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Abstract
An asymptotic model coupling three-dimensional and two-dimensional equations is consid-
ered to demonstrate the flow in fractured media aquifer system in this paper. The flow is
governed by Darcy’s law both in fractures and surrounding porous media. A new anisotropic
and nonconforming finite element is constructed to solve the three-dimensional Darcy equa-
tion. The existence and uniqueness of the coupled solutions are deduced. Optimal error
estimates are obtained in L2 and H1 norms. Numerical experiments show the accuracy and
efficiency of the presented method. With the same number of nodal points and the same
amount of computational costs, the results obtained by using the new element are much bet-
ter than those by both Q1 conforming element and Wilson nonconforming element on the
same meshes.
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1 Introduction

Fracture belongs to the secondary void structure of Karst aquifer system, and occupies the
major part of the total gap. It is not only the storage space of drinkable groundwater, but
also the occurrence site of environmental pollution. Therefore, it is important to gain a
better understanding of groundwater flow in Karst aquifer for assessing groundwater risk and
controlling groundwater pollution. Flow in fractures are closely connected with that in the
surrounding medium. Thus a coupled model is usually used to characterize the groundwater
flow process in fractured medium, with the flux exchange occurring on the interface between
the fractures and surrounding medium as the coupling term, e.g. see [1–4].

In many cases the thickness of fracture is much smaller than the characteristic diameter of
the surroundingmedium. Sowe could reduce the dimension of the flow equation for fractures
and obtain an asymptotic coupled model by two approaches. Onemethod is to employ a dirac
function restricted to the fracture in the coupled term, e.g. see [5–13]. The other is to apply the
averaging technique across the fracture in order to obtain the coupled term, e.g. see [14–20].
The fracture can act as a fast pathway or correspond to a geological barrier. Here we are
interested in the “fast path” fracture and suppose that the pressure is continuous across the
fracture, which is similar to [15,20–22]. In this paper, we consider a coupled model with
different dimensions by the latter approach.

Let Ωp be a convex domain in R
3 with the boundary Γ = ∂Ωp . The fracture Ω f is

a subdomain of Ωp and divides Ωp into two parts, which are denoted by Ω1 and Ω2,
respectively. Suppose the flow in Ω1,Ω2 and Ω f is governed by a conservation equation
together with Darcy’s law as follows.

⎧
⎨

⎩

divui = gi in Ωi , i = 1, 2, f ,
ui = −Ki∇ pi in Ωi , i = 1, 2, f ,
pi = Pi on Γi , i = 1, 2, f ,

(1.1)

where u is the Darcy velocity, p is the pressure, K is the hydraulic conductivity(or per-
meability tensor), g is the source or sink term, P is the given pressure on the boundary.
Let pi ,ui ,Ki , gi , Pi be the restriction of p,u,K, g, P , respectively, to Ωi , Γi = ∂Ωi ∩ Γ

(i = 1, 2, f ). Here, we suppose Ki is diagonal and positive definite.
By using averaging across the fracture (see [14,15]), the fracture domain Ω f is degraded

to a hyperplane Ωγ embedded in Ωp , see Fig. 1. Then we obtain the different dimension as
3D coupled 2D model problem.
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

divui = gi in Ωi , i = 1, 2,
ui = −Ki∇ pi in Ωi , i = 1, 2,
divτuγ = gγ + (u1 · n1|Ωγ + u2 · n2|Ωγ ) in Ωγ ,

uγ = −Kγ τd∇τ pγ in Ωγ ,

−ξui · ni + αγ pi = αγ pγ − (1 − ξ)u(i+1 mod 2) · n(i+1 mod 2) in Ωγ ,

pi = Pi on Γi , i = 1, 2, γ,

(1.2)
where n and τ are the tangential and normal direction to Ωγ . The unit vectors n1 = −n2
are normal to Ωγ . We use ∇τ and divτ to denote the tangential gradient and divergence.
The coefficients Kγ τ and Kγ n represent the equivalent permeability for the flow along and
normal to the fracture, respectively. Constant d is the thickness of the fracture, αγ = 2Kγ n/d
and the coefficient ξ ∈ (1/2, 1]. Here, the permeability in the fracture can be larger than that
in the surrounding medium. A lager permeability fracture corresponds to a fast pathway for
the fracture.
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Fig. 1 Left: the whole domain is divided by the fracture Ω f with thickness d into Ω1 and Ω2; right: Ω f is
treated as a fracture-interface Ωγ

Setting α = 2αγ

2ξ − 1
, we can rewrite model (1.2) as follows,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−div(Ki∇ pi ) = gi in Ωi , i = 1, 2,

−divτ (Kγ τd∇τ pγ ) = α

(
p1 |Ωγ +p2 |Ωγ

2
− pγ

)

+ gγ in Ωγ ,

K1∇ p1 · n1 |Ωγ +K2∇ p2 · n2 |Ωγ = α

(

pγ − p1 |Ωγ +p2 |Ωγ

2

)

in Ωγ ,

pi = Pi on Γi , i = 1, 2, γ .

(1.3)

In recent years, the asymptotic model (1.2) with different dimensions has become a hot
topic in studying groundwater flow process in fracturedmedia aquifer system. Previous study
mainly focused on the case where the fracture is treated as one-dimension and surrounding
medium as two-dimension. Robert et al. [14,15] used RT0 mixed finite element method to
solve the asymptotic Darcy–Darcy model and proved the existence and uniqueness of solu-
tions. Non-overlapping domain decomposition method is applied in the numerical examples.
Angot et al. [19] applied the finite volume method and proved the convergence of the numer-
ical solutions of the asymptotic model.

In this paper,we consider the asymptoticmodel (1.3)with two-dimensionalDarcy equation
in fractures and three-dimensional Darcy equation in the surroundingmedia. Anisotropic and
multi-scale coupling properties of the asymptotic model (1.3) perfectly match the physical
characteristics of the groundwater flow problem, but bring some numerical challenges to
solve it. Near the fracture hyperplane Ωγ , the derivative of the analytic solution along the
direction perpendicular to the fracture is of a low regularity. That means that the solution of
Darcy model in the porous media domain Ωp varies significantly along the perpendicular
direction to the fracture and is smooth along the direction parallel to the fracture. In order to
capture significant changes nearΩγ , one possibility is to use anisotropicmesheswhich have a
smallmesh size near the fracture and a largermesh size away from the fracture. Consequently,
the subdivision of the anisotropic meshes depends on the position of the fracture which is
unknown inmany cases. To circumvent this difficulty, in thisworkwe construct a new element
with its own anisotropic property to solve the Darcy equation in porous media Ωp without
dependence on the meshes.

