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MULTIGRID METHODS FOR TWO-DIMENSIONAL MAXWELL’S
EQUATIONS ON GRADED MESHES

Jintao Cui

Abstract. In this paper we investigate the numerical solution for two-dimensional Maxwell’s
equations on graded meshes. The approach is based on the Hodge decomposition. The so-
lution u of Maxwell’s equations is approximated by solving standard second order elliptic
problems. Quasi-optimal error estimates for both u and ∇×u in the L2 norm are obtained
on graded meshes. We prove the uniform convergence of the W -cycle and full multigrid al-
gorithms for the resulting discrete problem. The performance of these methods is illustrated
by numerical results.

Keywords: Maxwell’s equations, Hodge decomposition, graded meshes, multigrid meth-
ods.

1. Introduction

Let Ω be a bounded polygonal domain in R
2 and f ∈ [L2(Ω)]2. We consider the following

problem:

Find u ∈ H0(curl; Ω) ∩H(div0; Ω) such that

(1.1) (∇× u,∇× v) + α(u, v) = (f , v),

for all v ∈ H0(curl; Ω) ∩H(div0; Ω), where (·, ·) denotes the inner product of [L2(Ω)]2. Here
the function spaces H0(curl; Ω) and H(div0; Ω) are defined as follows.

H(curl; Ω) =
{
v =

[
v1

v2

]
∈ [L2(Ω)]2 : ∇× v =

∂v2

∂x1

−
∂v1

∂x2

∈ L2(Ω)
}
,

H0(curl; Ω) = {v ∈ H(curl; Ω) : n×v = 0 on ∂Ω},

with n being the unit outer normal, and

H(div; Ω) =
{
v =

[
v1

v2

]
∈ [L2(Ω)]2 : ∇ · v =

∂v1

∂x1
+
∂v2

∂x2
∈ L2(Ω)

}
,

H(div0; Ω) =
{
v ∈ H(div; Ω) : ∇ · u = 0}.

We assume that −α is not a Maxwell eigenvalue so that (1.1) is uniquely solvable. In
particular, we assume that α 6= 0 when Ω is not simply connected, since in this case, α = 0
is a Maxwell eigenvalue.

In this paper we follow the numerical approach to solve (1.1) presented in [13], which uses
the Hodge decomposition of u. The idea is to use two decoupled problems to first compute
∇ × u and then u. We summarize it in the rest of this section. Detailed justifications can
be found in [13, Sections 2 and 3].

Let ξ = ∇× u ∈ H1(Ω). Then ξ is determined by

(1.2) (∇× ξ,∇× ψ) + α(ξ, ψ) = (f ,∇× ψ) ∀ψ ∈ H1(Ω)



MULTIGRID METHODS FOR MAXWELL’S EQUATIONS 3

when α 6= 0, and by (1.2) together with the constraint

(1.3) (ξ, 1) =

∫

Ω

ξ dx = 0

when Ω is simply connected and α = 0.
We can write [21]

(1.4) u = ∇× φ+
m∑

j=1

cj∇ϕj,

where φ ∈ H1(Ω) satisfies

(1.5)
∂φ

∂n
= 0 on ∂Ω,

and the constraint

(1.6) (φ, 1) =

∫

Ω

φ dx = 0.

The non-negative integer m is the Betti number for Ω (m = 0 if Ω is simply connected), and
the functions ϕ1, . . . , ϕm are defined as follows.

Suppose ∂Ω has m + 1 components. We denote the outer boundary of Ω by Γ0, and the
m components of the inner boundary by Γ1, . . . ,Γm. Then the functions ϕj are determined
by

(∇ϕj,∇v) = 0 ∀ v ∈ H1
0 (Ω),(1.7a)

ϕj

∣∣
Γ0

= 0,(1.7b)

ϕj

∣∣
Γi

= δji =

{
1 j = i
0 j 6= i

for 1 ≤ i ≤ m.(1.7c)

We refer to (1.4) as the Hodge decomposition of u ∈ H0(curl; Ω) ∩H(div0; Ω).
The function φ is determined by (1.6) and the property that

(1.8) (∇× φ,∇× ψ) = (ξ, ψ), ∀ψ ∈ H1(Ω).

Finally, in the case where m ≥ 1, the coefficients cj in (1.4) are determined by the
symmetric positive-definite system (cf. [13, Section 2]):

(1.9)

m∑

j=1

(∇ϕj,∇ϕi)cj =
1

α
(f ,∇ϕi), for 1 ≤ i ≤ m.

The numerical procedure for solving (1.1) is as follows.

First we use (1.2) and (1.3) to compute a numerical approximation ξ̃ of ξ. Then we

compute an approximation φ̃ of φ by using (1.6) and (1.8), where ξ is replaced by ξ̃. The
numerical approximations ϕ̃1, . . . , ϕ̃m of ϕ1, . . . , ϕm are computed by solving (1.7). Then we
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compute numerical approximations c̃1, . . . , c̃m of c1, . . . , cm by solving (1.9), where ϕ1, . . . , ϕm

are replaced with ϕ̃1, . . . , ϕ̃m. Finally, the numerical approximation ũ of u is given by

ũ = ∇× φ̃+

m∑

j=1

c̃j∇ϕ̃j.

Remark 1.1. Note that (∇ × ζ,∇× ψ) = (∇ζ,∇ψ), ∀ ζ, ψ ∈ H1(Ω). Hence the boundary
value problems (1.2) and (1.8) for ξ and φ are Neumann problems for the Laplace operator.

The above numerical approach was demonstrated by a P1 finite element method in [13]
on quasi-uniform triangulations. In that case, the optimal convergence rates of the discrete
errors can not be achieved when the domain is non-convex. In this paper, we extend the
results using a properly graded triangulation Th and recover optimal convergence rates for a
general polygonal domain (cf. Section 3 and 4).

Multigrid methods have been proposed for magnetostatic problems in [25, 27], and for the
time-domain Maxwell’s equations in [24]. The convergence analysis is based on Nédélec’s edge
elements [30, 31]. In this paper an approximate solution for Maxwell’s equations is obtained
by solving standard second order scalar elliptic boundary value problems (cf. Section 2).
Hence we can apply standard results in the convergence analysis for multigrid methods. The
modified multigrid algorithms are also introduced and analyzed for the singular Neumann
problems.

The rest of the paper is organized as follows. In Section 2, we briefly recall the P1

finite element method introduced in [13] for solving (1.1). The elliptic regularity results in
terms of weighted Sobolev space are reviewed in Section 3. The analysis of the numerical
method based on graded meshes is carried out in Section 4. Then in Section 5 we introduce
multigrid methods for the resulting discrete problems, followed by the convergence analysis
of the W -cycle multigrid algorithms in Section 6. The full multigrid algorithms are analyzed
in Section 7. Numerical results are reported in Section 8.

2. A P1 Finite Element Method

Let Th be a simplicial triangulation of Ω with mesh size h and Vh ⊂ H1(Ω) be the P1 finite
element space associated with Th.

