃h − φh

)

≤ C‖ξ − ξh‖L2(Ω)‖φ̃h − φh‖L2(Ω)

≤ Chβ inf
v∈Vh

‖∇ × (ξ − v)‖L2(Ω)‖∇ × (φ̃h − φh)‖L2(Ω),
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which implies

(4.18) ‖∇ × (φ̃h − φh)‖L2(Ω) ≤ Chβ inf
v∈Vh

‖∇ × (ξ − v)‖L2(Ω).

Comparing (1.4) and (4.16a), we have the Galerkin relation
(

∇× (φ− φ̃h), ε
−1∇× v) = 0 ∀ v ∈ Vh,

which implies

(4.19) ‖ε−
1
2∇× (φ− φ̃h)‖L2(Ω) = inf

v∈Vh

‖ε−
1
2∇× (φ− v)‖L2(Ω).

The estimate (4.15) follows from (4.18) and (4.19). �

Note that (1.4), (1.5) and (4.10) imply

(4.20) inf
v∈Vh

‖∇ × (φ− v)‖L2(Ω) ≤ ‖∇× (φ− Πhφ)‖L2(Ω) ≤ Chβ‖ξ‖L2(Ω).

Hence, under the assumption that f ∈ [L2(Ω)]2, we can use (4.12), (4.15) and (4.20) to
obtain the following bound:

(4.21) ‖∇ × (φ− φh)‖L2(Ω) ≤ Chβ‖f‖L2(Ω).

The next result follows from a standard argument using (4.9) and Galerkin orthogonality.

Lemma 4.6. We have, for 1 ≤ j ≤ m,

(4.22) |ϕj − ϕj,h|H1(Ω) ≤ Chβ.

Next we compare cj,h and cj. First we observe that (4.22) implies

(4.23)
∣

∣(f ,∇ϕj) − (f ,∇ϕj,h)
∣

∣ ≤ Chβ‖f‖L2(Ω) for 1 ≤ j ≤ m.

Furthermore, since ϕi − ϕi,h ∈ H1
0 (Ω) for 1 ≤ i ≤ m, (1.3a) implies

(ε∇ϕi,∇ϕj) − (ε∇ϕi,h,∇ϕj,h) =
(

ε(∇ϕi −∇ϕi,h),∇ϕj,h −∇ϕj

)

for 1 ≤ i, j ≤ m,

and hence, in view of (4.22),

(4.24)
∣

∣(ε∇ϕi,∇ϕj) − (ε∇ϕi,h,∇ϕj,h)
∣

∣ ≤ Ch2β for 1 ≤ i, j ≤ m.

Lemma 4.7. For h sufficiently small, we have

(4.25) |cj − cj,h| ≤ Chβ‖f‖L2(Ω) for 1 ≤ j ≤ m.

Proof. We can write (1.8) and (4.6) as

Ac = b and Ahch = bh,

where c ∈ R
m (resp. ch ∈ R

m) is the vector whose j-th component is cj (resp. cj,h),
A ∈ R

m×m (resp. Ah ∈ R
m×m) is the matrix whose (i, j)-th component is (ε∇ϕj,∇ϕi)

(resp. (ε∇ϕj,h,∇ϕi,h)), and b ∈ R
m (resp. bh ∈ R

m) is the vector whose j-th component is
α−1(f ,∇ϕj) (resp. α−1(f ,∇ϕj,h)).
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Note that

(4.26) ‖b‖∞ ≤ |α|−1
(

max
1≤j≤m

‖∇ϕj‖L2(Ω)

)

‖f‖L2(Ω) ≤ C‖f‖L2(Ω),

and the estimates (4.23)–(4.24) are translated into

(4.27) ‖b − bh‖∞ ≤ Chβ‖f‖L2(Ω) and ‖A − Ah‖∞ ≤ Ch2β.

The estimate (4.25) follows from the identity

c − ch = A−1b − A−1
h bh = A−1(b − bh) + A−1(Ah − A)A−1

h

(

(bh − b) + b
)

and (4.26)–(4.27). �

Remark 4.8. In the case where f is piecewise smooth, it follows from integration by parts
and the trace theorem that

∣

∣(f ,∇ϕj) − (f ,∇ϕj,h)
∣

∣ ≤ Cδ‖ϕj − ϕj,h‖H(1/2)+δ(Ω)

for any δ > 0, and by a duality argument, we have

‖ϕj − ϕj,h‖H(1/2)+δ(Ω) ≤ Cδh
(1/2)−δ |ϕj − ϕj,h|H1(Ω).

Hence the estimate (4.23) can be improved to
∣

∣(f ,∇ϕj) − (f ,∇ϕj,h)
∣

∣ ≤ Cδh
β+(1/2)−δ ,

and we can replace (4.25) by

(4.28) |cj − cj,h| ≤ Cδh
β+(1/2)−δ for 1 ≤ j ≤ m.

