

A New Numerical Method for an Asymptotic Coupled Model of Fractured Media Aquifer System

Wei Liu¹ · Jintao Cui^{2,3} · Zhifeng Wang⁴

Received: 8 May 2018 / Revised: 10 June 2019 / Accepted: 6 November 2019 / Published online: 8 January 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

An asymptotic model coupling three-dimensional and two-dimensional equations is considered to demonstrate the flow in fractured media aquifer system in this paper. The flow is governed by Darcy's law both in fractures and surrounding porous media. A new anisotropic and nonconforming finite element is constructed to solve the three-dimensional Darcy equation. The existence and uniqueness of the coupled solutions are deduced. Optimal error estimates are obtained in L^2 and H^1 norms. Numerical experiments show the accuracy and efficiency of the presented method. With the same number of nodal points and the same amount of computational costs, the results obtained by using the new element are much better than those by both Q_1 conforming element and Wilson nonconforming element on the same meshes.

Keywords Karst aquifers · Nonconforming finite element · Asymptotic coupled model · Numerical analysis

Mathematics Subject Classification 65N12 · 65N15 · 65N30

☑ Jintao Cui jintao.cui@polyu.edu.hk

> Wei Liu sduliuwei@mail.sdu.edu.cn

Zhifeng Wang wangzhifeng1997@163.com

- ¹ School of Mathematics and Statistics Science, Ludong University, Yantai 264025, China
- ² Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
- ³ The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- ⁴ School of Mathematics and Information Sciences, Yantai University, Yantai 264005, China

The work of Wei Liu was supported by Shandong Provincial Natural Science Foundation No. ZR2019MA049 and in part by The Hong Kong Polytechnic University AMSS-PolyU Joint Research Institute (JRI) 1-ZVA8. Jintao Cui's research is supported in part by the Hong Kong RGC, General Research Fund (GRF) Grant No. 15302518 and the National Natural Science Foundation of China (NSFC) Grant No. 11771367.

1 Introduction

Fracture belongs to the secondary void structure of Karst aquifer system, and occupies the major part of the total gap. It is not only the storage space of drinkable groundwater, but also the occurrence site of environmental pollution. Therefore, it is important to gain a better understanding of groundwater flow in Karst aquifer for assessing groundwater risk and controlling groundwater pollution. Flow in fractures are closely connected with that in the surrounding medium. Thus a coupled model is usually used to characterize the groundwater flow process in fractured medium, with the flux exchange occurring on the interface between the fractures and surrounding medium as the coupling term, e.g. see [1-4].

In many cases the thickness of fracture is much smaller than the characteristic diameter of the surrounding medium. So we could reduce the dimension of the flow equation for fractures and obtain an asymptotic coupled model by two approaches. One method is to employ a dirac function restricted to the fracture in the coupled term, e.g. see [5-13]. The other is to apply the averaging technique across the fracture in order to obtain the coupled term, e.g. see [14-20]. The fracture can act as a fast pathway or correspond to a geological barrier. Here we are interested in the "fast path" fracture and suppose that the pressure is continuous across the fracture, which is similar to [15,20-22]. In this paper, we consider a coupled model with different dimensions by the latter approach.

Let Ω_p be a convex domain in \mathbb{R}^3 with the boundary $\Gamma = \partial \Omega_p$. The fracture Ω_f is a subdomain of Ω_p and divides Ω_p into two parts, which are denoted by Ω_1 and Ω_2 , respectively. Suppose the flow in Ω_1 , Ω_2 and Ω_f is governed by a conservation equation together with Darcy's law as follows.

$$\begin{cases} \operatorname{div} \mathbf{u}_i = g_i & \text{in } \Omega_i, \quad i = 1, 2, f, \\ \mathbf{u}_i = -\mathbb{K}_i \nabla p_i & \text{in } \Omega_i, \quad i = 1, 2, f, \\ p_i = P_i & \text{on } \Gamma_i, \quad i = 1, 2, f, \end{cases}$$
(1.1)

where **u** is the Darcy velocity, p is the pressure, \mathbb{K} is the hydraulic conductivity(or permeability tensor), g is the source or sink term, P is the given pressure on the boundary. Let p_i , \mathbf{u}_i , \mathbb{K}_i , g_i , P_i be the restriction of p, \mathbf{u} , \mathbb{K} , g, P, respectively, to Ω_i , $\Gamma_i = \partial \Omega_i \cap \Gamma$ (i = 1, 2, f). Here, we suppose \mathbb{K}_i is diagonal and positive definite.

By using averaging across the fracture (see [14,15]), the fracture domain Ω_f is degraded to a hyperplane Ω_{γ} embedded in Ω_p , see Fig. 1. Then we obtain the different dimension as 3D coupled 2D model problem.

$$\begin{aligned} \operatorname{div} \mathbf{u}_{i} &= g_{i} & \text{in } \Omega_{i}, \quad i = 1, 2, \\ \mathbf{u}_{i} &= -\mathbb{K}_{i} \nabla p_{i} & \text{in } \Omega_{i}, \quad i = 1, 2, \\ \operatorname{div}_{\tau} \mathbf{u}_{\gamma} &= g_{\gamma} + (\mathbf{u}_{1} \cdot \mathbf{n}_{1}|_{\Omega_{\gamma}} + \mathbf{u}_{2} \cdot \mathbf{n}_{2}|_{\Omega_{\gamma}}) & \text{in } \Omega_{\gamma}, \\ \mathbf{u}_{\gamma} &= -K_{\gamma\tau} d \nabla_{\tau} p_{\gamma} & \text{in } \Omega_{\gamma}, \\ -\xi \mathbf{u}_{i} \cdot \mathbf{n}_{i} + \alpha_{\gamma} p_{i} &= \alpha_{\gamma} p_{\gamma} - (1 - \xi) \mathbf{u}_{(i+1 \text{ mod } 2)} \cdot \mathbf{n}_{(i+1 \text{ mod } 2)} & \text{in } \Omega_{\gamma}, \\ p_{i} &= P_{i} & \text{on } \Gamma_{i}, \quad i = 1, 2, \gamma, \end{aligned}$$

where **n** and τ are the tangential and normal direction to Ω_{γ} . The unit vectors $\mathbf{n}_1 = -\mathbf{n}_2$ are normal to Ω_{γ} . We use ∇_{τ} and div_{τ} to denote the tangential gradient and divergence. The coefficients $K_{\gamma\tau}$ and $K_{\gamma n}$ represent the equivalent permeability for the flow along and normal to the fracture, respectively. Constant *d* is the thickness of the fracture, $\alpha_{\gamma} = 2K_{\gamma n}/d$ and the coefficient $\xi \in (1/2, 1]$. Here, the permeability fracture corresponds to a fast pathway for the fracture.

Fig. 1 Left: the whole domain is divided by the fracture Ω_f with thickness d into Ω_1 and Ω_2 ; right: Ω_f is treated as a fracture-interface Ω_γ

Setting
$$\alpha = \frac{2\alpha_{\gamma}}{2\xi - 1}$$
, we can rewrite model (1.2) as follows,

$$\begin{cases}
-\operatorname{div}(\mathbb{K}_{i} \nabla p_{i}) = g_{i} & \text{in } \Omega_{i}, \quad i = 1, 2, \\
-\operatorname{div}_{\tau}(K_{\gamma\tau}d\nabla_{\tau}p_{\gamma}) = \alpha \left(\frac{p_{1} \mid_{\Omega_{\gamma}} + p_{2} \mid_{\Omega_{\gamma}}}{2} - p_{\gamma}\right) + g_{\gamma} & \text{in } \Omega_{\gamma}, \\
\mathbb{K}_{1} \nabla p_{1} \cdot \mathbf{n}_{1} \mid_{\Omega_{\gamma}} + \mathbb{K}_{2} \nabla p_{2} \cdot \mathbf{n}_{2} \mid_{\Omega_{\gamma}} = \alpha \left(p_{\gamma} - \frac{p_{1} \mid_{\Omega_{\gamma}} + p_{2} \mid_{\Omega_{\gamma}}}{2}\right) & \text{in } \Omega_{\gamma}, \\
p_{i} = P_{i} & \text{on } \Gamma_{i}, \quad i = 1, 2, \gamma. \end{cases}$$
(1.3)

In recent years, the asymptotic model (1.2) with different dimensions has become a hot topic in studying groundwater flow process in fractured media aquifer system. Previous study mainly focused on the case where the fracture is treated as one-dimension and surrounding medium as two-dimension. Robert et al. [14,15] used RT₀ mixed finite element method to solve the asymptotic Darcy–Darcy model and proved the existence and uniqueness of solutions. Non-overlapping domain decomposition method is applied in the numerical examples. Angot et al. [19] applied the finite volume method and proved the convergence of the numerical solutions of the asymptotic model.