For α 6= 0, the P1 finite element method for (1.2) is to find ξh ∈ Vh such that

(2.1) (∇× ξh,∇× v) + α(ξh, v) = (f ,∇× v) ∀ v ∈ Vh.

The problem (2.1) is well-posed for α > 0 and also for α < 0 provided −α is not a Maxwell
eigenvalue and h is sufficiently small. It follows from (2.1) that

(2.2) (ξh, 1) = 0.

When Ω is simply connected and α = 0, ξh ∈ Vh is defined by (2.1) together with the
constraint (2.2). It is a well-posed problem because of the Poincaré-Friedrichs inequality (cf.
[20])

(2.3) ‖v‖L2(Ω) ≤ C
(
|(v, 1)|+ ‖∇ × v‖L2(Ω)

)
∀ v ∈ H1(Ω).
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The P1 finite element method for (1.8) is to find φh ∈ Vh such that

(∇× φh,∇× v) = (ξh, v) ∀ v ∈ Vh,(2.4a)

(φh, 1) = 0.(2.4b)

In the case where m ≥ 1, the P1 finite element approximation ϕj,h ∈ Vh for the harmonic
function ϕj in the Hodge decomposition (1.4) is determined by

(∇ϕj,h,∇v) = 0 ∀ v ∈ Vh ∩H
1
0 (Ω),(2.5a)

ϕj,h

∣∣
Γ0

= 0,(2.5b)

ϕj,h

∣∣
Γi

= δji =

{
1 j = i
0 j 6= i

for 1 ≤ i ≤ m.(2.5c)

We then compute c1,h, . . . , cm,h by solving

(2.6)

m∑

j=1

(∇ϕj,h,∇ϕi,h)cj,h =
1

α
(f ,∇ϕi,h), for 1 ≤ i ≤ m.

Note that we assume α 6= 0 when Ω is not simply connected.
Finally we define the piecewise constant approximation uh of u by

(2.7) uh = ∇× φh +
m∑

j=1

cj,h∇ϕj,h.

More details about the numerical schemes presented in this section can be found in [13,
Section 4].

3. Elliptic Regularity

In view of Remark 1.1, the P1 finite element method introduced in Section 2 involves the
Neumann and Dirichlet problems for the Laplace operator. In this section we will review
the elliptic regularity results for these problems in terms of weighted Sobolev space.

First we consider the Neumann problem of finding z ∈ H1(Ω) such that

(3.1) (∇z,∇v) + α(z, v) = (f, v) ∀ v ∈ H1(Ω),

where f belongs to the weighted Sobolev space L2,µ(Ω) (cf. (3.5) below) and −α is not a
Maxwell eigenvalue.

Let ω1, . . . , ωL be the interior angles at the corners c1, . . . , cL of Ω. Let the weight Φµ(T )
associated with T ∈ Th be defined by

(3.2) Φµ(T ) =
L∏

`=1

|c` − cT |
1−µ` ,
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where cT is the center of T , and the grading parameters µ1, . . . , µL are chosen according to
the following rule:

µ` = 1 if ω` ≤ π,

µ` <
π

ω`
if ω` > π.

(3.3)

Definition 3.1. We say that Th is a properly graded mesh if

(3.4) hT = diam(T ) ≈ Φµ(T )h ∀ T ∈ Th.

Let the weighted Sobolev space L2,µ(Ω) be defined by

(3.5) L2,µ(Ω) = {ζ ∈ L2,loc(Ω) : ‖ζ‖2
L2,µ(Ω) =

∫

Ω

φ2
µ(x)ζ

2(x) dx <∞},

where the weight function φµ is defined by

(3.6) φµ(x) =

L∏

`=1

|x− c`|
1−µ`.

Note that L2(Ω) ⊂ L2,µ(Ω) and

(3.7) ‖ζ‖L2,µ(Ω) ≤ CΩ‖ζ‖L2(Ω) ∀ ζ ∈ L2(Ω).

The model problem (3.1) has a unique solution z for any f ∈ L2,µ(Ω). The second order
weak derivatives of z belong to L2,µ and they satisfy

(3.8) ‖∂2z/∂xi∂xj‖L2,µ(Ω) ≤ CΩ‖f‖L2,µ(Ω) for 1 ≤ i, j ≤ 2.

Moreover, when ω` > π (1 ≤ ` ≤ L), we have z ∈ H1+µ`(Ω`,δ) and

(3.9) ‖z‖H1+µ` (Ω`,δ) ≤ CΩ‖f‖L2,µ(Ω),

where Ω`,δ = {x ∈ Ω : |x − c`| < δ} is a small neighborhood around the corner c`. Details
for (3.8) and (3.9) can be found in [26, 19, 29].

Let Πh : C(Ω̄) −→ Vh be the nodal interpolation operator for the P1 finite element. The
following interpolation error estimate in terms of weighted Sobolev norms is obtained in [2].
Similar result can be found in [14] for a discontinuous Galerkin method.

‖z − Πhz‖L2(Ω) + h|z − Πhz|H1(Ω) ≤Ch
2‖f‖L2,µ(Ω).(3.10)

The preceding discussion also holds for the singular Neumann problem where α = 0,
provided that (f, 1) = 0 and z is the solution that satisfies the constraint (z, 1) = 0.

Next we consider the Dirichlet problem of finding z ∈ H1(Ω) such that

(∇z,∇v) = 0 ∀ v ∈ H1
0 (Ω),(3.11a)

z
∣∣
Γj

= γj for 0 ≤ j ≤ m,(3.11b)

where γ0, . . . , γm are constants.



MULTIGRID METHODS FOR MAXWELL’S EQUATIONS 7

According to elliptic regularity, we have the following interpolation error estimate [2]

(3.12) ‖z − Πhz‖L2(Ω) + h|z − Πhz|H1(Ω) ≤ Ch2

m∑

j=0

|γj|.

4. Error Analysis

The error estimates for the P1 finite element method introduced in Section 2 are studied in
[13] on quasi-uniform triangulations. In this section, we extend the results using a properly
graded triangulation Th and recover optimal convergence rates for a general polygonal domain
Ω.

We begin by comparing ξh and ξ = ∇× u in the norm

(4.1) ‖ξ‖2
L2,−µ(Ω) =

∫

Ω

φ−2
µ (x)ξ2(x) dx,

which is the norm for L2,−µ(Ω), the dual space of L2,µ(Ω). The triangulation Th that is used
in the rest of this section satisfies the property (3.4).

Theorem 4.1. For α > 0 (general Ω) and α = 0 (simply connected Ω), we have

(4.2) ‖ξ − ξh‖L2,−µ(Ω) ≤ Ch‖f‖L2(Ω).

Proof. We will prove (4.2) by a duality argument.
Let ζ ∈ H1(Ω) be determined by

(4.3) (∇× ζ,∇× v) + α(ζ, v) = (φ−2
µ (ξ − ξh), v) ∀ v ∈ H1(Ω).

Note that (1.3) and (2.2) imply

(4.4) (ξ − ξh, 1) = 0.