The new anisotropic element is motivated by Q1 conforming element and Wilson non-
conforming element. It is well known that the Q1 element is a bilinear conforming element
defined on cuboid mesh and the functions in Q1 element space are continuous across every
boundary surface. The Wilson element is a nonconforming element with eight conforming
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parts and three nonconforming parts, and the functions in Wilson nonconforming element
space are discontinuous along each direction of coordinate axis (see [23–26] for details). The
idea of our new element is to combine the properties and merits of Q1 element and Wilson
element. More precisely, the new element is constructed to be continuous (conforming) along
the direction parallel to the fracture just like Q1 element and discontinuous (nonconforming)
along the direction perpendicular to the fracture just like Wilson element. Therefore, it can
be applied appropriately to solve the partial differential equations with smooth solutions in
some directions and singular solutions in other directions. The element is not conservative
but it can extend to some other cases such as inclined fracture and intersecting fractures. Spe-
cially, based on Quasi-Wilson element and Q1 element, the method is easily to cope with the
inclined cases. The idea of construction new element can be applied to vertical intersecting
fracture by using only 10 degrees of freedom on each unit. In the numerical examples, it is
seen that the performance of the new nonconforming element are much better than the Q1

conforming element and Wilson nonconforming element on the same mesh.
The outline of the paper is as follows. The numerical scheme combing the new noncon-

forming element and the conforming finite elementmethod are presented in Sect. 2. Existence
and uniqueness of approximation solution are also deduced. In Sect. 3, we give the error esti-
mates for the approximation scheme in L2 norm and H1 norm. Numerical examples are
presented in Sect. 4 to show the efficiency and accuracy of the new nonconforming finite
element method.

2 A Coupled Numerical Method

The weak form for the model (1.3) is to find p = (p1, p2, pγ ) ∈ H1
0 (Ω1) × H1

0 (Ω2) ×
H1
0 (Ωγ ), such that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(K1∇ p1,∇q1) + (K2∇ p2,∇q2) − α

(

pγ − p1 |Ωγ +p2 |Ωγ

2
,
q1 |Ωγ +q2 |Ωγ

2

)

= (g1, q1) + (g2, q2) ∀ q1 ∈ H1
0 (Ω1), q2 ∈ H1

0 (Ω2),

(Kγ τd∇τ pγ ,∇τqγ ) + α

(

pγ − p1 |Ωγ +p2 |Ωγ

2
, qγ

)

= (gγ , qγ ) ∀ qγ ∈ H1
0 (Ωγ ).

(2.1)

Theorem 2.1 Suppose K1 = k1I and K2 = k2I, then there exists a unique solution of (2.1).

Proof In the case of homogeneous isotropic matrix, one can easily see by separation of
variable that p1 ∈ H2+ε(Ω1) and p2 ∈ H2+ε(Ω2) for any ε ∈ (0, 1/2). The existence and
uniqueness of solution to (2.1) are direct consequences of Lax–Milgram Theorem since the
bilinear form a(·, ·) satisfies the continuity and coercivity condition on H1

0 (Ω1)×H1
0 (Ω2)×

H1
0 (Ωγ ), where

a(p,q) =
∫

Ω1

K1∇ p1 · ∇q1dxdydz +
∫

Ω2

K2∇ p2 · ∇q2dxdydz

+
∫

Ωγ

Kγ τd∇τ pγ · ∇τqγ dxdy

+α

∫

Ωγ

(

pγ − p1 |Ωγ +p2 |Ωγ

2

)(

qγ − q1 |Ωγ +q2 |Ωγ

2

)

dxdy, (2.2)

(g,q) =
∫

Ω1

g1q1dxdydz +
∫

Ω2

g2q2dxdydz +
∫

Ωγ

gγ qγ dxdy. (2.3)
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This complete the proof. ��
Let Th be a regular triangulation ofΩp with a family of parallelepipeds Kl (l = 1, . . . , N ).

Denote hK = diam(K ) and h = maxK∈Th hK . Set Tih = Th |Ωi with i = 1, 2, γ . For
simplicity, we assume the face Ωγ is perpendicular to z-axis. The following new element
can be extended to the cases where Ωγ is perpendicular to x-axis or y-axis.

The reference element is defined as K̂ = [−1, 1]3 with eight vertices

v̂1 = (−1,−1,−1), v̂2 = (−1, 1,−1), v̂3 = (1,−1,−1),
v̂4 = (1, 1,−1), v̂5 = (−1,−1, 1), v̂6 = (−1, 1, 1),
v̂7 = (1,−1, 1), v̂8 = (1, 1, 1).

and

P̂ = Q1(K̂ )
⊕

span

{
(1 − x̂2)(1 − ŷ2)

32

}

,

with
∑̂

=
{

q̂(v̂ j ), j = 1, . . . , 8;
∫

K̂

∂4q̂

∂ x̂2 ŷ2
dx̂d ŷd ẑ

}

.

Then, the basis functions of new element on the reference K̂ are from P̂ on each unit, and
the degrees of freedom are from ̂

∑
accordingly.

Let FK be the affine mapping from K̂ to K and JK be the Jacobi matrix of FK . Based on
the subdivision Th , the nonconforming finite element space Wh,i is defined by

Wh,i =
{
wh ∈ L2(Ωi ) : wh |K = ŵh(x̂, ŷ, ẑ) ◦ F−1

K , ∀ŵh ∈ P̂ and K ∈ Tih(i = 1, 2);
wh = 0 at the vertices belonging to ∂Ωi } .

Let Wh,γ ⊂ H1
0 (Ωγ ) be the continuous piecewise linear polynomial space with respect to

Tγ h . A coupled scheme based on finite element approximation scheme for (2.1) is to find
ph = (p1h, p2h, pγ h) ∈ Wh,1 × Wh,2 × Wh,γ satisfying that

ah(ph,qh) = (g,qh), ∀ qh = (q1h, q2h, qγ h) ∈ Wh,1 × Wh,2 × Wh,γ . (2.4)

where

ah(ph,qh)

=
∑

K∈T1h

∫

K
K1∇ p1h · ∇q1hdxdydz +

∑

K∈T2h

∫

K
K2∇ p2h · ∇q2hdxdydz

+
∑

E∈Tγ h

∫

E
Kγ τd∇τ pγ h · ∇τqγ hdxdy

+α
∑

E∈Tγ h

∫

E

(

pγ h − p1h |Ωγ +p2h |Ωγ

2

)(

qγ h − q1h |Ωγ +q2h |Ωγ

2

)

dxdy.