We can now compare uh and u by putting all the estimates together.

Theorem 4.9. For h sufficiently small, we have

(4.29) ‖u − uh‖L2(Ω) ≤ Chβ‖f‖L2(Ω).

Proof. First we observe that the solutions c1, . . . , cm of (1.8) satisfy

(4.30) |cj| ≤ C‖f‖L2(Ω) for 1 ≤ j ≤ m.

Secondly we have, from (1.2) and (4.7),

‖u − uh‖L2(Ω) ≤ C|φ− φh|H1(Ω) +
m

∑

j=1

|cjϕj − cj,hϕj,h|H1(Ω)

≤ C|φ− φh|H1(Ω) +

m
∑

j=1

(

|cj − cj,h| |ϕj|H1(Ω) + |cj,h| |ϕj − ϕj,h|H1(Ω)

)

(4.31)

≤ C|φ− φh|H1(Ω) +
m

∑

j=1

|cj − cj,h|
(

|ϕj|H1(Ω) + |ϕj − ϕj,h|H1(Ω)

)

+
m

∑

j=1

|cj| |ϕj − ϕj,h|H1(Ω).
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The estimate (4.29) follows from (4.21), (4.22), (4.25), (4.30) and (4.31). �

Remark 4.10. In the case where cj = 0 = cj,h for 1 ≤ j ≤ m, it follows from (4.15) and
(4.31) that

‖u − uh‖L2(Ω) ≤ C
[

hβ inf
v∈Vh

‖∇× (ξ − v)‖L2(Ω) + inf
v∈Vh

‖∇ × (φ− v)‖L2(Ω)

]

.

Finally we present the results of several numerical tests that illustrate the performance of
the P1 finite element method. We take µ = ε = 1 in the tests. All the computations are
performed on uniform grids consisting of isosceles right-angled triangles whose horizontal
and vertical edges have length h.

In the first set of experiments, we examine the convergence behavior of the numerical
scheme on the L-shaped domain (−1, 1)2 \ [0, 1]2. The exact solution is chosen to be

(4.32) u = ∇×
(

r2/3 cos
(2

3
θ −

π

3

)

φ(x)
)

,

where (r, θ) are the polar coordinates at the origin and φ(x) = (1 − x2
1)

2(1 − x2
2)

2. It has
the correct Maxwell singularity at the reentrant corner. We solve (1.1) for α = −1, 0 and 1,
with f = ∇× (∇× u) − αu ∈ H(div0; Ω). The results are tabulated in Table 4.1.

Note that the convergence of uh to u is approaching the order of β = 2/3 predicted by
Theorem 4.9. On the other hand, since ξ = ∇×u behaves like r2/3 at the origin, the order of
convergence for ξh according to (4.11) is (2/3)+(2/3) = 4/3, which agrees with the observed
order of convergence.

The second set of experiments is performed for the doubly connected domain

Ω = (0, 4)2 \ [1, 3]2.

In this case the solution u of (1.1) can be written as

(4.33) u = ∇× φ+ c∇ϕ,

where c is a constant and the harmonic function ϕ satisfies the boundary conditions

ϕ
∣

∣

Γ0
= 0 and ϕ

∣

∣

Γ1
= 1.

Here Γ0 (resp. Γ1) is the boundary of (0, 4)2 (resp. (1, 3)2). First we take the exact solution
to be

(4.34) u =

[

x2(1 − x2)(3 − x2)(4 − x2)

x1(1 − x1)(3 − x1)(4 − x1)

]

and solve (1.1) for α = −1 and 1, with f = ∇× (∇×u)−αu ∈ H(div0; Ω). The numerical
results are presented in Table 4.2.

Note that in this case u is the curl of a quintic polynomial and hence c = 0 in (4.33). In
fact, since f is also the curl of a polynomial, we have (f ,∇ϕh) = 0 by Lemma 2.4, and it is
observed that ch = 0 up to machine error.

According to Remark 4.10, the order of convergence for uh is 1 (since ξ and φ are smooth),
which is observed. The order of convergence for ξh is found to be 2, which is better than the
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Table 4.1. Results for (1.1) on the L-shaped domain with exact solution
given by (4.32)

h
‖∇×u−ξh‖L2

‖f‖L2

Order h
‖u−uh‖L2

‖f‖L2

Order

α = −1

1/8 3.57E−02 1.43 1/8 3.19E−02 1.41
1/16 1.32E−02 1.43 1/16 1.23E−02 1.38
1/32 4.98E−03 1.41 1/32 5.03E−03 1.28
1/64 1.90E−03 1.39 1/64 2.26E−03 1.15
1/128 7.37E−04 1.37 1/128 1.13E−03 0.99
1/256 2.87E−04 1.36 1/256 6.17E−04 0.87