We derive from (3.5), (3.6) and (3.10) that

‖ζ − Πhζ‖L2(Ω) + h|ζ − Πhζ|H1(Ω) ≤Ch
2‖φ−2

µ (ξ − ξh)‖L2,µ(Ω)(4.5)

=Ch2‖ξ − ξh‖L2,−µ(Ω).

It follows from (4.3), the Galerkin orthogonality (cf. (1.2) and (2.1))

(4.6)
(
∇× (ξ − ξh),∇× v

)
+ α(ξ − ξh, v) = 0 ∀ v ∈ Vh,

and (4.5) that

‖ξ − ξh‖
2
L2,−µ(Ω) =

(
∇× ζ,∇× (ξ − ξh)

)
+ α(ζ, ξ − ξh)

=
(
∇× (ζ − Πhζ),∇× (ξ − ξh)

)
+ α(ζ − Πhζ, ξ − ξh)

≤ C
(
‖ζ − Πhζ‖L2(Ω) + ‖∇ × (ζ − Πhζ)‖L2(Ω)

)

×
(
‖ξ − ξh‖L2(Ω) + ‖∇ × (ξ − ξh)‖L2(Ω)

)

≤ Ch‖ξ − ξh‖L2,−µ(Ω)

(
‖ξ − ξh‖L2(Ω) + ‖∇ × (ξ − ξh)‖L2(Ω)

)
,
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which together with (2.3) and (4.4) implies,

(4.7) ‖ξ − ξh‖L2,−µ(Ω) ≤ Ch|ξ − ξh|H1(Ω).

Now we estimate |ξ − ξh|H1(Ω). Let v ∈ Vh satisfy (v, 1) = 0. It follows from (2.3), (4.4),
and (4.6) that

|ξ − ξh|
2
H1(Ω) + α‖ξ − ξh‖

2
L2(Ω) =

(
∇× (ξ − ξh),∇× (ξ − v)

)
+ α(ξ − ξh, ξ − v)

≤ C|ξ − ξh|H1(Ω)|ξ − v|H1(Ω),

which implies

(4.8) |ξ − ξh|H1(Ω) ≤ C|ξ − v|H1(Ω) ∀ v ∈ Vh (v, 1) = 0.

It follows from (4.7) and (4.8) that

(4.9) ‖ξ − ξh‖L2,−µ(Ω) ≤ Ch inf
v∈Vh

|ξ − v|H1(Ω).

Under the assumption that f ∈ [L2(Ω)]2, we have the following stability estimate from
the well-posedness of the continuous problem:

(4.10) ‖ξ‖H1(Ω) ≤ C‖f‖L2(Ω).

Therefore the estimate (4.2) follows from (4.9) and (4.10) �

Theorem 4.2. The discrete problem (2.1) is well-posed for α < 0, provided −α is not a

Maxwell eigenvalue and h is sufficiently small. Under these conditions the estimate (4.2)
remains valid.

Proof. We follow the approach of Schatz (cf. [32]). Assuming that (2.1) has a solution
ξh ∈ Vh, we can apply the same duality argument in the proof of Theorem 4.1 to obtain the
estimate (4.7).

Let v ∈ Vh satisfy (v, 1) = 0. It follows from (1.3), (2.2), (2.3), (4.6) and (4.7) that

|ξ − ξh|
2
H1(Ω) =

(
∇× (ξ − ξh),∇× (ξ − v)

)
+ α(ξ − ξh, ξ − v) − α‖ξ − ξh‖

2
L2(Ω)

≤ C‖∇ × (ξ − ξh)‖L2(Ω)‖∇ × (ξ − v)‖L2(Ω) + |α|‖ξ − ξh‖
2
L2,−µ(Ω)

≤ C
(
|ξ − ξh|H1(Ω)|ξ − v|H1(Ω) + h2|ξ − ξh|

2
H1(Ω)

)
,

and hence, for h sufficiently small,

|ξ − ξh|H1(Ω) ≤ C|ξ − v|H1(Ω) ∀ v ∈ Vh,

which again implies (4.8).
In the special case where f = 0, ξ = 0 and v = 0, we deduce from (2.2) and (4.8) that

the only solution of the homogeneous discrete problem is trivial. Hence the discrete problem
(2.1) is well-posed for h sufficient small, and then the estimate (4.2) follows from (4.7), (4.8)
and (4.10). �

Corollary 4.3. Under the conditions in Theorems 4.1 and 4.2, we have

(4.11) ‖ξ − ξh‖L2(Ω) ≤ Ch‖f‖L2(Ω).
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Next we compare φh and φ.

Lemma 4.4. Under the assumption that f ∈ [L2(Ω)]2, we have

(4.12) |φ− φh|H1(Ω) ≤ Ch‖f‖L2(Ω).

Proof. Since (ξ, 1) = 0, there exists a unique solution φ̃h such that

(∇× φ̃h,∇× v) = (ξ, v) ∀ v ∈ Vh,(4.13a)

(φ̃h, 1) =0.(4.13b)

It follows from (2.4) and (4.13) that

(4.14)
(
∇× (φ̃h − φh),∇× v) = (ξ − ξh, v) ∀ v ∈ Vh,

and (φ̃h − φh, 1) = 0. Hence by (2.3), (4.11) and (4.14), we have

|φ̃h − φh|
2
H1(Ω) = ‖∇ × (φ̃h − φh)‖

2
L2(Ω)

= (ξ − ξh, φ̃h − φh)(4.15)

≤‖ξ − ξh‖L2(Ω)‖φ̃h − φh‖L2(Ω)

≤Ch‖f‖L2(Ω)|φ̃h − φh|H1(Ω),

which implies

(4.16) |φ̃h − φh|H1(Ω) ≤ Ch‖f‖L2(Ω).

Combining (1.8) and (4.13a), we have the Galerkin relation

(4.17) (∇× (φ− φ̃h),∇× v) = 0 ∀ v ∈ Vh,

which together with (3.7) and (3.10) implies

(4.18) |φ− φ̃h|H1(Ω) = inf
v∈Vh

|φ− v|H1(Ω) ≤ |φ− Πhφ|H1(Ω) ≤ Ch‖ξ‖L2(Ω).

The estimate (4.12) follows from (4.10), (4.16) and (4.18). �

We then turn to compare ϕj,h and ϕj. Since the function ϕj,h is obtained by a standard
P1 finite element method for the Dirichlet problem (2.5), the following result is standard [2,
Theorem 5.1].

Lemma 4.5. For 1 ≤ j ≤ m, we have

(4.19) |ϕj − ϕj,h|H1(Ω) ≤ Ch.

We compare cj,h and cj in the next lemma. The proof is based on (1.9), (2.6), Lemma 4.5
and similar to the proof of Lemma 4.7 in [13].

Lemma 4.6. For 1 ≤ j ≤ m, we have

(4.20) |cj − cj,h| ≤ Ch‖f‖L2(Ω).
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By combining Lemma 4.4, Lemma 4.5 and Lemma 4.6, we have the following convergence
theorem for (2.7). The proof is identical with the proof of Theorem 4.9 in [13].