(2.5)

For any ph = (p1h, p2h, pγ h) ∈ Wh,1 × Wh,2 × Wh,γ , we introduce the norm

‖ph‖1,h =
⎛

⎝
∑

K∈T1h

|p1h |21,K
⎞

⎠

1/2

+
⎛

⎝
∑

K∈T2h

|p2h |21,K
⎞

⎠

1/2

+ ‖pγ h‖1,Ωγ . (2.6)
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Lemma 2.1 Suppose q̂ ∈ P̂ vanishes at the eight vertices v̂ j ( j = 1, . . . , 8) and the integral
value defined as in ̂

∑
, then q̂ ≡ 0.

From the above lemma, we can define the new element (K̂ , P̂, ̂
∑

) over K̂ with nine
degrees of freedom such that

(1) K̂ is the reference cube,
(2) P̂ is the shape function space,
(3) ̂

∑
is the set of degrees of freedom.

Lemma 2.2 The functions in Wh,i (i = 1, 2) are continuous along both x-direction and
y-direction, but discontinuous along the z-direction.

Proof By Lemma 2.2, q̂ is uniquely determined by

q̂(x̂, ŷ, ẑ) =
8∑

j=1

q̂(v̂ j )N̂ j (x̂, ŷ, ẑ) + N̂9(x̂, ŷ, ẑ)
∫

K̂

∂4q̂

∂ x̂2 ŷ2
dx̂d ŷd ẑ,

where N̂ j (x̂, ŷ, ẑ) ∈ Q1(K̂ ) (for j = 1, . . . , 8) and N̂9 = (1 − x̂2)(1 − ŷ2)

32
.

For any qh ∈ Wh,p , we denote

qh |K = q̂h |K̂ ◦ F−1
K

=
⎛

⎝
8∑

j=1

q̂h(v̂ j )N̂ j (x̂, ŷ, ẑ)

⎞

⎠ ◦ F−1
K +

(

N̂9(x̂, ŷ, ẑ)
∫

K̂

∂4q̂h
∂ x̂2 ŷ2

dx̂d ŷd ẑ

)

◦ F−1
K

:= qh + q̃h . (2.7)

Same as the functions in Q1 finite element, qh is continuous across each boundary face of
the brick element and is called the conforming part of the new nonconforming finite element.
The other part q̃h is the nonconforming one of the new nonconforming finite element. It
is easy to check q̃h is continuous along the x-direction and y-direction. However, this part
is discontinuous along the z-direction across the brick element boundary face. Therefore,
any element qh ∈ Wh,i (i = 1, 2) are continuous along the x-direction and y-direction but
discontinuous along the z-direction. ��
Lemma 2.3 For any qh ∈ Wh,i and K ∈ Tih(i = 1, 2), there exists a positive constant C
such that

|q̃h |1,K ≤ C |qh |1,K , (2.8)

|qh |1,K ≤ C |qh |1,K , (2.9)

‖q̃h‖0,∂K ≤ Ch1/2K |q̃h |1,K , (2.10)

where q̃h and qh are the nonconforming part and conforming part of qh, respectively.

Proof Using the parity of integrable functions and the definition (2.7),
∫

K̂

∂ ̂̃qh
∂ x̂

∂ q̂h
∂ x̂

d x̂d ŷd ẑ =
∫

K̂

∂ ̂̃qh
∂ ŷ

∂ q̂h
∂ ŷ

d x̂d ŷd ẑ = 0.

Due to the fact that ̂̃qh has nothing to do with ẑ, we have
∫

K̂

∂ ̂̃qh
∂ ẑ

∂ q̂h
∂ ẑ

d x̂d ŷd ẑ = 0.
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Therefore, the conforming and nonconforming parts are orthogonal. Hence we can get
the following equation,

|q̂h |21,K̂ =
∫

K̂

⎛

⎝

(
∂ ̂̃qh
∂ x̂

+ ∂ q̂h
∂ x̂

)2

+
(

∂ ̂̃qh
∂ ŷ

+ ∂ q̂h
∂ ŷ

)2

+
(

∂ ̂̃qh
∂ ẑ

+ ∂ q̂h
∂ ẑ

)2
⎞

⎠ dx̂d ŷd ẑ

= | ̂̃qh |21,K̂ + |q̂h |21,K̂ . (2.11)

By the regularity of mesh and the property of affine transforming and (2.11), we get

|q̃h |21,K =
∫

K̂

((
∂ ̂̃qh
∂ x̂

∂ x̂

∂x
+ ∂ ̂̃qh

∂ ŷ

∂ ŷ

∂x
+ ∂ ̂̃qh

∂ ẑ

∂ x̂

∂x

)2

+
(

∂ ̂̃qh
∂ x̂

∂ x̂

∂ y
+ ∂ ̂̃qh

∂ ŷ

∂ ŷ

∂ y
+ ∂ ̂̃qh

∂ ẑ

∂ ŷ

∂ y

)2

+
(

∂ ̂̃qh
∂ x̂

∂ x̂

∂z
+ ∂ ̂̃qh

∂ ŷ

∂ ŷ

∂z
+ ∂ ̂̃qh

∂ ẑ

∂ ẑ

∂ y

)2
)

|JK |dx̂d ŷd ẑ

≤ C |qh |21,K . (2.12)

Using the same techniques as in (2.12), we have

|qh |1,K ≤ C |qh |1,K .

From the definition of ̂̃qh and simple computation, we see that

‖ ̂̃qh‖20,K̂ = 1

450

(∫

K̂

∂4q̂h
∂ x̂2 ŷ2

dx̂d ŷd ẑ

)2

, (2.13)

| ̂̃qh |21,K̂ = 1

90

(∫

K̂

∂4q̂h
∂ x̂2 ŷ2

dx̂d ŷd ẑ

)2

. (2.14)

It follows from affine transforming and (2.13) that

∑

E∈∂K

∫

E
q̃h

2ds ≤ Ch2K

∫ 1

−1

∫ 1

−1
( ̂̃qh(x̂, ŷ,−1) + ̂̃qh(x̂, ŷ, 1))

2dx̂d ŷ

≤ C
h2K
450

(∫

K̂

∂4q̂h
∂ x̂2 ŷ2

dx̂d ŷd ẑ

)2

≤ ChK |q̃h |21,K . (2.15)

��

Theorem 2.2 There exists a unique solution ph = (p1h, p2h, pγ h) ∈ Wh,1 × Wh,2 × Wh,γ

satisfying the approximation scheme (2.4).