In this paper, we consider the asymptotic model (1.3) with two-dimensional Darcy equation in fractures and three-dimensional Darcy equation in the surrounding media. Anisotropic and multi-scale coupling properties of the asymptotic model (1.3) perfectly match the physical characteristics of the groundwater flow problem, but bring some numerical challenges to solve it. Near the fracture hyperplane Ω_{γ} , the derivative of the analytic solution along the direction perpendicular to the fracture is of a low regularity. That means that the solution of Darcy model in the porous media domain Ω_p varies significantly along the perpendicular direction to the fracture and is smooth along the direction parallel to the fracture. In order to capture significant changes near Ω_{γ} , one possibility is to use anisotropic meshes which have a small mesh size near the fracture and a larger mesh size away from the fracture. Consequently, the subdivision of the anisotropic meshes depends on the position of the fracture which is unknown in many cases. To circumvent this difficulty, in this work we construct a new element with its own anisotropic property to solve the Darcy equation in porous media Ω_p without dependence on the meshes.

The new anisotropic element is motivated by Q_1 conforming element and Wilson nonconforming element. It is well known that the Q_1 element is a bilinear conforming element defined on cuboid mesh and the functions in Q_1 element space are continuous across every boundary surface. The Wilson element is a nonconforming element with eight conforming parts and three nonconforming parts, and the functions in Wilson nonconforming element space are discontinuous along each direction of coordinate axis (see [23–26] for details). The idea of our new element is to combine the properties and merits of Q_1 element and Wilson element. More precisely, the new element is constructed to be continuous (conforming) along the direction parallel to the fracture just like Q_1 element and discontinuous (nonconforming) along the direction perpendicular to the fracture just like Wilson element. Therefore, it can be applied appropriately to solve the partial differential equations with smooth solutions in some directions and singular solutions in other directions. The element is not conservative but it can extend to some other cases such as inclined fracture and intersecting fractures. Specially, based on Quasi-Wilson element and Q_1 element, the method is easily to cope with the inclined cases. The idea of construction new element can be applied to vertical intersecting fracture by using only 10 degrees of freedom on each unit. In the numerical examples, it is seen that the performance of the new nonconforming element are much better than the Q_1 conforming element and Wilson nonconforming element on the same mesh.

The outline of the paper is as follows. The numerical scheme combing the new nonconforming element and the conforming finite element method are presented in Sect. 2. Existence and uniqueness of approximation solution are also deduced. In Sect. 3, we give the error estimates for the approximation scheme in L^2 norm and H^1 norm. Numerical examples are presented in Sect. 4 to show the efficiency and accuracy of the new nonconforming finite element method.

2 A Coupled Numerical Method

The weak form for the model (1.3) is to find $\mathbf{p} = (p_1, p_2, p_\gamma) \in H_0^1(\Omega_1) \times H_0^1(\Omega_2) \times H_0^1(\Omega_\gamma)$, such that

$$\begin{aligned} & (\mathbb{K}_{1}\nabla p_{1},\nabla q_{1}) + (\mathbb{K}_{2}\nabla p_{2},\nabla q_{2}) - \alpha \left(p_{\gamma} - \frac{p_{1}\mid_{\Omega_{\gamma}} + p_{2}\mid_{\Omega_{\gamma}}}{2}, \frac{q_{1}\mid_{\Omega_{\gamma}} + q_{2}\mid_{\Omega_{\gamma}}}{2}\right) \\ &= (g_{1},q_{1}) + (g_{2},q_{2}) \quad \forall q_{1} \in H_{0}^{1}(\Omega_{1}), q_{2} \in H_{0}^{1}(\Omega_{2}), \\ & (K_{\gamma\tau}d\nabla_{\tau}p_{\gamma},\nabla_{\tau}q_{\gamma}) + \alpha \left(p_{\gamma} - \frac{p_{1}\mid_{\Omega_{\gamma}} + p_{2}\mid_{\Omega_{\gamma}}}{2}, q_{\gamma}\right) = (g_{\gamma},q_{\gamma}) \quad \forall q_{\gamma} \in H_{0}^{1}(\Omega_{\gamma}). \end{aligned}$$

$$(2.1)$$

Theorem 2.1 Suppose $\mathbb{K}_1 = k_1 \mathbb{I}$ and $\mathbb{K}_2 = k_2 \mathbb{I}$, then there exists a unique solution of (2.1).

Proof In the case of homogeneous isotropic matrix, one can easily see by separation of variable that $p_1 \in H^{2+\epsilon}(\Omega_1)$ and $p_2 \in H^{2+\epsilon}(\Omega_2)$ for any $\epsilon \in (0, 1/2)$. The existence and uniqueness of solution to (2.1) are direct consequences of Lax–Milgram Theorem since the bilinear form $a(\cdot, \cdot)$ satisfies the continuity and coercivity condition on $H_0^1(\Omega_1) \times H_0^1(\Omega_2) \times H_0^1(\Omega_{\gamma})$, where

$$\begin{aligned} a(\mathbf{p}, \mathbf{q}) &= \int_{\Omega_1} \mathbb{K}_1 \nabla p_1 \cdot \nabla q_1 dx dy dz + \int_{\Omega_2} \mathbb{K}_2 \nabla p_2 \cdot \nabla q_2 dx dy dz \\ &+ \int_{\Omega_\gamma} K_{\gamma\tau} d\nabla_\tau p_\gamma \cdot \nabla_\tau q_\gamma dx dy \\ &+ \alpha \int_{\Omega_\gamma} \left(p_\gamma - \frac{p_1 \mid_{\Omega_\gamma} + p_2 \mid_{\Omega_\gamma}}{2} \right) \left(q_\gamma - \frac{q_1 \mid_{\Omega_\gamma} + q_2 \mid_{\Omega_\gamma}}{2} \right) dx dy, \quad (2.2) \end{aligned}$$

$$(\mathbf{g}, \mathbf{q}) = \int_{\Omega_1} g_1 q_1 dx dy dz + \int_{\Omega_2} g_2 q_2 dx dy dz + \int_{\Omega_\gamma} g_\gamma q_\gamma dx dy.$$
(2.3)

Deringer

Let \mathcal{T}_h be a regular triangulation of Ω_p with a family of parallelepipeds K_l (l = 1, ..., N). Denote $h_K = \text{diam}(K)$ and $h = \max_{K \in \mathcal{T}_h} h_K$. Set $\mathcal{T}_{ih} = \mathcal{T}_h|_{\Omega_i}$ with $i = 1, 2, \gamma$. For simplicity, we assume the face Ω_{γ} is perpendicular to z-axis. The following new element can be extended to the cases where Ω_{γ} is perpendicular to x-axis or y-axis.