Theorem 4.7.

(4.21) ‖u − uh‖L2(Ω) ≤ Ch‖f‖L2(Ω).

5. Multigrid Algorithm

In this section we introduce W -cycle multigrid algorithms for solving the discrete problems
(2.1), (2.4) and (2.5) on graded meshes. We start with an initial triangulation T0 and then
obtain the triangulations Tk for k ≥ 1 recursively by the following procedure, which is
identical to the one in [8].

• If none of the reentrant corners is a vertex of T ∈ Tk, then we divide T uniformly by
connecting the midpoints of the edges of T .

• If a reentrant corner c` is a vertex of T ∈ Tk and the other two vertices of T are
denoted by p1 and p2, then we divide T by connecting the points m, q1 and q2 (cf.
Figure 5.1). Here m is the midpoint of the edge p1p2 and q1 (resp. q2) is the point
on the edge c`p1 (resp. c`p2) such that

|c` − qi|

|c` − pi|
= 2−(1/µ`) for i = 1, 2,

where µ` is the grading factor chosen according to (3.3).

PSfrag replacements

c`

p1

p2

m

q1

q2

Figure 5.1. Refinement of a triangle at a reentrant corner

The triangulations T0, T1 and T2 for an L-shaped domain are depicted in Figure 5.2, where
the grading factor at the reentrant corner is taken to be 2/3.

The resulting family of triangulations {Tk}k≥0 satisfies the mesh condition (3.4) (cf. the
Appendix of [14]). Without loss of generality we may also assume that

(5.1) hk =
1

2
hk−1 for k ≥ 1.

Let Vk be the P1 finite element space associated with Tk and define

a(w, v) =(∇× w,∇× v) + α(w, v).(5.2)
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Figure 5.2. The triangulations T0, T1 and T2 for an L-shaped domain

Let the operators Ak be defined by

〈Akw, v〉 = a(w, v) ∀ v, w ∈ Vk,(5.3)

where 〈·, ·〉 is the canonical bilinear form on V ′
k ×Vk. The k-th level P1 finite element method

for (1.2) (α 6= 0) is:
Find ξk ∈ Vk such that

(5.4) Akξk = fk,

where fk ∈ V ′
k is defined by

〈fk, v〉 =(f ,∇× v) ∀ v ∈ Vk.

The equation (5.4) then can be solved by multigrid algorithms [23, 28, 7, 33, 16].
Since the finite element spaces are nested, we can take the coarse-to-fine intergrid transfer

operator Ik
k−1 : Vk−1 −→ Vk to be the natural injection and define the fine-to-coarse intergrid

transfer operator Ik−1
k : V ′

k −→ V ′
k−1 to be the transpose of Ik

k−1 with respect to 〈·, ·〉 , i.e.,

(5.5) 〈Ik−1
k w, v〉 = 〈w, Ik

k−1v〉 ∀w ∈ V ′
k, v ∈ Vk−1.

In order to define the smoother, we first introduce an operator Bk : Vk −→ V ′
k defined by

(5.6) 〈Bkw, v〉 = h2
k

∑

T∈Tk

∑

p∈NT

w(p)v(p) = (v, w)k ∀ v, w ∈ Vk,

where NT is the set of the vertices of the triangle T .
We are now ready to define a W -cycle algorithm for the equation

(5.7) Akz = g,

where z ∈ Vk and g ∈ V ′
k.

Algorithm 5.1. W -cycle Algorithm.
The output of the algorithm is denoted by MGW (k, g, z0, m1, m2), where z0 ∈ Vk is the

initial guess and m1 (resp. m2) is the number of pre-smoothing (resp. post-smoothing) steps.
For k = 0, MGW (0, g, z0, m1, m2) = A−1

0 g.
For k ≥ 1, MGW (k, g, z0, m1, m2) is computed recursively as follows.
Pre-Smoothing. Compute zl ∈ Vk for 1 ≤ l ≤ m1 recursively by

zl = zl−1 + (λh2
k)B

−1
k (g − Akzl−1),
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where λ is a (constant) damping factor such that the spectral radius ρ(λh2
kB

−1
k Ak) satisfies

(5.8) ρ(λh2
kB

−1
k Ak) < 1 for k ≥ 0.

Coarse-Grid Correction. Compute q ∈ Vk−1 by

rk−1 =Ik−1
k (g − Akzm1

),

q′ =MGW (k − 1, rk−1, 0, m1, m2),

q =MGW (k − 1, rk−1, q
′, m1, m2),

and take
zm1+1 = zm1

+ Ik
k−1q.

Post-Smoothing. Compute zl ∈ Vk for m1 + 2 ≤ l ≤ m1 +m2 + 1 recursively by

zl = zl−1 + (λh2
k)B

−1
k (g − Akzl−1).

The final output is
MGW (k, g, z0, m1, m2) = zm1+m2+1.

Remark 5.2. We can also apply Algorithm 5.1 to solve the k-th level discrete problem (2.5)
for the Dirichlet boundary value problem (1.7).

The multigrid algorithm can be modified to solve (1.2) (α = 0), which is a singular

Neumann problem. Let V̂k = {v ∈ Vk : (v, 1) = 0}. The k-th level P1 discrete problem for
(1.2) (α = 0) is as follows:

Find ξk ∈ V̂k such that

(5.9) Akξk = fk.

Remark 5.3. The unique solution ξk ∈ V̂k of (5.9) is determined by

(∇× ξk,∇× v) = (f ,∇× v) ∀ v ∈ V̂k.

Let P̂k be the orthogonal projection from Vk onto V̂k with respect to the inner product

(·, ·)k (cf. (5.6)), i.e., given any v ∈ Vk, P̂kv ∈ V̂k satisfies

(5.10) (w, P̂kv)k = (w, v)k ∀w ∈ V̂k.

Remark 5.4. One can compute P̂kv explicitly as

P̂kv = v − [(v, sk)k/(sk, sk)k]sk,

where sk ∈ Vk spans the orthogonal complement of V̂k with respect to (·, ·)k. More precisely,
let Nk be the set of all the nodes associated with Vk. We can take sk to be the finite element
function defined by

sk(p) =
1

3h2
kn(Tp)

∑

T∈Tp

|T | ∀ p ∈ Nk,

where Tp is the set of the triangles in Tk sharing p as a common vertx, n(Tp) is the number
of triangles in Tp, and |T | is the area of T .
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Remark 5.5. Let Îk : V̂k −→ Vk be the natural injection. Then the operator Âk = P̂k ◦B
−1
k ◦

Ak ◦ Îk, satisfies

(Âkw, v)k = (∇× w,∇× v) ∀ v, w ∈ V̂k.

We consider the W -cycle algorithm for the following equation:

(5.11) Akz = g,

where z ∈ V̂k, g ∈ V ′
k and 〈g, 1〉 = 0.

Algorithm 5.6. The output of the algorithm is denoted by MGW (k, g, z0, m1, m2), where

z0 ∈ V̂k is the initial guess and m1 (resp. m2) is the number of pre-smoothing (resp. post-
smoothing) steps.