Proof Since the finite element subspaces Wh,γ ⊂ H1
0 (Ωγ ) consists of continuous piecewise

polynomials, we have pγ h ⊂ H1
0 (Ωγ ). Then by using the assumptions on hydraulic con-

ductivity tensor K1,K2 and the constant Kγ τ , we get that for any a ph = (p1h, p2h, pγ h) ∈
Wh,1 × Wh,2 × Wh,γ ,

123



9 Page 8 of 23 Journal of Scientific Computing (2020) 82 :9

ah(ph,ph) =
∑

K∈T1h

∫

K
K1∇ p1h · ∇ p1hdxdydz +

∑

K∈T2h

∫

K
K2∇ p2h · ∇ p2hdxdydz

+
∑

E∈Tγ h

∫

E
Kγ τd∇τ pγ h · ∇τ pγ hdxdy

+ α
∑

E∈Tγ h

∫

E

(

pγ h − p1h |Ωγ +p2h |Ωγ

2

)(

pγ h − p1h |Ωγ +p2h |Ωγ

2

)

dxdy

≥ C

⎛

⎝
∑

K∈T1h

|p1h |21,K +
∑

K∈T2h

|p2h |21,K + ‖pγ h‖21,Ωγ

⎞

⎠

≥ C

⎛

⎜
⎝

⎛

⎝
∑

K∈T1h

|p1h |21,K
⎞

⎠

1/2

+
⎛

⎝
∑

K∈T2h

|p2h |21,K
⎞

⎠

1/2

+ ‖pγ h‖1,Ωγ

⎞

⎟
⎠

2

. (2.16)

Therefore, the approximation bilinear form (2.5) is uniformly elliptic in spaceWh,1×Wh,2×
Wh,γ .

By using Lemma 2.2, Lemma 2.3 and trace theorem for the conforming part pih , we get
for i = 1, 2,

∑

E∈∂K

∫

E
p2ihds ≤ 1

2

∑

E∈∂K

∫

E
( p̃ih

2 + pih
2)ds

≤ C

(

hK | p̃ih |21,K +
∑

E∈∂K

∫

E
pih

2ds

)

≤ C |pih |1,K . (2.17)

Therefore, for any qh = (q1h, q2h, qγ h) ∈ Wh,1 × Wh,2 × Wh,γ , it follows from (2.5),
(2.6), Hölder inequality and trace theorem for the conforming parts that

ah(ph , qh)

=
∑

K∈T1h

∫

K
K1∇ p1h · ∇q1hdxdydz +

∑

K∈T2h

∫

K
K2∇ p2h · ∇q2hdxdydz

+
∑

E∈Tγ h

∫

E
Kγ τ d∇τ pγ h · ∇τ qγ hdxdy

+ α
∑

E∈Tγ h

∫

E

(

pγ h − p1h |Ωγ +p2h |Ωγ

2

)(

qγ h − q1h |Ωγ +q2h |Ωγ

2

)

dxdy

≤ C

⎛

⎜
⎝

⎛

⎝
∑

K∈T1h
|p1h |21,K

⎞

⎠

1/2⎛

⎝
∑

K∈T1h
|q1h |21,K

⎞

⎠

1/2

+
⎛

⎝
∑

K∈T2h
|p2h |21,K

⎞

⎠

1/2⎛

⎝
∑

K∈T2h
|q2h |21,K

⎞

⎠

1/2

+‖pγ h‖1,Ωγ ‖qγ h‖1,Ωγ +
⎛

⎝
∑

K∈T1h
|p1h |21,K

⎞

⎠

1/2

‖qγ h‖1,Ωγ

+
⎛

⎝
∑

K∈T2h
|p2h |21,K

⎞

⎠

1/2

‖qγ h‖1,Ωγ

+‖pγ h‖1,Ωγ

⎛

⎝
∑

K∈T1h
|q1h |21,K

⎞

⎠

1/2

+ ‖pγ h‖1,Ωγ

⎛

⎝
∑

K∈T2h
|q2h |21,K

⎞

⎠

1/2
⎞

⎟
⎠
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≤ C

⎛

⎜
⎝

⎛

⎝
∑

K∈T1h
|p1h |21,K

⎞

⎠

1/2

+
⎛

⎝
∑

K∈T2h
|p2h |21,K

⎞

⎠

1/2

+ ‖pγ h‖1,Ωγ

⎞

⎟
⎠

×
⎛

⎜
⎝

⎛

⎝
∑

K∈T1h
|q1h |21,K

⎞

⎠

1/2

+
⎛

⎝
∑

K∈T2h
|q2h |21,K

⎞

⎠

1/2

+ ‖qγ h‖1,Ωγ

⎞

⎟
⎠

= C2‖ph‖1,h‖qh‖1,h . (2.18)

By the Lax–Milgram Theorem, there exists a unique solution ph ∈ Wh,1 × Wh,2 × Wh,γ

of (2.4). ��

3 Error Estimates

First, we introduce some interpolation operators for the new nonconforming element on
the domain Ωi (i = 1, 2) as follows. On the reference element K̂ , denote the interpolation
operator Π̂K : H2(K̂ ) → P2(K̂ ) by

Π̂K q̂ =
8∑

j=1

N̂ j (x̂, ŷ, ẑ)q̂(v̂ j ). (3.1)

On the physical element K , the interpolation operators are defined as

ΠK : H2(K ) → P2(K ) with ΠK q = (Π̂K q̂) ◦ F−1
K .

Then we define

Πi : H2(Ωi ) → qh, and Πi |K = ΠK , with i = 1, 2. (3.2)

Due to the interpolation property, we have that

|qi − Πi qi |k,h ≤ Chl−k |qi |l,h, 0 ≤ k ≤ l ≤ 2, i = 1, 2. (3.3)

For the fracture domain Ωγ , the continuous piecewise linear interpolation operator Πγ :
H2(Ωγ ) → Wh,γ has the property that

‖qγ − Πγ qγ ‖1,Ωγ ≤ Ch‖qγ ‖2,Ωγ . (3.4)

Lemma 3.1 Assume p = (p1, p2, pγ ) and ph = (p1h, p2h, pγ h) be defined by (2.1) and
(2.4), respectively, we have the following error estimate

‖p − ph‖1,h ≤ C

(

inf
qh∈Wh,1×Wh,2×Wh,γ

‖p − qh‖1,h

+ sup
vh∈(Wh,1×Wh,2×Wh,γ )\{0}

|Eh(p, vh)|
‖vh‖1,h

)

, (3.5)

where vh = (v1h, v2h, vγ h) and
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Eh(p, vh) =
∑

K∈T1h

∫

∂K
K1∇ p1 · ν1ṽ1hds +

∑

K∈T2h

∫

∂K
K2∇ p2 · ν2ṽ2hds

−α
∑

E∈Tγ h

∫

E

(

pγ − p1 |Ωγ +p2 |Ωγ

2

)(
ṽ1h |Ωγ +ṽ2h |Ωγ

2

)

dxdy,

(3.6)

and νi is the unit outer normal vector of ∂Ki for Ki ∈ Tih with i = 1, 2.