The reference element is defined as $\hat{K} = [-1, 1]^3$ with eight vertices

$$\begin{aligned} \hat{v}_1 &= (-1, -1, -1), \ \hat{v}_2 &= (-1, 1, -1), \ \hat{v}_3 &= (1, -1, -1), \\ \hat{v}_4 &= (1, 1, -1), & \hat{v}_5 &= (-1, -1, 1), \ \hat{v}_6 &= (-1, 1, 1), \\ \hat{v}_7 &= (1, -1, 1), & \hat{v}_8 &= (1, 1, 1). \end{aligned}$$

and

$$\hat{\mathbb{P}} = Q_1(\hat{K}) \bigoplus span\left\{\frac{(1-\hat{x}^2)(1-\hat{y}^2)}{32}\right\},\,$$

with

$$\widehat{\sum} = \left\{ \hat{q}(\hat{v}_j), \ j = 1, \dots, 8; \ \int_{\hat{K}} \frac{\partial^4 \hat{q}}{\partial \hat{x}^2 \hat{y}^2} d\hat{x} d\hat{y} d\hat{z} \right\}.$$

Then, the basis functions of new element on the reference \hat{K} are from $\hat{\mathbb{P}}$ on each unit, and the degrees of freedom are from $\hat{\Sigma}$ accordingly.

Let F_K be the affine mapping from \hat{K} to K and J_K be the Jacobi matrix of F_K . Based on the subdivision \mathcal{T}_h , the nonconforming finite element space $W_{h,i}$ is defined by

$$W_{h,i} = \begin{cases} w_h \in L^2(\Omega_i) : w_h|_K = \hat{w}_h(\hat{x}, \hat{y}, \hat{z}) \circ F_K^{-1}, \ \forall \hat{w}_h \in \hat{\mathbb{P}} \text{ and } K \in \mathcal{T}_{ih}(i = 1, 2); \\ w_h = 0 \text{ at the vertices belonging to } \partial \Omega_i \end{cases}.$$

Let $W_{h,\gamma} \subset H_0^1(\Omega_{\gamma})$ be the continuous piecewise linear polynomial space with respect to $\mathcal{T}_{\gamma h}$. A coupled scheme based on finite element approximation scheme for (2.1) is to find $\mathbf{p}_h = (p_{1h}, p_{2h}, p_{\gamma h}) \in W_{h,1} \times W_{h,2} \times W_{h,\gamma}$ satisfying that

$$a_h(\mathbf{p}_h, \mathbf{q}_h) = (\mathbf{g}, \mathbf{q}_h), \quad \forall \ \mathbf{q}_h = (q_{1h}, q_{2h}, q_{\gamma h}) \in W_{h,1} \times W_{h,2} \times W_{h,\gamma}.$$
(2.4)

where

$$a_{h}(\mathbf{p}_{h}, \mathbf{q}_{h}) = \sum_{K \in \mathcal{T}_{1h}} \int_{K} \mathbb{K}_{1} \nabla p_{1h} \cdot \nabla q_{1h} dx dy dz + \sum_{K \in \mathcal{T}_{2h}} \int_{K} \mathbb{K}_{2} \nabla p_{2h} \cdot \nabla q_{2h} dx dy dz + \sum_{E \in \mathcal{T}_{\gamma h}} \int_{E} K_{\gamma \tau} d\nabla_{\tau} p_{\gamma h} \cdot \nabla_{\tau} q_{\gamma h} dx dy + \alpha \sum_{E \in \mathcal{T}_{\gamma h}} \int_{E} \left(p_{\gamma h} - \frac{p_{1h} \mid \Omega_{\gamma} + p_{2h} \mid \Omega_{\gamma}}{2} \right) \left(q_{\gamma h} - \frac{q_{1h} \mid \Omega_{\gamma} + q_{2h} \mid \Omega_{\gamma}}{2} \right) dx dy.$$

$$(2.5)$$

For any $\mathbf{p}_h = (p_{1h}, p_{2h}, p_{\gamma h}) \in W_{h,1} \times W_{h,2} \times W_{h,\gamma}$, we introduce the norm

$$\|\mathbf{p}_{h}\|_{1,h} = \left(\sum_{K\in\mathcal{T}_{1h}} |p_{1h}|_{1,K}^{2}\right)^{1/2} + \left(\sum_{K\in\mathcal{T}_{2h}} |p_{2h}|_{1,K}^{2}\right)^{1/2} + \|p_{\gamma h}\|_{1,\Omega_{\gamma}}.$$
 (2.6)

D Springer

Lemma 2.1 Suppose $\hat{q} \in \hat{\mathbb{P}}$ vanishes at the eight vertices \hat{v}_j (j = 1, ..., 8) and the integral value defined as in $\widehat{\Sigma}$, then $\hat{q} \equiv 0$.

From the above lemma, we can define the new element $(\hat{K}, \hat{\mathbb{P}}, \widehat{\Sigma})$ over \hat{K} with nine degrees of freedom such that

- (1) \hat{K} is the reference cube,
- (2) $\hat{\mathbb{P}}$ is the shape function space,
- (3) $\widehat{\Sigma}$ is the set of degrees of freedom.

Lemma 2.2 The functions in $W_{h,i}$ (i = 1, 2) are continuous along both x-direction and y-direction, but discontinuous along the z-direction.

Proof By Lemma 2.2, \hat{q} is uniquely determined by

$$\hat{q}(\hat{x}, \hat{y}, \hat{z}) = \sum_{j=1}^{8} \hat{q}(\hat{v}_j) \hat{N}_j(\hat{x}, \hat{y}, \hat{z}) + \hat{N}_9(\hat{x}, \hat{y}, \hat{z}) \int_{\hat{K}} \frac{\partial^4 \hat{q}}{\partial \hat{x}^2 \hat{y}^2} d\hat{x} d\hat{y} d\hat{z},$$

where $\hat{N}_j(\hat{x}, \hat{y}, \hat{z}) \in Q_1(\hat{K})$ (for j = 1, ..., 8) and $\hat{N}_9 = \frac{(1 - \hat{x}^2)(1 - \hat{y}^2)}{32}$.

For any $q_h \in W_{h,p}$, we denote

$$\begin{aligned} q_{h}|_{K} &= \hat{q}_{h}|_{\hat{K}} \circ F_{K}^{-1} \\ &= \left(\sum_{j=1}^{8} \hat{q}_{h}(\hat{v}_{j})\hat{N}_{j}(\hat{x},\hat{y},\hat{z})\right) \circ F_{K}^{-1} + \left(\hat{N}_{9}(\hat{x},\hat{y},\hat{z})\int_{\hat{K}} \frac{\partial^{4}\hat{q}_{h}}{\partial\hat{x}^{2}\hat{y}^{2}}d\hat{x}d\hat{y}d\hat{z}\right) \circ F_{K}^{-1} \\ &:= \overline{q_{h}} + \widetilde{q}_{h}. \end{aligned}$$

$$(2.7)$$

Same as the functions in Q_1 finite element, $\overline{q_h}$ is continuous across each boundary face of the brick element and is called the conforming part of the new nonconforming finite element. The other part \tilde{q}_h is the nonconforming one of the new nonconforming finite element. It is easy to check \tilde{q}_h is continuous along the x-direction and y-direction. However, this part is discontinuous along the z-direction across the brick element boundary face. Therefore, any element $q_h \in W_{h,i}$ (i = 1, 2) are continuous along the x-direction and y-direction but discontinuous along the z-direction.

Lemma 2.3 For any $q_h \in W_{h,i}$ and $K \in \mathcal{T}_{ih}(i = 1, 2)$, there exists a positive constant C such that

$$|\tilde{q_h}|_{1,K} \le C|q_h|_{1,K},\tag{2.8}$$

$$|\overline{q_h}|_{1,K} \le C|q_h|_{1,K},\tag{2.9}$$

$$\|\widetilde{q_h}\|_{0,\partial K} \le Ch_K^{1/2} |\widetilde{q_h}|_{1,K}, \qquad (2.10)$$

where \tilde{q}_h and \overline{q}_h are the nonconforming part and conforming part of q_h , respectively.