For k = 0, MGW (k, g, z0, m1, m2) = Â−1
0 (P̂0B

−1
0 g).

For k ≥ 1, MGW (k, g, z0, m1, m2) is computed recursively as follows.

Pre-Smoothing. Compute zl ∈ V̂k for 1 ≤ l ≤ m1 recursively by

(5.12) zl = zl−1 + (λh2
k)P̂kB

−1
k (g − Akzl−1),

where λ is a (constant) damping factor such that λh2
k dominates the spectral radius of B−1

k Ak.
Coarse-Grid Correction. Compute

rk−1 =Ik−1
k (g − Akzm1

),

q′ =MGW (k − 1, rk−1, 0, m1, m2),

q =MGW (k − 1, rk−1, q
′, m1, m2),

and take

zm1+1 = zm1
+ Ik

k−1q.

Post-Smoothing. Compute zl ∈ V̂k for m1 + 2 ≤ l ≤ m1 +m2 + 1 recursively by

(5.13) zl = zl−1 + (λh2
k)P̂kB

−1
k (g − Akzl−1).

The final output is

MGW (k, g, z0, m1, m2) = zm1+m2+1.

Remark 5.7. By introducing the operators Îk and P̂k, we can perform all the computations

in Algorithm 5.6 in the space Vk instead of V̂k. Since there is a natrual basis for Vk, it is easy
to implement Algorithm 5.6 in practice [4]. In view of Remark 5.5, we can rewrite (5.12)
and (5.13) as

zl = zl−1 + (λh2
k)(P̂kB

−1
k g − Âkzl−1).

Hence Algorithm 5.6 is essentially the same as Algorithm 5.1.

Remark 5.8. We can also apply Algorithm 5.6 to solve the singular Neumann problem (1.8).
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6. Convergence of the W -Cycle Algorithm

We follow the ideas in [34, 6, 3, 5, 15] to analyze the W -cycle multigrid algorithm for the
discrete problem (5.7) in this section.

Let Ek : Vk −→ Vk be the k-th level error propagation operator for Algorithm 5.1. We
have the following well-known recursive relation [23, 16]:

(6.1) Ek = Rm2

k (Idk − Ik
k−1P

k−1
k + Ik

k−1E
2
k−1P

k−1
k )Rm1

k ,

where Idk is the identity operator on Vk. The operator Rk : Vk −→ Vk which measures the
effect of one smoothing step is defined by

(6.2) Rk = Idk − (λh2
k)B

−1
k Ak,

and the operator P k−1
k : Vk −→ Vk−1 is the transpose of Ik

k−1 with respect to the variational
forms, i.e.,

(6.3) a(P k−1
k w, v) = a(w, Ik

k−1v) ∀ v ∈ Vk−1, w ∈ Vk.

Let the operators Mk, Nk : Vk −→ V ′
k be defined by

〈Mkw, v〉 =(∇× w,∇× v) + |α|(w, v) ∀ v, w ∈ Vk,(6.4)

〈Nkw, v〉 =(|α| − α)(w, v) ∀ v, w ∈ Vk.(6.5)

It is clear that the operators have the following relation

(6.6) Ak = Mk −Nk ∀ k ≥ 0.

For α 6= 0, let the mesh-dependent norms |||v|||j,k for j = 0, 1, 2 and k ≥ 1 be defined by

(6.7) |||v|||j,k =
√
〈Bk(B

−1
k Mk)jv, v〉 ∀ v ∈ Vk, k ≥ 1.

In view of (6.4), we have

|||v|||20,k = 〈Bkv, v〉 ∀ v ∈ Vk,(6.8)

|||v|||21,k = 〈Mkv, v〉 ≈ ‖v‖2
H1(Ω) ∀ v ∈ Vk.(6.9)

Also the Cauchy-Schwarz inequality implies that

(6.10) |||v|||2,k = max
w∈Vk\{0}

〈Mkv, w〉

|||w|||0,k
∀ v ∈ Vk.

There is an important connection between the mesh-dependent norm ||| · |||0,k and the norm
‖ · ‖L2,−µ(Ω):

(6.11) |||v|||20,k = h2
k

∑

T∈Tk

∑

p∈NT

[v(p)]2 ≈ ‖v‖2
L2,−µ(Ω) ∀ v ∈ Vk,

where the positive constants in the equivalence depend only on the shape regularity of Th.
From (6.7) and (6.9), we immediately have

|||v|||t,k ≤ Chs−t
k |||v|||s,k ∀ v ∈ Vk, k ≥ 1, t ≥ s.(6.12)
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Lemma 6.1. For α < 0, we have

|||B−1
k Nkv|||0,k ≤C|||v|||0,k, ∀ k ≥ 1.(6.13)

Proof. It follows from (6.5) and (6.11) that

〈Nkw, v〉 ≤ C

∫

Ω

wv dx ≤ C|||w|||0,k|||v|||0,k ∀ v, w ∈ Vk, k ≥ 1.(6.14)

In view of (6.8) and (6.14), we have

|||B−1
k Nkv|||

2
0,k ≤〈BkB

−1
k Nkv, B

−1
k Nkv〉(6.15)

≤C|||v|||0,k|||B
−1
k Nkv|||0,k,

which implies (6.13). �

In view of (6.2) and (6.6), we can write

Rk =Idk − (λh2
k)B

−1
k (Mk −Nk)(6.16)

=R̃k + Ñk,

where

R̃k =Idk − (λh2
k)B

−1
k Mk(6.17)

Ñk =(λh2
k)B

−1
k Nk.(6.18)

The following smoothing properties of R̃k are standard [4, 23, 16]:

|||R̃kv|||j,k ≤ C|||v|||j,k ∀ v ∈ Vk, k ≥ 1, j = 0, 1.(6.19)

|||R̃`
kv|||j+1,k ≤ Ch−1

k `−1/2|||v|||j,k ∀ v ∈ Vk, `, k ≥ 1, j = 0, 1.(6.20)

Combining (6.13) and (6.18), we immediately have

(6.21) |||Ñkv|||0,k ≤ Ch2
k|||v|||0,k ∀ v ∈ Vk, k ≥ 1.

We now follow the ideas in [15] to prove a smoothing property for Algorithm 5.1.

Lemma 6.2. For α 6= 0, there exist positive constants γ, C0, C1, C2 and C3 independent of

k such that

|||Rm
k v|||0,k ≤ C0(1 + C1γ)

m|||v|||0,k ∀ v ∈ Vk, k ≥ 1,(6.22)

|||Rm
k v|||2,k ≤ C2h

−1
k m−1/2(1 + C3γ)

m|||v|||1,k ∀ v ∈ Vk, m, k ≥ 1,(6.23)

provided that h2
1 ≤ γ.

Proof. In the case where α > 0, (6.22) and (6.23) are direct consequences of (6.19) and

(6.20), since Rk = R̃k.
In the case where α < 0, it is easy to show by mathematical induction that

Rm
k =(R̃k + Ñk)

m(6.24)
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=R̃m
k +

m∑

`=1

R̃`−1
k Ñk(R̃k + Ñk)

m−` ∀ m ≥ 1.