α = 0

1/8 1.12E−02 1.44 1/8 1.35E−02 1.29
1/16 4.24E−03 1.41 1/64 6.13E−03 1.14
1/32 1.63E−03 1.38 1/32 3.07E−03 0.99
1/64 6.36E−04 1.36 1/64 1.66E−03 0.89
1/128 2.50E−04 1.35 1/128 9.46E−04 0.81
1/256 9.86E−05 1.34 1/256 5.58E−04 0.76

α = 1

1/8 6.77E−03 1.39 1/8 1.06E−02 1.14
1/16 2.63E−03 1.36 1/16 5.27E−03 1.01
1/32 1.04E−03 1.34 1/32 2.80E−03 0.91
1/64 4.14E−04 1.33 1/64 1.56E−03 0.84
1/128 1.65E−04 1.33 1/128 9.06E−04 0.79
1/256 6.57E−05 1.32 1/256 5.38E−04 0.75

order of β+1 = 5/3 predicted by (4.11). This is likely due to the effects of superconvergence
[24, 18] since we use uniform meshes in computing ξh and the exact solution ξ is smooth.

Finally we take the right-hand side of (1.1) to be the piecewise smooth vector field

f =



















[

1 + x1

0

]

if x1 < x2 and 3 < x1 < 4,

[

0

1 + x2

]

otherwise.

(4.35)

The numerical results are presented in Table 4.3 for α = −1 and 1.
The observed orders of convergence are consistent with the theoretical results. In par-

ticular, the order of convergence for ch matches the estimate (4.28) with β = 2/3, and the
order of convergence for uh is 2/3 for α = 1 and approaching 2/3 for α = −1, which agrees
with the estimate (4.29). The order of convergence for ξh in both cases is higher than the
order predicted by (4.14). This is probably due to the fact that the mesh size h is not small
enough and the asymptotic behavior has not been reached.
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Table 4.2. Results for (1.1) on the doubly connected domain with exact
solution given by (4.34)

h
‖∇×u−ξh‖L2

‖f‖L2

Order |ch|
‖u−uh‖L2

‖f‖L2

Order

α = −1

1/8 3.71E−03 2.01 7.93E−17 1.13E−03 1.05
1/16 9.26E−04 2.00 1.36E−16 5.61E−03 1.01
1/32 2.31E−04 2.00 1.49E−16 2.80E−03 1.00
1/64 5.78E−05 2.00 7.69E−16 1.39E−03 1.00
1/128 1.44E−05 2.00 7.43E−16 6.99E−04 1.00

α = 1

1/8 1.69E−03 1.98 9.25E−16 9.50E−03 1.00
1/16 4.25E−04 1.99 1.11E−15 4.75E−03 1.00
1/32 1.06E−04 2.00 1.35E−15 2.38E−03 1.00
1/64 2.66E−05 2.00 3.27E−15 1.19E−03 1.00
1/128 6.64E−06 2.00 4.96E−15 5.94E−04 1.00

Table 4.3. Results for (1.1) on the doubly connected domain with right-hand
side given by (4.35)

h
‖∇×u−ξh‖L2

‖f‖L2

Order ch Order
‖u−uh‖L2

‖f‖L2

Order

α = −1

1/4 1.72E−01 1.26 0.763918 1.05 2.68E−01 1.00
1/8 5.28E−02 1.70 0.765285 0.87 1.28E−01 1.06
1/16 1.49E−02 1.83 0.765991 0.95 6.93E−02 0.89
1/32 4.29E−03 1.80 0.766332 1.05 4.04E−02 0.78
1/64 1.13E−03 1.69 0.766489 1.12 2.42E−02 0.73

α = 1

1/4 1.03E−02 1.33 -0.763918 1.05 8.60E−02 0.71
1/8 4.04E−03 1.35 -0.765285 0.87 5.30E−02 0.70
1/16 1.58E−03 1.35 -0.765991 0.95 3.29E−02 0.69
1/32 6.21E−04 1.35 -0.766332 1.05 2.05E−02 0.68
1/64 2.44E−04 1.34 -0.766489 1.12 1.28E−02 0.67

5. Concluding Remarks

The new numerical approach for two dimensional Maxwell’s equations introduced in this
paper only involves solving standard second order scalar elliptic boundary value problems.
We have demonstrated its performance using a P1 finite element method on quasi-uniform
triangulations. There are of course many other possibilities, such as finite element methods
on graded meshes that can recover O(h) convergence even on non-convex domains, adaptive
methods, multigrid methods and domain decomposition methods. The application of these
methods to (1.1) and the related Maxwell eigenproblem will be carried out elsewhere.
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We can also apply the Hodge decomposition to study Maxwell’s equations in three di-
mensions. In this case both ξ = ∇ × u and the potential φ in the Hodge decomposition
are vector fields. Therefore the Hodge decomposition does not reduce the problem to scalar
elliptic boundary value problems. However there may still be some advantages of solving the
systems for ξ and φ instead of the original system for u. This will be further explored.
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