Proof Combining (2.1) and the nonconforming element scheme (2.4), we have

ah(p − ph,qh) = ah(p,qh) − (g,qh)

=
∑

K∈T1h

∫

∂K
K1∇ p1 · ν1q̃1h ds +

∑

K∈T2h

∫

∂K
K2∇ p2 · ν2q̃2h ds

+ α
∑

E∈Tγ h

∫

E

(

pγ − p1 |Ωγ +p2 |Ωγ

2

)(
q̃1h |Ωγ +q̃2h |Ωγ

2

)

dxdy

:= Eh(p,qh). (3.7)

According to the continuity and coercivity of of ah(·, ·) and (3.7), we have that
‖qh − ph‖21,h ≤ C‖p − qh‖1,h‖qh − ph‖1,h + Eh(p,qh − ph). (3.8)

Hence we get

‖qh − ph‖1,h ≤ C

⎛

⎜
⎜
⎝‖p − vh‖1,h + sup

vh=(v1h ,v2h ,vγ h)

∈(Wh,1×Wh,2×Wh,γ )\{0}

|Eh(p, vh)|
‖vh‖1,h

⎞

⎟
⎟
⎠ . (3.9)

Finally, we can obtain (3.5) directly by using triangular inequality. ��
Lemma 3.2 For any qh ∈ Wh,i (i = 1, 2), we have

‖q̃h‖0,K ≤ Ch|qh |1,K . (3.10)

Proof It directly follows from the affine transformation (2.11) and (2.13) that

‖q̃h‖20,K ≤ Ch3K ‖ ̂̃qh‖20,K̂
≤ Ch3K | ̂̃qh |21,K̂
≤ Ch3K |q̂h |21,K̂
≤ Ch2|qh |21,K . (3.11)

��
Note that q̃h is not a constant function due to the fact that it has nonconforming and discon-
tinuous properties.

Theorem 3.1 Let K1 = k1I, K2 = k2I, p = (p1, p2, pγ ) and ph = (p1h, p2h, pγ h) be
defined by (2.1) and (2.4), respectively, then we get

‖p − ph‖1,h ≤ Ch
(|p1|2,h + |p2|2,h + ‖pγ ‖2,Ωγ

)
, (3.12)

where the constant C depends on the hydraulic conductivity tensors K1,K2, the conduct
constant Kγ τ , the pressures p1, p2, pγ and the subdivision of mesh grids.
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Fig. 2 Unit K
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v2
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E6

Proof By Lemma 3.1, we will need to estimate the two terms on the right hand of (3.5). For
the first term which corresponds to the interpolation error, we can applied (3.3) and (3.4) to
get

inf
ph∈Wh,1×Wh,2×Wh,γ

‖p − ph‖1,h
≤ |p1 − Π1 p1|1,h + |p2 − Π2 p2|1,h + ‖pγ − Πγ pγ ‖1,Ωγ

≤ Ch

⎛

⎝
∑

K∈T1h

|p1|2,K +
∑

K∈T2h

|p2|2,K + ‖pγ ‖2,Ωγ

⎞

⎠ . (3.13)

Let ν1 = (ν11, ν12, ν13) and ν2 = (ν21, ν22, ν23) be the unit outer normal vectors to the
faces of physical element K ,

According to the definition of q̃1h and Fig. 2, we see that q̃1h |E1 = q̃1h |E2 = q̃1h |E3 =
q̃1h |E4 = 0 and q̃1h |E5 = q̃1h |E6 . Therefore,

∫

∂K
q̃1hν11 =

∫

∂K
q̃1hν12 =

∫

∂K
q̃1hν13 = 0. (3.14)

Similarly,
∫

∂K
q̃2hν21 =

∫

∂K
q̃2hν22 =

∫

∂K
q̃2hν23 = 0. (3.15)

For the second term on the right-hand side of (3.5), we apply Lemma 2.3, Lemma 3.2,
(3.14), (3.15) to obtain that

|Eh(p, qh)|

=
∣
∣
∣
∣
∣
∣

∑

K∈T1h

∫

∂K
K1∇ p1 · ν1q̃1hds +

∑

K∈T2h

∫

∂K
K2∇ p2 · ν2q̃2hds

−α
∑

E∈Tγ h

∫

E

(

pγ − p1 |Ωγ
+p2 |Ωγ

2

)( q̃1h |Ωγ
+q̃2h |Ωγ

2

)

dxdy

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

E∈Tγ h

∫

E
K1∇ p1 · ν1q̃1hds +

∑

E∈Tγ h

∫

E
K2∇ p2 · ν2q̃2hds
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−α
∑

E∈Tγ h

∫

E

(

pγ − p1 |Ωγ
+p2 |Ωγ

2

)( q̃1h |Ωγ
+q̃2h |Ωγ

2

)

dxdy

+
∑

E∈∂T1h\Tγ h

∫

E
K1∇ p1 · ν1q̃1hds +

∑

E∈∂T2h\Tγ h

∫

E
K2∇ p2 · ν2q̃2hds

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

E∈∂T1h\Tγ h

∫

E
K1∇ p1 · ν1q̃1hds +

∑

E∈∂T2h\Tγ h

∫

E
K2∇ p2 · ν2q̃2hds

∣
∣
∣
∣
∣
∣

≤ C

⎛

⎝

∣
∣
∣
∣
∣
∣

∑

E∈∂T1h\Tγ h

∫

E

(
∂ p1
∂x

ν11q̃1h + ∂ p1
∂ y

ν12q̃1h + ∂ p1
∂z

ν13q̃1h

)

ds

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

∑

E∈∂T2h\Tγ h

∫

E

(
∂ p2
∂x

ν21q̃2h + ∂ p2
∂ y

ν22q̃2h + ∂ p2
∂z

ν23q̃2h

)

ds

∣
∣
∣
∣
∣
∣

⎞

⎠

= C

⎛

⎝

∣
∣
∣
∣
∣
∣

∑

E∈∂T1h\Tγ h

∫

E

((
∂ p1
∂x

− M1

(
∂ p1
∂x

))

q̃1hν11 +
(

∂ p1
∂ y

− M1

(
∂ p1
∂ y

))

q̃1hν12

+
(

∂ p1
∂z

− M1

(
∂ p1
∂z

))

q̃1hν13

)

ds

∣
∣
∣
∣ +

∣
∣
∣
∣
∣
∣

∑

E∈∂T2h\Tγ h

∫

E

((
∂ p2
∂x

− M2

(
∂ p2
∂x

))

q̃2hν21

+
(

∂ p2
∂ y

− M2

(
∂ p2
∂ y

))

q̃2hν22 +
(

∂ p2
∂z

− M2

(
∂ p2
∂z

))

q̃2hν23

)

ds

∣
∣
∣
∣

)