Therefore, it follows from (6.19), (6.21) and (6.22) that

|||Rm
k v|||0,k ≤C|||R̃m

k v|||0,k +

m∑

`=1

|||R̃`−1
k Ñk(R̃k + Ñk)

m−`v|||0,k

≤C|||v|||0,k +

m∑

`=1

h2
k|||(R̃k + Ñk)

m−`v|||0,k

≤C|||v|||0,k + Ch2
k

(
(1 + Ch2

k)
m−1 + (1 + Ch2

k)
m−2(6.25)

+ (1 + Ch2
k)

m−3 + · · · + 1
)
|||v|||0,k

≤C0

(
1 +mh2

k(1 + Ch2
k)

m−1
)
|||v|||0,k

≤C0(1 + Ch2
k)

2m|||v|||0,k

≤C0(1 + 2Ch2
k + C2h4

k)
m|||v|||0,k

≤C0(1 + C1h
2
k)

m|||v|||0,k,

which implies (6.22).
The estimate (6.23) can be found in [3] for the analysis of the W -cycle multigrid algorithm

with a standard Richardson iteration as smoother. Note that by using weighted Sobolev
spaces and graded meshes, we can treat the convergence of the multigrid algorithm with full
elliptic regularity (i.e., the index of elliptic regularity equals 1). �

The approximation property for the convergence analysis of the multigrid algorithms is
provided by the next lemma. It can be proved using (3.10), the fact that

a((Idk − Ik
k−1P

k−1
k )v, w) = 0 ∀ v ∈ Vk, w ∈ Vk−1,

and a duality argument [12, Lemma 5.3]. The proof is similar to that of [34, Theorem 2.5].

Lemma 6.3. For α 6= 0, there exists a positive constant C independent of k such that

(6.26) |||(Idk − Ik
k−1P

k−1
k )v|||0,k ≤ Ch2

k|||v|||2,k ∀ v ∈ Vk, k ≥ 1.

In the case where α 6= 0, we have the following theorem on the two-grid algorithm with
m pre-smoothing and post-smoothing steps.

Theorem 6.4. There exists a positive number γ and a positive constant C∗ independent of

k such that

|||Rm
k (Idk − Ik

k−1P
k−1
k )Rm

k v|||0,k ≤ C∗m
−1/2|||v|||0,k ∀ v ∈ Vk, k ≥ 1,(6.27)

provided that h2
1 ≤ γ and m is sufficiently large.
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Proof. The estimate (6.27) follows from (6.12), (6.22), (6.23) and (6.26):

|||Rm
k (Idk − Ik

k−1P
k−1
k )Rm

k v|||0,k ≤ C0(1 + C1γ)
m|||(Idk − Ik

k−1P
k−1
k )Rm

k v|||0,k

≤ C4(1 + C1γ)
mh2

k|||R
m
k v|||2,k

≤ C5m
−1/2[(1 + C1γ)(1 + C3γ)]

m|||v|||0,k.

Let C∗ = 2C5, we can choose m and then γ such that C5m
−1/2[(1 + C1γ)(1 + C3γ)]

m ≤
C∗m

−1/2, which implies (6.27). �

We have the operator bounds in the following lemma.

Lemma 6.5. There exists a positive constant C independent of k such that for α 6= 0,

|||Ik
k−1v|||0,k ≤ C|||v|||0,k−1 ∀ v ∈ Vk−1,(6.28)

|||P k−1
k v|||0,k−1 ≤ C|||v|||0,k ∀ v ∈ Vk,(6.29)

and for α > 0,

|||Ik
k−1v|||1,k ≤ C|||v|||1,k−1 ∀ v ∈ Vk−1,(6.30)

|||P k−1
k v|||1,k−1 ≤ C|||v|||1,k ∀ v ∈ Vk.(6.31)

Proof. The estimate (6.28) follows immediately from (6.11) and the fact that Ik
k−1 : Vk−1 →

Vk is natural injection.
By combining (5.2), (6.3), (6.9), (6.11) and duality, we have (6.29), (6.30) and (6.31). �

Finally, we obtain the following convergence theorem for the W -cycle algorithm for the P1

finite element method. The proof is based on Theorem 6.4, Lemma 6.5 and a perturbation
argument [14]. An estimate similar to (6.33) below can be found in [3, 34]. Similar results are
also obtained in [6, 5] for W -cycle and V -cycle multigrid methods applied to nonsymmetric
and indefinite problems.

Theorem 6.6. For any 0 < δ < 1, there exists a positive number γ independent of k, such

that for α 6= 0,

|||z −MGW (k, g, z0, m,m)|||0,k ≤ δ|||z − z0|||0,k,(6.32)

provided that h2
1 ≤ γ and m is large enough, and for α > 0,

|||z −MGW (k, g, z0, m,m)|||1,k ≤ δ|||z − z0|||1,k,(6.33)

provided that m is large enough.

Remark 6.7. For α = 0, the equation (6.9) becomes

(6.34) |||v|||21,k = 〈Akv, v〉 = |v|2H1(Ω) ∀ v ∈ V̂k.

Therefore,

|ξ − ξk|H1(Ω) = inf
v∈V̂k

|ξ − v|H1(Ω)
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≤
∣∣ξ −

(
Πkξ −

1

|Ω|

∫

Ω

Πkξ
)∣∣

H1(Ω)
(6.35)

=|ξ − Πkξ|H1(Ω).

Hence the convergence results obtained in Theorem 6.6 are valid if we replace Vk by V̂k.

7. Full Multigrid Methods

In the application of k-th level iteration to (5.4), we use the following full multigrid
algorithm, where we apply multigrid algorithm r times at each level.

Algorithm 7.1. Full Multigrid Algorithm for (5.4).

For k = 0, ξ̂0 = A−1
0 f0.

For k ≥ 1, the approximation solution ξ̂k is obtained recursively from

ξk
0 = Ik

k−1ξ̂k−1,

ξk
` =MGW (k, fk, ξ

k
`−1, m,m), 1 ≤ ` ≤ r,

ξ̂k = ξk
r .

The following theorem shows that the convergence of the full multigrid method is a simple
consequence of the convergence of the k-th level iteration.

Theorem 7.2. If r is large enough, then there exists a positive constant C such that

(7.1) ‖ξ − ξ̂k‖L2(Ω) ≤ Chk‖f‖L2(Ω).

Proof. Define êk = ξk − ξ̂k. In particular, ê0 = 0. By combining (4.2), (5.1), (6.11) and
(6.32), we have

‖êk‖L2,−µ(Ω) ≈|||êk|||0,k

≤δr|||ξk − ξ̂k−1|||0,k

≤Cδr[‖ξk − ξ‖L2,−µ(Ω) + ‖ξ − ξk−1‖L2,−µ(Ω) + |||ξk−1 − ξ̂k−1|||0,k](7.2)

≤Cδr[hk‖f‖L2(Ω) + ‖êk−1‖L2,−µ(Ω)].