Proof Using the parity of integrable functions and the definition (2.7),

$$\int_{\hat{K}} \frac{\partial \widehat{q_h}}{\partial \hat{x}} \frac{\partial \widehat{q_h}}{\partial \hat{x}} d\hat{x} d\hat{y} d\hat{z} = \int_{\hat{K}} \frac{\partial \widehat{q_h}}{\partial \hat{y}} \frac{\partial \widehat{q_h}}{\partial \hat{y}} d\hat{x} d\hat{y} d\hat{z} = 0.$$

Due to the fact that \widehat{q}_h has nothing to do with \hat{z} , we have

$$\int_{\hat{K}} \frac{\partial \widetilde{q_h}}{\partial \hat{z}} \frac{\partial \overline{q_h}}{\partial \hat{z}} d\hat{x} d\hat{y} d\hat{z} = 0.$$

Springer

Therefore, the conforming and nonconforming parts are orthogonal. Hence we can get the following equation,

$$\begin{aligned} |\hat{q}_{h}|_{1,\hat{K}}^{2} &= \int_{\hat{K}} \left(\left(\frac{\partial \widehat{q}_{h}}{\partial \hat{x}} + \frac{\partial \widehat{q}_{h}}{\partial \hat{x}} \right)^{2} + \left(\frac{\partial \widehat{q}_{h}}{\partial \hat{y}} + \frac{\partial \widehat{q}_{h}}{\partial \hat{y}} \right)^{2} + \left(\frac{\partial \widehat{q}_{h}}{\partial \hat{z}} + \frac{\partial \widehat{q}_{h}}{\partial \hat{z}} \right)^{2} \right) d\hat{x} d\hat{y} d\hat{z} \\ &= |\widehat{q}_{h}^{2}|_{1,\hat{K}}^{2} + |\widehat{q}_{h}^{2}|_{1,\hat{K}}^{2}. \end{aligned}$$

$$(2.11)$$

By the regularity of mesh and the property of affine transforming and (2.11), we get

$$\begin{split} |\widetilde{q_h}|_{1,K}^2 &= \int_{\widehat{K}} \left(\left(\frac{\partial \widehat{q_h}}{\partial \hat{x}} \frac{\partial \hat{x}}{\partial x} + \frac{\partial \widehat{q_h}}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial x} + \frac{\partial \widehat{q_h}}{\partial \hat{z}} \frac{\partial \hat{x}}{\partial x} \right)^2 \\ &+ \left(\frac{\partial \widehat{q_h}}{\partial \hat{x}} \frac{\partial \hat{x}}{\partial y} + \frac{\partial \widehat{q_h}}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial y} + \frac{\partial \widehat{q_h}}{\partial \hat{z}} \frac{\partial \hat{y}}{\partial y} \right)^2 \\ &+ \left(\frac{\partial \widehat{q_h}}{\partial \hat{x}} \frac{\partial \hat{x}}{\partial z} + \frac{\partial \widehat{q_h}}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} + \frac{\partial \widehat{q_h}}{\partial \hat{z}} \frac{\partial \hat{z}}{\partial y} \right)^2 \right) |J_K| d\hat{x} d\hat{y} d\hat{z} \\ &\leq C |q_h|_{1,K}^2. \end{split}$$

$$(2.12)$$

Using the same techniques as in (2.12), we have

$$|\overline{q_h}|_{1,K} \le C |q_h|_{1,K}.$$

From the definition of $\widehat{q_h}$ and simple computation, we see that

$$\|\widehat{q}_{h}^{2}\|_{0,\hat{K}}^{2} = \frac{1}{450} \left(\int_{\hat{K}} \frac{\partial^{4} \hat{q}_{h}}{\partial \hat{x}^{2} \hat{y}^{2}} d\hat{x} d\hat{y} d\hat{z} \right)^{2}, \qquad (2.13)$$

$$|\widehat{q}_{\hat{h}}|^2_{1,\hat{K}} = \frac{1}{90} \left(\int_{\hat{K}} \frac{\partial^4 \hat{q}_{\hat{h}}}{\partial \hat{x}^2 \hat{y}^2} d\hat{x} d\hat{y} d\hat{z} \right)^2.$$
(2.14)

It follows from affine transforming and (2.13) that

$$\sum_{E\in\partial K} \int_{E} \widetilde{q}_{h}^{2} ds \leq Ch_{K}^{2} \int_{-1}^{1} \int_{-1}^{1} \left(\widehat{q}_{h}(\hat{x}, \hat{y}, -1) + \widehat{q}_{h}(\hat{x}, \hat{y}, 1) \right)^{2} d\hat{x} d\hat{y}$$

$$\leq C \frac{h_{K}^{2}}{450} \left(\int_{\hat{K}} \frac{\partial^{4} \hat{q}_{h}}{\partial \hat{x}^{2} \hat{y}^{2}} d\hat{x} d\hat{y} d\hat{z} \right)^{2}$$

$$\leq Ch_{K} |\widetilde{q}_{h}|_{1,K}^{2}.$$

$$(2.15)$$

Theorem 2.2 There exists a unique solution $\mathbf{p}_h = (p_{1h}, p_{2h}, p_{\gamma h}) \in W_{h,1} \times W_{h,2} \times W_{h,\gamma}$ satisfying the approximation scheme (2.4).

Proof Since the finite element subspaces $W_{h,\gamma} \subset H_0^1(\Omega_{\gamma})$ consists of continuous piecewise polynomials, we have $p_{\gamma h} \subset H_0^1(\Omega_{\gamma})$. Then by using the assumptions on hydraulic conductivity tensor \mathbb{K}_1 , \mathbb{K}_2 and the constant $K_{\gamma\tau}$, we get that for any a $\mathbf{p}_h = (p_{1h}, p_{2h}, p_{\gamma h}) \in W_{h,1} \times W_{h,2} \times W_{h,\gamma}$,

$$a_{h}(\mathbf{p}_{h},\mathbf{p}_{h}) = \sum_{K\in\mathcal{T}_{1h}} \int_{K} \mathbb{K}_{1}\nabla p_{1h} \cdot \nabla p_{1h} dx dy dz + \sum_{K\in\mathcal{T}_{2h}} \int_{K} \mathbb{K}_{2}\nabla p_{2h} \cdot \nabla p_{2h} dx dy dz$$

+
$$\sum_{E\in\mathcal{T}_{\gamma h}} \int_{E} K_{\gamma\tau} d\nabla_{\tau} p_{\gamma h} \cdot \nabla_{\tau} p_{\gamma h} dx dy$$

+
$$\alpha \sum_{E\in\mathcal{T}_{\gamma h}} \int_{E} \left(p_{\gamma h} - \frac{p_{1h} |_{\Omega_{\gamma}} + p_{2h} |_{\Omega_{\gamma}}}{2} \right) \left(p_{\gamma h} - \frac{p_{1h} |_{\Omega_{\gamma}} + p_{2h} |_{\Omega_{\gamma}}}{2} \right) dx dy$$

$$\geq C \left(\sum_{K\in\mathcal{T}_{1h}} |p_{1h}|_{1,K}^{2} + \sum_{K\in\mathcal{T}_{2h}} |p_{2h}|_{1,K}^{2} + ||p_{\gamma h}||_{1,\Omega_{\gamma}}^{2} \right)$$

$$\geq C \left(\left(\sum_{K\in\mathcal{T}_{1h}} |p_{1h}|_{1,K}^{2} \right)^{1/2} + \left(\sum_{K\in\mathcal{T}_{2h}} |p_{2h}|_{1,K}^{2} \right)^{1/2} + ||p_{\gamma h}||_{1,\Omega_{\gamma}} \right)^{2}. \quad (2.16)$$

Therefore, the approximation bilinear form (2.5) is uniformly elliptic in space $W_{h,1} \times W_{h,2} \times W_{h,\gamma}$.