≤ C

⎛

⎝
∑

K∈T1h
hK |p1|2,K |q1h |1,K +

∑

K∈T2h
hK |p2|2,K |q2h |1,K

⎞

⎠

≤ Ch

⎛

⎝
∑

K∈T1h
|p1|2,K |qh |1,K +

∑

K∈T2h
|p2|2,K |qh |1,K

⎞

⎠ , (3.16)

where Mi (ϕ) = ∑
K∈Tih

∑
E∈∂K

1
meas(E)

∫

E ϕds with i = 1, 2.
Finally, the error estimate (3.12) follows from (3.5), (3.13) and (3.16). ��

Lemma 3.3 For (q1, q2, qγ ) and (q1h, q2h, qγ h) defined as in (2.1) and (2.4), we have

|q̃ih |1,K ≤ Ch(|q1|2,h + |q2|2,h + ‖qγ ‖2,Ωγ ), (3.17)

for i = 1, 2.

Proof Let ϕih = qih − Πi qi for i = 1, 2, then ϕ̃ih = q̃ih . By Lemma 2.3, Theorem 3.1 and
(3.3),

|q̃ih |1,K = |ϕ̃ih |1,K ≤ C |ϕih |1,K
≤ C |qih − Πi qi |1,K
≤ C |qih − qi + qi − Πi qi |1,K
≤ Ch(|q1|2,h + |q2|2,h + ‖qγ ‖2,Ωγ ). (3.18)

��
The following theorem gives the L2 norm error estimate.
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Theorem 3.2 Suppose K1 = k1I, K2 = k2I, p = (p1, p2, pγ ) and ph = (p1h, p2h, pγ h)

are defined by (2.1) and (2.4), respectively. We have

‖p − ph‖0,Ω ≤ Ch2
(|p1|2,h + |p2|2,h + ‖pγ ‖2,Ωγ

)
, (3.19)

where the constant C depends on the hydraulic conductivity tensors K1,K2, the conduct
constant Kγ τ , the pressures p1, p2, pγ and the subdivision of mesh grids.

Proof Following the idea of Aubin–Nitsche method [24,26–28], we let � = (ψ1, ψ2, ψγ ) ∈
L2(Ω1) × L2(Ω2) × L2(Ωγ ) and consider the following adjoint problem for � =
(φ1, φ2, φγ ) ∈ H1

0 (Ω1) × H1
0 (Ω2) × H1

0 (Ωγ ):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−div(Ki∇φi ) = ψi in Ωi , i = 1, 2,

−divτ (Kγ τd∇τ φγ ) = α

(
φ1 |Ωγ +φ2 |Ωγ

2
− φγ

)

+ ψγ in Ωγ ,

K1∇φ1 · n1 |Ωγ +K2∇φ2 · n2 |Ωγ = α

(

φγ − φ1 |Ωγ +φ2 |Ωγ

2

)

in Ωγ ,

φi = ϑi on Γi , i = 1, 2, γ
(3.20)

with the following regularity estimate

‖φ1‖2,Ω1 + ‖φ2‖2,Ω2 + ‖φγ ‖2,Ωγ ≤ C(‖ψ1‖0,Ω1 + ‖ψ2‖0,Ω2 + ‖ψγ ‖0,Ωγ ). (3.21)

By Green’s formula, (2.4) and the fact that pi , pih ∈ C0(Ωi ) with i = 1, 2, we have

(�,p − ph) = −
∑

K∈T1h

∫

K
div(K1∇φ1)(p1 − p1h)dxdydz

−
∑

K∈T2h

∫

K
div(K2∇φ2)(p2 − p2h)dxdydz

−
∑

E∈Tγ h

∫

E
divτ (Kγ τd∇τ φγ )(pγ − pγ h)dxdy

+ α
∑

E∈Tγ h

∫

E

(

φγ − φ1 |Ωγ +φ2 |Ωγ

2

)

(pγ − pγ h)dxdy

= ah(�,p − ph) −
∑

E∈∂T1h\Tγ h

∫

E
K1∇φ1 · ν1(p1 − p1h)ds

−
∑

E∈∂T2h\Tγ h

∫

E
K2∇φ2 · ν2(p2 − p2h)ds. (3.22)

Next, we estimate the right-hand side of (3.22).
According to Theorem 2.2, (2.6) and (3.21), we have

|ah(�,p − ph)| ≤ C‖� − ��‖1,h‖p − ph‖1,h
≤ Ch(|φ1|2,Ω1 + |φ2|2,Ω2 + ‖φγ ‖2,Ωγ )‖p − ph‖1,h
≤ Ch2‖�‖0,Ω(|p1|2,h + |p2|2,h + ‖pγ ‖2,Ωγ ). (3.23)
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By combing the fact that
∫

K ∇ p̃ihdxdydz = 0, Green’s formula, Lemma 2.3, Lemma 3.2,
Theorem 3.1 and (3.21), we have
∣
∣
∣
∣
∣
∣

∑

E∈∂T1h\Tγ h

∫

E
K1∇φ1 · ν1(p1 − p1h)ds +

∑

E∈∂T2h\Tγ h

∫

E
K2∇φ2 · ν2(p2 − p2h)ds

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

∑

K∈T1h

∫

K
div(K1∇φ1)(p1 − p1h)dxdydz −

∑

K∈T1h

∫

K
K1∇φ1 · ∇(p1 − p1h)dxdydz

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

∑

K∈T2h

∫

K
div(K2∇φ2)(p2 − p2h)dxdydz −

∑

K∈T2h

∫

K
K2∇φ2 · ∇(p2 − p2h)dxdydz

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

K∈T1h

∫

K
div(K1∇φ1) p̃1hdxdydz −

∑

K∈T1h

∫

K
(K1∇φ1 − M1(K1∇φ1)) · ∇ p̃1hdxdydz

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

∑

K∈T2h

∫

K
div(K2∇φ2) p̃2hdxdydz −

∑

K∈T2h

∫

K
(K2∇φ2 − M2(K2∇φ2)) · ∇ p̃2hdxdydz

∣
∣
∣
∣
∣
∣

≤ C

⎛

⎝
∑

K∈T1h

(|φ1|2,K ‖ p̃1h‖0,K + h|φ1|2,K | p̃1h |1,K )