By iterating (7.2) we have

‖êk‖L2,−µ(Ω) ≤Chkδ
r‖f‖L2(Ω) + C2hk−1δ

2r‖f‖L2(Ω) + . . .+ Ck+1h0δ
(k+1)r‖f‖L2(Ω)

≤Chk‖f‖L2(Ω)
δr

1 − 2δr
,

if 2δ(r+1) < 1. For such choice of r,

(7.3) ‖êk‖L2,−µ(Ω) ≤ Chk‖f‖L2(Ω).

Hence the estimate (7.1) follows directly from (4.2), (7.3) and triangle inequality. �
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In the case where m ≥ 1, we can apply the full multigrid algorithm to obtain an approx-
imate solution for the Dirichlet boundary value problem (1.7). It can be shown that the
convergence analysis of multigrid algorithm developed in Section 6 is still valid in this case.
Hence we have the following lemma that compares the solution ϕj of (1.7) and ϕ̂j,k. The
proof, which uses (6.33), is similar to the proof of Theorem 7.2.

Lemma 7.3. If r is large enough, then there exists a positive constant C such that for

1 ≤ j ≤ m,

(7.4) |ϕ− ϕ̂j,k|H1(Ω) ≤ Chk.

When Ω is not simply connected, for each level k, we compute ĉ1,k, . . . , ĉm,k by solving

(7.5)
m∑

j=1

(∇ϕ̂j,k,∇ϕ̂i,k)ĉj,k =
1

α
(f ,∇ϕ̂i,k), for 1 ≤ i ≤ m.

We compare the solution cj of (1.9) and ĉj,k in the next lemma, whose proof is similar to
the proof of Lemma 4.6 in [13].

Lemma 7.4. If r is large enough and h is sufficiently small, then there exists a positive

constant C such that

(7.6) |cj − ĉj,k| ≤ Chk‖f‖L2(Ω) for 1 ≤ j ≤ m.

In the rest of this section we show multigrid methods developed in Section 5 can be applied
to yield approximate solutions for (1.2) (α = 0) and (1.8), which are singular Neumann
problems. The analysis is similar to that in [4, 9].

We apply the following full multigrid algorithm to solve (5.9).

Algorithm 7.5. Full Multigrid Algorithm for (5.9).

For k = 0, ξ̂k ∈ V̂k is determined by A0ξ̂0 = f0, where α = 0.

For k ≥ 1, the approximation solution ξ̂k is obtained recursively from

ξk
0 = Ik

k−1ξ̂k−1,

ξk
` =MGW (k, fk, ξ

k
`−1, m,m), 1 ≤ ` ≤ r,

ξ̂k = ξk
r .

The solution ξ̂k is in V̂k since the zero mean value is preserved by the intergrid transfer
operators, and the estimate (7.1) still holds in this case, i.e.,

‖ξ − ξ̂k‖L2(Ω) ≤ Chk‖f‖L2(Ω).

In practice, we consider the following k-th level P1 finite element method for (1.8):

Find φk ∈ V̂k such that

Akφk = gk,(7.7)



20 JINTAO CUI

where α = 0 in the definition of Ak, and gk ∈ V ′
k is defined by

〈gk, v〉 = (ξ̂k, v) ∀ v ∈ Vk.

Here ξ̂k is the approximate solution of (5.4) (α 6= 0) or (5.9) (α = 0) obtained by the
Algorithm 7.5. Moreover, we have the following lemma, whose proof is the analog of the
proof of Lemma 4.4.

Lemma 7.6. Let φ be the exact solution of (1.8) and φk be the solution of the discrete

problem (7.7). Then

(7.8) |φ− φk|H1(Ω) ≤ Chk‖f‖L2(Ω).

We now apply the following full multigrid algorithm to solve (7.7):

Algorithm 7.7. Full Multigrid Algorithm for (7.7).

For k = 0, φ̂0 ∈ V̂0 is determined by A0φ̂0 = g0, where α = 0.

For k ≥ 1, the approximation solution φ̂k is obtained recursively from

φk
0 = Ik

k−1φ̂k−1,

φk
` =MGW (k, gk, φ

k
`−1, m,m), 1 ≤ ` ≤ r,

φ̂k =φk
r .

We compare the solution φ of (1.8) and φ̂k in the following theorem. The proof is similar
to the proof of Theorem 7.2.

Theorem 7.8. If r is large enough, then there exists a positive constant C such that

(7.9) |φ− φ̂k|H1(Ω) ≤ Chk‖f‖L2(Ω).

Finally we define the approximation ûk of u for each level k by

(7.10) ûk = ∇× φ̂k +
m∑

j=1

ĉj,k∇ϕ̂j,k.

We can now compare ûk and u in the following theorem by combining Theorem 7.2,
Lemma 7.3, Lemma 7.4 and Theorem 7.8. The proof is similar to the proof of Theorem
4.9 in [13].

Theorem 7.9. If r is large enough and h1 is sufficiently small, then there exists a positive

constant C such that

(7.11) ‖u − ûk‖L2(Ω) ≤ Chk‖f‖L2(Ω).
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8. Numerical Experiments

In this section we first report the contraction numbers of the W -cycle algorithms for
the P1 finite element method on the L-shaped domain (−1, 1)2 \ [0, 1]2. The triangulations
T0, T1, . . . , are generated by the refinement procedure described in Section 5, where the
grading parameter at the reentrant corner (0, 0) is taken to be 2/3.

We used λ = 1/2 and tabulated the contraction numbers with respect to ||| · |||0,k (resp.
||| · |||1,k) in Table 8.1 (resp. Table 8.2). In both cases the W -cycle algorithms is a contraction
for m = 1. The numerical results confirm the theoretical results given in Theorem 6.6.

Table 8.1. W -cycle contraction numbers on the L-shaped domain with re-
spect to ||| · |||0,k

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
α = −1

m = 1 0.70 0.70 0.73 0.77 0.77 0.77 0.78 0.79

m = 2 0.62 0.56 0.56 0.61 0.66 0.65 0.65 0.65

m = 3 0.48 0.45 0.46 0.50 0.50 0.53 0.53 0.54

m = 4 0.38 0.33 0.35 0.39 0.42 0.44 0.44 0.44
α = 0

m = 1 0.72 0.71 0.70 0.71 0.72 0.70 0.71 0.70

m = 2 0.63 0.61 0.61 0.61 0.62 0.62 0.63 0.62

m = 3 0.53 0.52 0.51 0.51 0.52 0.53 0.53 0.54

m = 4 0.46 0.45 0.42 0.40 0.40 0.42 0.43 0.42
α = 1

m = 1 0.69 0.69 0.72 0.77 0.77 0.77 0.78 0.78

m = 2 0.60 0.55 0.56 0.61 0.63 0.64 0.65 0.65

m = 3 0.48 0.42 0.46 0.49 0.50 0.53 0.53 0.54

m = 4 0.38 0.33 0.35 0.39 0.42 0.43 0.44 0.44

Remark 8.1. Multigrid methods were studied for time-domain Maxwell’s equations in [24, 1],
where the H(curl; Ω)-conforming Nédélec’s edge elements were used. Uniform convergence
of the V -cycle multigrid algorithm was obtained. Therein, the variational problem is based
H0(curl; Ω); hence the problem is non-elliptic. Therefore separate treatments are required
for the kernel of the curl operator and its complement. For comparison, multigrid methods
for Maxwell’s equations solved by nonconforming finite element methods have been studied
in [17]. Therein, the variational problem is based H0(curl; Ω) ∩H(div; Ω), thus the problem
becomes elliptic. The convergence results of the W -cycle multigrid algorithm on convex
domains using uniform meshes were presented.