By using Lemma 2.2, Lemma 2.3 and trace theorem for the conforming part $\overline{p_{ih}}$, we get for i = 1, 2,

$$\sum_{E \in \partial K} \int_{E} p_{ih}^{2} ds \leq \frac{1}{2} \sum_{E \in \partial K} \int_{E} (\widetilde{p_{ih}}^{2} + \overline{p_{ih}}^{2}) ds$$
$$\leq C \left(h_{K} |\widetilde{p_{ih}}|_{1,K}^{2} + \sum_{E \in \partial K} \int_{E} \overline{p_{ih}}^{2} ds \right) \leq C |p_{ih}|_{1,K}.$$
(2.17)

Therefore, for any $\mathbf{q}_h = (q_{1h}, q_{2h}, q_{\gamma h}) \in W_{h,1} \times W_{h,2} \times W_{h,\gamma}$, it follows from (2.5), (2.6), Hölder inequality and trace theorem for the conforming parts that

$$a_h(\mathbf{p}_h,\mathbf{q}_h)$$

$$\begin{split} &= \sum_{K \in \mathcal{T}_{1h}} \int_{K} \mathbb{K}_{1} \nabla p_{1h} \cdot \nabla q_{1h} dx dy dz + \sum_{K \in \mathcal{T}_{2h}} \int_{K} \mathbb{K}_{2} \nabla p_{2h} \cdot \nabla q_{2h} dx dy dz \\ &+ \sum_{E \in \mathcal{T}_{Yh}} \int_{E} K_{Y\tau} d\nabla_{\tau} p_{Yh} \cdot \nabla_{\tau} q_{Yh} dx dy \\ &+ \alpha \sum_{E \in \mathcal{T}_{Yh}} \int_{E} \left(p_{Yh} - \frac{p_{1h} |\Omega_{Y}| + p_{2h} |\Omega_{Y}|}{2} \right) \left(q_{Yh} - \frac{q_{1h} |\Omega_{Y}| + q_{2h} |\Omega_{Y}|}{2} \right) dx dy \\ &\leq C \left(\left(\sum_{K \in \mathcal{T}_{1h}} |p_{1h}|_{1,K}^{2} \right)^{1/2} \left(\sum_{K \in \mathcal{T}_{1h}} |q_{1h}|_{1,K}^{2} \right)^{1/2} + \left(\sum_{K \in \mathcal{T}_{2h}} |p_{2h}|_{1,K}^{2} \right)^{1/2} \left(\sum_{K \in \mathcal{T}_{2h}} |q_{2h}|_{1,K}^{2} \right)^{1/2} \\ &+ \|p_{Yh}\|_{1,\Omega_{Y}} \|q_{Yh}\|_{1,\Omega_{Y}} + \left(\sum_{K \in \mathcal{T}_{1h}} |p_{1h}|_{1,K}^{2} \right)^{1/2} \|q_{Yh}\|_{1,\Omega_{Y}} \\ &+ \left(\sum_{K \in \mathcal{T}_{2h}} |p_{2h}|_{1,K}^{2} \right)^{1/2} \|q_{Yh}\|_{1,\Omega_{Y}} \\ &+ \|p_{Yh}\|_{1,\Omega_{Y}} \left(\sum_{K \in \mathcal{T}_{1h}} |q_{1h}|_{1,K}^{2} \right)^{1/2} + \|p_{Yh}\|_{1,\Omega_{Y}} \left(\sum_{K \in \mathcal{T}_{2h}} |q_{2h}|_{1,K}^{2} \right)^{1/2} \right) \end{split}$$

Deringer

$$\leq C \left(\left(\sum_{K \in \mathcal{T}_{1h}} |p_{1h}|_{1,K}^2 \right)^{1/2} + \left(\sum_{K \in \mathcal{T}_{2h}} |p_{2h}|_{1,K}^2 \right)^{1/2} + \|p_{\gamma h}\|_{1,\Omega_{\gamma}} \right) \\ \times \left(\left(\sum_{K \in \mathcal{T}_{1h}} |q_{1h}|_{1,K}^2 \right)^{1/2} + \left(\sum_{K \in \mathcal{T}_{2h}} |q_{2h}|_{1,K}^2 \right)^{1/2} + \|q_{\gamma h}\|_{1,\Omega_{\gamma}} \right) \\ = C_2 \|\mathbf{p}_h\|_{1,h} \|\mathbf{q}_h\|_{1,h}.$$

$$(2.18)$$

By the Lax–Milgram Theorem, there exists a unique solution $\mathbf{p}_h \in W_{h,1} \times W_{h,2} \times W_{h,\gamma}$ of (2.4).

3 Error Estimates

First, we introduce some interpolation operators for the new nonconforming element on the domain Ω_i (i = 1, 2) as follows. On the reference element \hat{K} , denote the interpolation operator $\hat{\Pi}_K : H^2(\hat{K}) \to P_2(\hat{K})$ by

$$\hat{\Pi}_{K}\hat{q} = \sum_{j=1}^{8} \hat{N}_{j}(\hat{x}, \hat{y}, \hat{z})\hat{q}(\hat{v}_{j}).$$
(3.1)

On the physical element K, the interpolation operators are defined as

$$\Pi_K : H^2(K) \to P_2(K) \text{ with } \Pi_K q = (\hat{\Pi}_K \hat{q}) \circ F_K^{-1}.$$

Then we define

$$\Pi_i : H^2(\Omega_i) \to q_h, \text{ and } \Pi_i|_K = \Pi_K, \text{ with } i = 1, 2.$$
(3.2)

Due to the interpolation property, we have that

$$|q_i - \Pi_i q_i|_{k,h} \le Ch^{l-k} |q_i|_{l,h}, \qquad 0 \le k \le l \le 2, \ i = 1, 2.$$
(3.3)

For the fracture domain Ω_{γ} , the continuous piecewise linear interpolation operator Π_{γ} : $H^2(\Omega_{\gamma}) \to W_{h,\gamma}$ has the property that

$$\|q_{\gamma} - \Pi_{\gamma} q_{\gamma}\|_{1,\Omega_{\gamma}} \le Ch \|q_{\gamma}\|_{2,\Omega_{\gamma}}.$$
(3.4)

Lemma 3.1 Assume $\mathbf{p} = (p_1, p_2, p_\gamma)$ and $\mathbf{p}_h = (p_{1h}, p_{2h}, p_{\gamma h})$ be defined by (2.1) and (2.4), respectively, we have the following error estimate

$$\|\mathbf{p} - \mathbf{p}_{h}\|_{1,h} \leq C \left(\inf_{\mathbf{q}_{h} \in W_{h,1} \times W_{h,2} \times W_{h,\gamma}} \|\mathbf{p} - \mathbf{q}_{h}\|_{1,h} + \sup_{\mathbf{v}_{h} \in (W_{h,1} \times W_{h,2} \times W_{h,\gamma}) \setminus \{\mathbf{0}\}} \frac{|E_{h}(\mathbf{p}, \mathbf{v}_{h})|}{\|\mathbf{v}_{h}\|_{1,h}} \right),$$
(3.5)

where $\mathbf{v}_h = (v_{1h}, v_{2h}, v_{\gamma h})$ and

🖄 Springer

$$E_{h}(\mathbf{p}, \mathbf{v}_{h}) = \sum_{K \in \mathcal{T}_{1h}} \int_{\partial K} \mathbb{K}_{1} \nabla p_{1} \cdot v_{1} \widetilde{v_{1h}} ds + \sum_{K \in \mathcal{T}_{2h}} \int_{\partial K} \mathbb{K}_{2} \nabla p_{2} \cdot v_{2} \widetilde{v_{2h}} ds$$
$$-\alpha \sum_{E \in \mathcal{T}_{\gamma h}} \int_{E} \left(p_{\gamma} - \frac{p_{1} \mid_{\Omega_{\gamma}} + p_{2} \mid_{\Omega_{\gamma}}}{2} \right) \left(\frac{\widetilde{v_{1h}} \mid_{\Omega_{\gamma}} + \widetilde{v_{2h}} \mid_{\Omega_{\gamma}}}{2} \right) dx dy,$$
(3.6)

and v_i is the unit outer normal vector of ∂K_i for $K_i \in T_{ih}$ with i = 1, 2.