+
∑

K∈T2h

(|φ2|2,K ‖ p̃2h‖0,K + h|φ2|2,K | p̃2h |1,K )

⎞

⎠

≤ Ch2

⎛

⎝
∑

K∈T1h

|φ1|2,K (|p1|2,h + |p2|2,h + ‖pγ ‖2,Ωγ )

+
∑

K∈T2h

|φ2|2,K (|p1|2,h + |p2|2,h + ‖pγ ‖2,Ωγ )

⎞

⎠

≤ Ch2‖�‖0,Ω(|p1|2,h + |p2|2,h + ‖pγ ‖2,Ωγ ). (3.24)

Finally, in view of (3.22)–(3.24), and

‖p − ph‖0,Ω = sup
�∈L2(Ω1)×L2(Ω2)×L2(Ωγ )

(�,p − ph)
‖�‖0,Ω , (3.25)

we arrive at (3.19). ��
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Table 1 Errors of Example 1 on uniform cubic mesh

Mesh ‖ep‖0,Ωp ‖ep‖1,h ‖eγ ‖0,Ωγ ‖eγ ‖1,Ωγ

6 × 6 × 6 2.1357e−01 3.6144e−01 3.3263e−01 5.4536e−01

8 × 8 × 8 1.2738e−01 2.5609e−01 1.9617e−01 4.0681e−01

16 × 16 × 16 3.8688e−02 1.2221e−01 5.6934e−02 2.0523e−01

32 × 32 × 32 1.1687e−02 6.2290e−02 1.5125e−02 1.0168e−01

64 × 64 × 64 3.3517e−03 3.0082e−02 4.3012e−03 5.1756e−02

Rate 1.7477 1.0405 1.8403 0.9957

4 Numerical Examples

In this section, we investigate the numerical performance of the proposed numerical scheme
for the following model problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−div(Ki∇ pi ) = gi in Ωi , i = 1, 2,

−divτ (Kγ τd∇τ pγ ) = α

(
p1 |Ωγ +p2 |Ωγ

2
− pγ

)

+ gγ in Ωγ ,

K1∇ p1 · n1 |Ωγ +K1∇ p2 · n2 |Ωγ = α

(

pγ − p1 |Ωγ +p2 |Ωγ

2

)

in Ωγ ,

(4.1)
with d = 10−3.

Example 1 Consider the model (4.1) on the domain Ωp = (0, 1) × (0, 1) × (−0.5, 0.5) and
Ωγ = (0, 1) × (0, 1) × {z = 0}. We use the uniform cubic meshes for this example. The
right-hand side functions are determined according to the following analytic solution

⎧
⎨

⎩

pγ = (10,001cos(4π y)sin(2πx))/10,000 in Ωγ ,

p1 = e2zsin(2πx)cos(4π y) in (0, 1) × (0, 1) × (−1/2, 0] ∈ Ω1,

p2 = e−2zsin(2πx)cos(4π y) in (0, 1) × (0, 1) × [0, 1/2) ∈ Ω2,

(4.2)
with Kγ = 10I,K1 = K2 = I and ξ = 1, α = 40,000.

Let (ep, eγ ) denote the errors obtained by applying the new nonconforming finite element
scheme (2.1) to model problem (4.1). The results are listed in Table 1. The convergence rates
are calculated by applying a least-square fitting method to the computational errors with the
various mesh sizes.

In order to demonstrate the advantages of the new nonconforming element for solving
the Darcy equation in three-dimensional porous media, we compare this approach with the
ones using piecewise bilinear Q1 element and Wilson nonconforming finite element. The
numerical errors are plotted in Fig. 3. One can observe that the performance of the new
element are better than the others with same nodal points and computational costs, due to
the fact that the new nonconforming element meets the physical property of the asymptotic
model (1.3). The volumetric slice plots of exact solution and numerical solution obtained by
our new method are shown in Fig. 4.

Example 2 Consider the same domain defined as in Example 1, and use cuboid meshes for
this example. Here, we choose the following analytic solution and determine the right-hand
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Fig. 4 Plots of solutions for Example 1 on uniform cubic grid. Left: exact solution p; right: numerical solution
ph

side functions accordingly.
⎧
⎨

⎩

pγ = (11,987x2y2(x − 1)2(y − 1)2)/12,000 in Ωγ ,

p1 = (1 − 10z)(x − x2)2(y − y2)2 in (0, 1) × (0, 1) × (−1/2, 0] ∈ Ω1,

p2 = (1 + 0.1z)3(x − x2)2(y − y2)2 in (0, 1) × (0, 1) × [0, 1/2) ∈ Ω2,

(4.3)

with K1 = I,K2 = 10I, ξ = 2
3 , α = 12,000, Kγ =

(
Kγ τ 0
0 Kγ n

)

=
(
10 0
0 1

)

.

The errors obtained by the new nonconforming element are listed in Table 2. One can
observe second-order convergence rate for L2 norm and first-order convergence rate for H1

norm, which are consistent with the theoretical results in Theorems 3.1 and 3.2. We also
compare our new nonconforming element with Q1 element and Wilson element for this

123



Journal of Scientific Computing (2020) 82 :9 Page 17 of 23 9

Table 2 Errors of Example 2 on cuboid mesh

Mesh ‖ep‖0,Ωp ‖ep‖1,h ‖eγ ‖0,Ωγ ‖eγ ‖1,Ωγ

4 × 4 × 4 8.8490e−02 2.5144e−01 1.4521e−01 4.0413e−01

8 × 8 × 8 2.0738e−02 1.2566e−01 4.1432e−02 2.2589e−01

16 × 16 × 16 4.9842e−03 6.2262e−02 1.0634e−02 1.1574e−01

32 × 32 × 32 1.2271e−03 3.1041e−02 2.6727e−03 5.8321e−02

64 × 64 × 64 3.0012e−04 1.5442e−02 6.7701e−04 2.9462e−02

Rate 2.0487 1.0068 1.9444 0.9509
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Fig. 5 Log–log plots of errors of p1 and p2 for Example 2 on cuboid grid. Left: L2 norm; right: H1 norm

example, and report the errors in Fig. 5. The exact solution and numerical solution obtained
by the new nonconforming method are depicted in Fig. 6.

Example 3 Consider the model problem (4.1) on a domain with refined meshes near the
fracture. The analytic solution is chosen as

⎧
⎨

⎩

pγ = 40,001sin(2πx)sin(π y)/40,000 in Ωγ ,

p1 = sin(2πx)sin(π y) in Ω1,

p2 = (1 − z)sin(2πx)sin(π y) in Ω2,

(4.4)

with Kγ = 10I,K1 = K2 = I and ξ = 1, α = 40,000. The right-hand side functions are
determined accordingly.