The above two approaches for solving Maxwell’s equations are based on variation forms
involving multi-dimensional vectors. In the present paper we solve Maxwell’s equations by
solving standard second order scalar elliptic boundary value problems. Hence the standard
results in the convergence analysis for multigrid methods can be applied. Due to the above
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Table 8.2. W -cycle contraction numbers on the L-shaped domain with re-
spect to ||| · |||1,k

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
α = 0

m = 1 0.71 0.72 0.73 0.78 0.78 0.78 0.79 0.79

m = 2 0.53 0.56 0.58 0.61 0.63 0.64 0.65 0.65

m = 3 0.40 0.43 0.47 0.48 0.51 0.53 0.53 0.54

m = 4 0.32 0.33 0.37 0.40 0.42 0.43 0.44 0.44
α = 1

m = 1 0.68 0.69 0.72 0.77 0.77 0.77 0.78 0.78

m = 2 0.48 0.55 0.56 0.61 0.63 0.64 0.65 0.65

m = 3 0.34 0.42 0.46 0.49 0.50 0.53 0.53 0.54

m = 4 0.25 0.33 0.35 0.39 0.42 0.43 0.44 0.44

reasons, it is more reasonable to compare the edge element multigrid methods [24, 1] with
nonconforming multigrid methods [17]. The convergence analysis and numerical examination
for V -cycle multigrid algorithm, and for general polygonal domains using graded meshes
constitute future work [18].

In the rest of the section we report some numerical results for the P1 finite element method
introduced in Section 2. The numerical solutions presented in Table 8.3–Table 8.4 are ob-
tained by full multigrid algorithms, where r is taken to be 2, and number of smoothing steps
m is taken to be 5.

The first experiment is performed on the L-shaped domain (−1, 1)2 \ [0, 1]2 with graded
meshes. The exact solution is chosen to be

(8.1) u = ∇×
(
r2/3 cos

(2

3
θ −

π

3

)
φ(x)

)
,

where (r, θ) are the polar coordinates at the origin and φ(x) = (1 − x2
1)

2(1 − x2
2)

2. The
grading parameter is taken to be 2/3 at the reentrant corner (0, 0). The results are tabulated
in Table 8.3 for α = −1, 0 and 1. Note that the order of convergence for ûk is 1 as predicted
by Theorem 7.9, which has improved as compared to the results on uniform meshes in [13].

The order of convergence for ξ̂k is higher than the order predicted by (7.1). This is due to
the fact that ξ = ∇× u behaves like r2/3, which is more regular than u.

The goal of the second set of experiments is to exam the convergence behavior of the
numerical methods on a doubly connected domain

Ω = (0, 4)2 \ [1, 3]2.

The solution u of (1.1) can be written as

(8.2) u = ∇× φ+ c∇ϕ,
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Table 8.3. Results for (1.1) on the L-shaped domain and exact solution given
by (8.1)

hk
‖∇×u−ξ̂k‖L2

‖f‖L2

Order hk
‖u−ûk‖L2

‖f‖L2

Order

α = −1
1/16 4.95E−03 1.86 1/16 7.34E−03 1.55
1/32 1.37E−03 1.88 1/32 2.97E−03 1.30
1/64 3.63E−04 1.89 1/64 1.38E−03 1.11
1/128 9.75E−05 1.90 1/128 6.77E−04 1.02
1/256 2.60E−05 1.90 1/256 3.40E−04 0.99

α = 0
1/16 2.03E−03 1.84 1/16 5.21E−03 1.13
1/32 5.55E−04 1.87 1/32 2.55E−03 1.02
1/64 1.50E−04 1.88 1/64 1.28E−03 0.99
1/128 4.04E−05 1.89 1/128 6.49E−04 0.98
1/256 1.08E−05 1.90 1/256 3.29E−04 0.98

α = 1
1/16 1.43E−03 1.85 1/16 4.88E−03 1.03
1/32 3.87E−04 1.89 1/32 2.45E−03 0.99
1/64 1.03E−04 1.91 1/64 1.24E−03 0.98
1/128 2.74E−05 1.91 1/128 6.29E−04 0.98
1/256 7.25E−06 1.92 1/256 3.19E−04 0.98

where c is a constant number and the harmonic function ϕ satisfies the following boundary
conditions:

ϕ
∣∣
Γ0

= 0 and ϕ
∣∣
Γ1

= 1.

Here Γ0 (resp. Γ1) is the boundary of (0, 4)2 (resp. (1, 3)2).

We take the right-hand side function to be

f =





[
1 + x1

0

]
if x1 ≤ x2 and 3 ≤ x1 ≤ 4,

[
0

1 + x2

]
otherwise.

(8.3)

The results are presented in Table 8.4 for α = −1 and 1. The order of convergence for ûk

is 1 as predicted by Theorem 7.9, whereas its order of convergence is only 2/3 on uniform

meshes as shown in [13]. The orders of convergence for ξ̂k and ĉk are higher than the orders
predicted by (7.1) and (7.6). This is probably due to the fact that the mesh size h is not
small enough and the asymptotic behavior has not been reached.



24 JINTAO CUI

Table 8.4. Results for (1.1) on the doubly connected domain and right-hand
side given by (8.3)

hk
‖∇×u−ξ̂k‖L2

‖f‖L2

Order ĉk Order
‖u−ûk‖L2

‖f‖L2

Order

α = −1
1/4 7.18E−01 0.91 0.764157 0.91 8.36E−01 0.86
1/8 1.95E−01 1.88 0.765826 1.58 3.01E−01 1.48
1/16 4.01E−02 2.28 0.766367 1.62 1.24E−01 1.28
1/32 1.03E−02 1.97 0.766528 1.75 6.07E−02 1.03
1/64 2.79E−03 1.88 0.766570 1.79 3.09E−02 0.98

α = 1
1/4 7.33E−03 1.69 -0.764157 0.91 9.03E−02 0.83
1/8 2.22E−03 1.72 -0.765826 1.58 4.97E−02 0.86
1/16 6.60E−04 1.75 -0.766367 1.62 2.71E−02 0.87
1/32 1.99E−04 1.70 -0.766528 1.75 1.48E−02 0.87
1/64 6.63E−05 1.58 -0.766570 1.79 7.98E−03 0.89
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