Proof Combining (2.1) and the nonconforming element scheme (2.4), we have

$$a_{h}(\mathbf{p} - \mathbf{p}_{h}, \mathbf{q}_{h}) = a_{h}(\mathbf{p}, \mathbf{q}_{h}) - (\mathbf{g}, \mathbf{q}_{h})$$

$$= \sum_{K \in \mathcal{T}_{1h}} \int_{\partial K} \mathbb{K}_{1} \nabla p_{1} \cdot v_{1} \widetilde{q_{1h}} \, ds + \sum_{K \in \mathcal{T}_{2h}} \int_{\partial K} \mathbb{K}_{2} \nabla p_{2} \cdot v_{2} \widetilde{q_{2h}} \, ds$$

$$+ \alpha \sum_{E \in \mathcal{T}_{\gamma h}} \int_{E} \left(p_{\gamma} - \frac{p_{1} \mid \Omega_{\gamma} + p_{2} \mid \Omega_{\gamma}}{2} \right) \left(\frac{\widetilde{q_{1h}} \mid \Omega_{\gamma} + \widetilde{q_{2h}} \mid \Omega_{\gamma}}{2} \right) dx dy$$

$$:= E_{h}(\mathbf{p}, \mathbf{q}_{h}). \tag{3.7}$$

According to the continuity and coercivity of of $a_h(\cdot, \cdot)$ and (3.7), we have that

$$\|\mathbf{q}_{h} - \mathbf{p}_{h}\|_{1,h}^{2} \leq C \|\mathbf{p} - \mathbf{q}_{h}\|_{1,h} \|\mathbf{q}_{h} - \mathbf{p}_{h}\|_{1,h} + E_{h}(\mathbf{p}, \mathbf{q}_{h} - \mathbf{p}_{h}).$$
(3.8)

Hence we get

$$\|\mathbf{q}_{h} - \mathbf{p}_{h}\|_{1,h} \leq C \left(\|\mathbf{p} - \mathbf{v}_{h}\|_{1,h} + \sup_{\substack{\mathbf{v}_{h} = (v_{1h}, v_{2h}, v_{\gamma h}) \\ \in (W_{h,1} \times W_{h,2} \times W_{h,\gamma}) \setminus \{\mathbf{0}\}}} \frac{|E_{h}(\mathbf{p}, \mathbf{v}_{h})|}{\|\mathbf{v}_{h}\|_{1,h}} \right).$$
(3.9)

Finally, we can obtain (3.5) directly by using triangular inequality. **Lemma 3.2** For any $q_h \in W_{h,i}$ (i = 1, 2), we have

$$\|\widetilde{q_h}\|_{0,K} \le Ch|q_h|_{1,K}.$$
(3.10)

Proof It directly follows from the affine transformation (2.11) and (2.13) that

$$\|\widetilde{q}_{h}\|_{0,K}^{2} \leq Ch_{K}^{3} \|\widehat{q}_{h}\|_{0,\hat{K}}^{2}$$

$$\leq Ch_{K}^{3} |\widehat{q}_{h}|_{1,\hat{K}}^{2}$$

$$\leq Ch_{K}^{3} |\widehat{q}_{h}|_{1,\hat{K}}^{2}$$

$$\leq Ch^{2} |q_{h}|_{1,K}^{2}.$$
(3.11)

Note that \tilde{q}_h is not a constant function due to the fact that it has nonconforming and discontinuous properties.

Theorem 3.1 Let $\mathbb{K}_1 = k_1 \mathbb{I}$, $\mathbb{K}_2 = k_2 \mathbb{I}$, $\mathbf{p} = (p_1, p_2, p_\gamma)$ and $\mathbf{p}_h = (p_{1h}, p_{2h}, p_{\gamma h})$ be defined by (2.1) and (2.4), respectively, then we get

$$\|\mathbf{p} - \mathbf{p}_h\|_{1,h} \le Ch\left(|p_1|_{2,h} + |p_2|_{2,h} + \|p_\gamma\|_{2,\Omega_\gamma}\right),\tag{3.12}$$

where the constant *C* depends on the hydraulic conductivity tensors \mathbb{K}_1 , \mathbb{K}_2 , the conduct constant $\mathbb{K}_{\gamma\tau}$, the pressures p_1 , p_2 , p_{γ} and the subdivision of mesh grids.

Proof By Lemma 3.1, we will need to estimate the two terms on the right hand of (3.5). For the first term which corresponds to the interpolation error, we can applied (3.3) and (3.4) to get

$$\inf_{\mathbf{p}_{h}\in W_{h,1}\times W_{h,2}\times W_{h,\gamma}} \|\mathbf{p} - \mathbf{p}_{h}\|_{1,h}
\leq |p_{1} - \Pi_{1}p_{1}|_{1,h} + |p_{2} - \Pi_{2}p_{2}|_{1,h} + \|p_{\gamma} - \Pi_{\gamma}p_{\gamma}\|_{1,\Omega_{\gamma}}
\leq Ch\left(\sum_{K\in\mathcal{T}_{1h}} |p_{1}|_{2,K} + \sum_{K\in\mathcal{T}_{2h}} |p_{2}|_{2,K} + \|p_{\gamma}\|_{2,\Omega_{\gamma}}\right).$$
(3.13)

Let $v_1 = (v_{11}, v_{12}, v_{13})$ and $v_2 = (v_{21}, v_{22}, v_{23})$ be the unit outer normal vectors to the faces of physical element *K*,

According to the definition of $\widetilde{q_{1h}}$ and Fig. 2, we see that $\widetilde{q_{1h}}|_{E_1} = \widetilde{q_{1h}}|_{E_2} = \widetilde{q_{1h}}|_{E_3} = \widetilde{q_{1h}}|_{E_4} = 0$ and $\widetilde{q_{1h}}|_{E_5} = \widetilde{q_{1h}}|_{E_6}$. Therefore,

$$\int_{\partial K} \widetilde{q_{1h}} \nu_{11} = \int_{\partial K} \widetilde{q_{1h}} \nu_{12} = \int_{\partial K} \widetilde{q_{1h}} \nu_{13} = 0.$$
(3.14)

Similarly,

$$\int_{\partial K} \widetilde{q_{2h}} v_{21} = \int_{\partial K} \widetilde{q_{2h}} v_{22} = \int_{\partial K} \widetilde{q_{2h}} v_{23} = 0.$$
(3.15)

For the second term on the right-hand side of (3.5), we apply Lemma 2.3, Lemma 3.2, (3.14), (3.15) to obtain that

$$\begin{split} |E_{h}(\mathbf{p},\mathbf{q}_{h})| \\ &= \left| \sum_{K \in \mathcal{T}_{1h}} \int_{\partial K} \mathbb{K}_{1} \nabla p_{1} \cdot v_{1} \widetilde{q_{1h}} ds + \sum_{K \in \mathcal{T}_{2h}} \int_{\partial K} \mathbb{K}_{2} \nabla p_{2} \cdot v_{2} \widetilde{q_{2h}} ds \right. \\ &\left. - \alpha \sum_{E \in \mathcal{T}_{\gamma h}} \int_{E} \left(p_{\gamma} - \frac{p_{1} \mid_{\Omega_{\gamma}} + p_{2} \mid_{\Omega_{\gamma}}}{2} \right) \left(\frac{\widetilde{q_{1h}} \mid_{\Omega_{\gamma}} + \widetilde{q_{2h}} \mid_{\Omega_{\gamma}}}{2} \right) dx dy \right| \\ &= \left| \sum_{E \in \mathcal{T}_{\gamma h}} \int_{E} \mathbb{K}_{1} \nabla p_{1} \cdot v_{1} \widetilde{q_{1h}} ds + \sum_{E \in \mathcal{T}_{\gamma h}} \int_{E} \mathbb{K}_{2} \nabla p_{2} \cdot v_{2} \widetilde{q_{2h}} ds \right. \end{split}$$