The errors are reported in Table 3 (Fig. 7). The numerical solution ph and exact solution
p are depicted in Fig. 8, where refined meshes are employed near the fracture to capture the
more rapid change of flow pressure. Moreover, as shown in Fig. 7, the errors obtained by new
nonconforming element is evidently smaller than that of Q1 element and Wilson element. In
particular, the new method attains higher order convergence rates in H1 norm.
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Table 3 Errors of Example 3 with mesh refined near the fracture

Mesh ‖ep‖0,Ωp |ep |1,h ‖eγ ‖0,Ωγ ‖eγ ‖1,Ωγ

4 × 4 × 4 1.9326e−02 5.5955e−02 4.8605e−2 2.2462e−01

8 × 8 × 8 4.1087e−03 1.4029e−02 1.2713e−2 1.1301e−01

16 × 16 × 16 9.7356e−04 3.5098e−03 3.2798e−3 5.6620e−02

32 × 32 × 32 2.2201e−04 8.9113e−04 8.3106e−4 2.8298e−02

64 × 64 × 64 5.4878e−05 2.2829e−04 2.2872e−4 1.3637e−02

Rate 2.1130 1.9851 1.9398 1.0081
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Fig. 7 Log–log plots of errors of p1 and p2 for Example 3 with mesh refinement near the fracture. Left: L2

norm; right: H1 norm
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Fig. 8 Plots of solutions for Example 3 with mesh refinement near the fracture. Left: exact solution p; right:
numerical solution ph

Table 4 Errors of Example 4 on
uniform mesh

Mesh ‖Ep‖0,Ωp |Ep |1,h ‖Eγ ‖0,Ωγ ‖Eγ ‖1,Ωγ

8 × 8 × 8 – – – –

16 × 16 × 16 3.7213 1.8622 3.8479 1.8759

32 × 32 × 32 3.8766 1.8730 3.8731 1.8954

64 × 64 × 64 3.8972 1.9058 3.9016 1.9019

Rate 1.9158 0.9402 1.9371 0.9455

Example 4 In this example, we use the numerical scheme (2.1) and uniform cubic mesh to
solve the problem with following source terms:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

gγ = 1000sin(πx)sin(2π y),
g1 = 0,
g2 = 0,
P|Γγ = 0,
P|z=0.5 = 0,
P|z=−0.5 = 0,
P|x=0∪x=1∪y=0∪y=1 = 0,

(4.5)

where Kγ = 2.5I,K1 = K2 = I and ξ = 1, α = 10,000.

Since the analytic solutions are not available in this case, we define the following errors

Ei = pi,h − pi,h/2

pi,h/2 − pi,h/4
, (i = 1, 2), Eγ = pγ,h − pγ,h/2

pγ,h/2 − pγ,h/4
,

and the norm ‖Ep‖ = ‖E1‖ + ‖E2‖. In order to test the accuracy using errors between
consecutive levels, the bilinear interpolation method is used interpolate function values from
coarse grids to fine grids. One can observe from Table 4 that the errors are second-order
accurate in L2 norm and first-order in H1 norm.

The numerical solutions in fractureΩγ and whole domain are plotted in Fig. 9. According
to the boundary condition in (4.5), the values of pressures vary faster along z-direction than
the other two directions. The pressures on the fracture hyperplane show the sine and cosine
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Fig. 9 Plots of numerical solution for Example 4 on uniform cubic grid. Left: pγ h ; right: ph

patterns with the source term gγ . As shown in Fig. 9, the behavior of numerical pressure can
effectively capture the desired physical feature.

Example 5 In this example, we extend the idea of constructing new nonconforming element
to an inclined fracture. For example, one element is based on the combination of Q1 element
and Quasi-Wilson element. The basis functions can chosen as follows

P̂ = Q1(K̂ )
⊕

span

{
(1 − x2)(1 − y2)(1 − 5x2)(1 − 5y2)

144

}

,

with
∑̂

=
{

q̂(v̂i ), i = 1, . . . , 8; ∂4q̂

∂ x̂2∂ ŷ2
(0, 0, 0)

}

.

The inclined fracture domain is defined as Ωγ := {z = x/4, x ∈ [0, 1], y ∈ [0, 1]}.
We divide each edge along z-direction into equal-length segments and obtain the meshes
with n × n × n hexahedron elements for porous media Ωp . Consider the problem with the
following exact solution

⎧
⎪⎨

⎪⎩

pγ =
( √

17
3.2×104

+ 1 − x

4

)
sin(2πx)sin(2π y) in Ωγ ,

p1 = (
1 − x

4

)
sin(2π y)sin(2πx) in Ω1,

p2 = (1 − z)sin(2π y)sin(2πx) in Ω2,

(4.6)

where Kγ = 2I,K1 = K2 = I and ξ = 1, α = 8000. The right-hand side functions are
determined accordingly. The errors of new nonconforming element are reported in Table 5.

In order to show the advantages of new element, we compare it with Q1 element and quasi-
Wilson element. It can be seen from Fig. 10 that the errors obtained by the new element is
the smallest one. Moreover, from the Fig. 11 we can see that the new nonconforming method
is effective in approximating solutions of the asymptotic model with inclined fracture.

5 Conclusion

In this work we introduced and analyzed a numerical method coupled a new nonconforming
element with a conforming element for solving the asymptotic model problem (1.3). The
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Table 5 Errors of Example 5 with inclined fracture

Mesh ‖ep‖0,Ωp |ep |1,h ‖eγ ‖0,Ωγ ‖eγ ‖1,Ωγ

4 × 4 × 4 2.1455e−01 4.5261e−01 2.6720e−01 5.2125e−01

8 × 8 × 8 5.5276e−02 2.3989e−01 6.8576e−02 2.7102e−01

16 × 16 × 16 1.4953e−02 1.2212e−01 1.8462e−02 1.471e−01

32 × 32 × 32 3.6267e−03 6.4017e−02 4.9210e−03 7.6667e−02

64 × 64 × 64 9.1759e−04 3.2733e−02 1.9035e−03 4.1869e−02

Rate 1.9668 0.9485 1.8067 0.9098
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new element is anisotropic and continuous along the direction parallel to the fracture and
discontinuous along the direction perpendicular to the fracture. It is an appropriate scheme for
solving the fractured aquifer model since it coincides with the physical feature of the solution
of practical problem. On the same mesh grids with the same amount of computational cost,
the errors obtained by the new nonconforming element are smaller than those of Q1 element
and Wilson element. For other domains with more complicated geometry, one can deduce
the shape functions for new elements by using similar idea introduced in this paper. This is
also our future work.
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