Deringer

$$-\alpha \sum_{E \in \mathcal{T}_{Yh}} \int_{E} \left(p_{Y} - \frac{p_{1} |_{\Omega_{Y}} + p_{2} |_{\Omega_{Y}}}{2} \right) \left(\frac{\widetilde{q_{1h}} |_{\Omega_{Y}} + \widetilde{q_{2h}} |_{\Omega_{Y}}}{2} \right) dxdy$$

$$+ \sum_{E \in \partial \mathcal{T}_{1h} \setminus \mathcal{T}_{Yh}} \int_{E} \mathbb{K}_{1} \nabla p_{1} \cdot v_{1} \widetilde{q_{1h}} ds + \sum_{E \in \partial \mathcal{T}_{2h} \setminus \mathcal{T}_{Yh}} \int_{E} \mathbb{K}_{2} \nabla p_{2} \cdot v_{2} \widetilde{q_{2h}} ds \right|$$

$$= \left| \sum_{E \in \partial \mathcal{T}_{1h} \setminus \mathcal{T}_{Yh}} \int_{E} \mathbb{K}_{1} \nabla p_{1} \cdot v_{1} \widetilde{q_{1h}} ds + \sum_{E \in \partial \mathcal{T}_{2h} \setminus \mathcal{T}_{Yh}} \int_{E} \mathbb{K}_{2} \nabla p_{2} \cdot v_{2} \widetilde{q_{2h}} ds \right|$$

$$\leq C \left(\left| \sum_{E \in \partial \mathcal{T}_{1h} \setminus \mathcal{T}_{Yh}} \int_{E} \left(\frac{\partial p_{1}}{\partial x} v_{11} \widetilde{q_{1h}} + \frac{\partial p_{1}}{\partial y} v_{12} \widetilde{q_{1h}} + \frac{\partial p_{1}}{\partial z} v_{13} \widetilde{q_{1h}} \right) ds \right|$$

$$+ \left| \sum_{E \in \partial \mathcal{T}_{2h} \setminus \mathcal{T}_{Yh}} \int_{E} \left(\frac{\partial p_{2}}{\partial x} v_{21} \widetilde{q_{2h}} + \frac{\partial p_{2}}{\partial y} v_{22} \widetilde{q_{2h}} + \frac{\partial p_{2}}{\partial z} v_{23} \widetilde{q_{2h}} \right) ds \right|$$

$$+ \left(\frac{\partial p_{1}}{\partial z} - M_{1} \left(\frac{\partial p_{1}}{\partial x} \right) \right) \widetilde{q_{1h}} v_{13} \right) ds \right| + \left| \sum_{E \in \partial \mathcal{T}_{2h} \setminus \mathcal{T}_{Yh}} \int_{E} \left(\left(\frac{\partial p_{2}}{\partial x} - M_{1} \left(\frac{\partial p_{1}}{\partial x} \right) \right) \widetilde{q_{1h}} v_{12} + \left(\frac{\partial p_{2}}{\partial y} - M_{2} \left(\frac{\partial p_{2}}{\partial x} \right) \right) \widetilde{q_{2h}} v_{22} + \left(\frac{\partial p_{2}}{\partial z} - M_{2} \left(\frac{\partial p_{2}}{\partial z} \right) \right) \widetilde{q_{2h}} v_{21} + \left(\frac{\partial p_{2}}{\partial y} - M_{2} \left(\frac{\partial p_{2}}{\partial y} \right) \right) \widetilde{q_{2h}} v_{22} + \left(\frac{\partial p_{2}}{\partial z} - M_{2} \left(\frac{\partial p_{2}}{\partial z} \right) \right) \widetilde{q_{2h}} v_{23} \right) ds \right| \right)$$

$$\leq Ch \left(\sum_{K \in \mathcal{T}_{1h}} h_{K} |p_{1}|_{2,K} |q_{h}|_{1,K} + \sum_{K \in \mathcal{T}_{2h}} h_{K} |p_{2}|_{2,K} |q_{h}|_{1,K} \right), \qquad (3.16)$$

where $M_i(\varphi) = \sum_{K \in \mathcal{T}_{ih}} \sum_{E \in \partial K} \frac{1}{\text{meas}(E)} \int_E \varphi ds$ with i = 1, 2. Finally, the error estimate (3.12) follows from (3.5), (3.13) and (3.16).

Lemma 3.3 For (q_1, q_2, q_γ) and $(q_{1h}, q_{2h}, q_{\gamma h})$ defined as in (2.1) and (2.4), we have

$$|\widetilde{q_{ih}}|_{1,K} \le Ch(|q_1|_{2,h} + |q_2|_{2,h} + ||q_\gamma||_{2,\Omega_\gamma}),$$
(3.17)

for i = 1, 2.

Proof Let $\varphi_{ih} = q_{ih} - \prod_i q_i$ for i = 1, 2, then $\widetilde{\varphi_{ih}} = \widetilde{q_{ih}}$. By Lemma 2.3, Theorem 3.1 and (3.3),

$$\begin{aligned} |\widetilde{q_{ih}}|_{1,K} &= |\widetilde{\varphi_{ih}}|_{1,K} \leq C |\varphi_{ih}|_{1,K} \\ &\leq C |q_{ih} - \Pi_i q_i|_{1,K} \\ &\leq C |q_{ih} - q_i + q_i - \Pi_i q_i|_{1,K} \\ &\leq C h(|q_1|_{2,h} + |q_2|_{2,h} + ||q_\gamma||_{2,\Omega_{\gamma}}). \end{aligned}$$
(3.18)

The following theorem gives the L^2 norm error estimate.

🖄 Springer

Theorem 3.2 Suppose $\mathbb{K}_1 = k_1 \mathbb{I}$, $\mathbb{K}_2 = k_2 \mathbb{I}$, $\mathbf{p} = (p_1, p_2, p_\gamma)$ and $\mathbf{p}_h = (p_{1h}, p_{2h}, p_{\gamma h})$ are defined by (2.1) and (2.4), respectively. We have

$$\|\mathbf{p} - \mathbf{p}_h\|_{0,\Omega} \le Ch^2 \left(|p_1|_{2,h} + |p_2|_{2,h} + \|p_\gamma\|_{2,\Omega_\gamma} \right), \tag{3.19}$$

where the constant *C* depends on the hydraulic conductivity tensors \mathbb{K}_1 , \mathbb{K}_2 , the conduct constant $\mathbb{K}_{\gamma\tau}$, the pressures p_1 , p_2 , p_{γ} and the subdivision of mesh grids.

Proof Following the idea of Aubin–Nitsche method [24,26–28], we let $\Psi = (\psi_1, \psi_2, \psi_\gamma) \in L^2(\Omega_1) \times L^2(\Omega_2) \times L^2(\Omega_\gamma)$ and consider the following adjoint problem for $\Phi = (\phi_1, \phi_2, \phi_\gamma) \in H_0^1(\Omega_1) \times H_0^1(\Omega_2) \times H_0^1(\Omega_\gamma)$:

$$\begin{cases} -\operatorname{div}(\mathbb{K}_{i}\nabla\phi_{i}) = \psi_{i} & \text{in } \Omega_{i}, \quad i = 1, 2, \\ -\operatorname{div}_{\tau}(K_{\gamma\tau}d\nabla_{\tau}\phi_{\gamma}) = \alpha \left(\frac{\phi_{1}|_{\Omega_{\gamma}} + \phi_{2}|_{\Omega_{\gamma}}}{2} - \phi_{\gamma}\right) + \psi_{\gamma} & \text{in } \Omega_{\gamma}, \\ \mathbb{K}_{1}\nabla\phi_{1} \cdot \mathbf{n}_{1}|_{\Omega_{\gamma}} + \mathbb{K}_{2}\nabla\phi_{2} \cdot \mathbf{n}_{2}|_{\Omega_{\gamma}} = \alpha \left(\phi_{\gamma} - \frac{\phi_{1}|_{\Omega_{\gamma}} + \phi_{2}|_{\Omega_{\gamma}}}{2}\right) & \text{in } \Omega_{\gamma}, \\ \phi_{i} = \vartheta_{i} & \text{on } \Gamma_{i}, \quad i = 1, 2, \gamma \end{cases}$$

$$(3.20)$$

with the following regularity estimate

$$\|\phi_1\|_{2,\Omega_1} + \|\phi_2\|_{2,\Omega_2} + \|\phi_\gamma\|_{2,\Omega_\gamma} \le C(\|\psi_1\|_{0,\Omega_1} + \|\psi_2\|_{0,\Omega_2} + \|\psi_\gamma\|_{0,\Omega_\gamma}).$$
(3.21)

By Green's formula, (2.4) and the fact that $p_i, \overline{p_{ih}} \in C^0(\Omega_i)$ with i = 1, 2, we have

$$(\Psi, \mathbf{p} - \mathbf{p}_{h}) = -\sum_{K \in \mathcal{T}_{1h}} \int_{K} \operatorname{div}(\mathbb{K}_{1} \nabla \phi_{1})(p_{1} - p_{1h}) dx dy dz$$

$$-\sum_{K \in \mathcal{T}_{2h}} \int_{K} \operatorname{div}(\mathbb{K}_{2} \nabla \phi_{2})(p_{2} - p_{2h}) dx dy dz$$

$$-\sum_{E \in \mathcal{T}_{Yh}} \int_{E} \operatorname{div}_{\tau}(K_{Y\tau} d\nabla_{\tau} \phi_{Y})(p_{Y} - p_{Yh}) dx dy$$

$$+ \alpha \sum_{E \in \mathcal{T}_{Yh}} \int_{E} \left(\phi_{Y} - \frac{\phi_{1} \mid \Omega_{Y} + \phi_{2} \mid \Omega_{Y}}{2} \right) (p_{Y} - p_{Yh}) dx dy$$

$$= a_{h}(\Phi, \mathbf{p} - \mathbf{p}_{h}) - \sum_{E \in \partial \mathcal{T}_{1h} \setminus \mathcal{T}_{Yh}} \int_{E} \mathbb{K}_{1} \nabla \phi_{1} \cdot v_{1}(p_{1} - p_{1h}) ds$$

$$- \sum_{E \in \partial \mathcal{T}_{2h} \setminus \mathcal{T}_{Yh}} \int_{E} \mathbb{K}_{2} \nabla \phi_{2} \cdot v_{2}(p_{2} - p_{2h}) ds. \qquad (3.22)$$

Next, we estimate the right-hand side of (3.22).

According to Theorem 2.2, (2.6) and (3.21), we have

$$|a_{h}(\Phi, \mathbf{p} - \mathbf{p}_{h})| \leq C \|\Phi - \Pi\Phi\|_{1,h} \|\mathbf{p} - \mathbf{p}_{h}\|_{1,h} \leq Ch(|\phi_{1}|_{2,\Omega_{1}} + |\phi_{2}|_{2,\Omega_{2}} + \|\phi_{\gamma}\|_{2,\Omega_{\gamma}}) \|\mathbf{p} - \mathbf{p}_{h}\|_{1,h} \leq Ch^{2} \|\Psi\|_{0,\Omega} (|p_{1}|_{2,h} + |p_{2}|_{2,h} + \|p_{\gamma}\|_{2,\Omega_{\gamma}}).$$
(3.23)

Deringer

By combining the fact that $\int_K \nabla p_{ih} dx dy dz = 0$, Green's formula, Lemma 2.3, Lemma 3.2, Theorem 3.1 and (3.21), we have

$$\begin{split} &\sum_{E\in\partial T_{1h}\setminus T_{\gamma h}} \int_{E} \mathbb{K}_{1} \nabla \phi_{1} \cdot v_{1}(p_{1}-p_{1h}) ds + \sum_{E\in\partial T_{2h}\setminus T_{\gamma h}} \int_{E} \mathbb{K}_{2} \nabla \phi_{2} \cdot v_{2}(p_{2}-p_{2h}) ds \\ &\leq \left| \sum_{K\in T_{1h}} \int_{K} \operatorname{div}(\mathbb{K}_{1} \nabla \phi_{1})(p_{1}-p_{1h}) dx dy dz - \sum_{K\in T_{1h}} \int_{K} \mathbb{K}_{1} \nabla \phi_{1} \cdot \nabla (p_{1}-p_{1h}) dx dy dz \right| \\ &+ \left| \sum_{K\in T_{2h}} \int_{K} \operatorname{div}(\mathbb{K}_{2} \nabla \phi_{2})(p_{2}-p_{2h}) dx dy dz - \sum_{K\in T_{2h}} \int_{K} \mathbb{K}_{2} \nabla \phi_{2} \cdot \nabla (p_{2}-p_{2h}) dx dy dz \right| \\ &= \left| \sum_{K\in T_{1h}} \int_{K} \operatorname{div}(\mathbb{K}_{1} \nabla \phi_{1}) \widetilde{p_{1h}} dx dy dz - \sum_{K\in T_{1h}} \int_{K} (\mathbb{K}_{1} \nabla \phi_{1}-M_{1}(\mathbb{K}_{1} \nabla \phi_{1})) \cdot \nabla \widetilde{p_{1h}} dx dy dz \right| \\ &+ \left| \sum_{K\in T_{2h}} \int_{K} \operatorname{div}(\mathbb{K}_{2} \nabla \phi_{2}) \widetilde{p_{2h}} dx dy dz - \sum_{K\in T_{2h}} \int_{K} (\mathbb{K}_{2} \nabla \phi_{2} - M_{2}(\mathbb{K}_{2} \nabla \phi_{2})) \cdot \nabla \widetilde{p_{2h}} dx dy dz \right| \\ &\leq C \left(\sum_{K\in T_{1h}} (|\phi_{1}|_{2,K}|| \widetilde{p_{1h}}||_{0,K} + h|\phi_{1}|_{2,K}|| \widetilde{p_{1h}}||_{1,K}) \right) \\ &\leq Ch^{2} \left(\sum_{K\in T_{1h}} |\phi_{1}|_{2,K}(|p_{1}|_{2,h} + |p_{2}|_{2,h} + ||p_{\gamma}||_{2,\Omega_{\gamma}}) \right) \\ &\leq Ch^{2} \left(\sum_{K\in T_{1h}} |\phi_{1}|_{2,K}(|p_{1}|_{2,h} + |p_{2}|_{2,h} + ||p_{\gamma}||_{2,\Omega_{\gamma}}) \right) \\ &\leq Ch^{2} \left(\mathbb{V}_{W} \|_{0,\Omega}(|p_{1}|_{2,h} + |p_{2}|_{2,h} + ||p_{\gamma}||_{2,\Omega_{\gamma}}) \right)$$
(3.24)

Finally, in view of (3.22)-(3.24), and

$$\|\mathbf{p} - \mathbf{p}_h\|_{0,\Omega} = \sup_{\boldsymbol{\Psi} \in L^2(\Omega_1) \times L^2(\Omega_2) \times L^2(\Omega_\gamma)} \frac{(\boldsymbol{\Psi}, \mathbf{p} - \mathbf{p}_h)}{\|\boldsymbol{\Psi}\|_{0,\Omega}},$$
(3.25)

we arrive at (3.19).

Mesh	$\ e_p\ _{0,\Omega_p}$	$\ e_p\ _{1,h}$	$\ e_{\gamma}\ _{0,\Omega_{\gamma}}$	$\ e_{\gamma}\ _{1,\Omega_{\gamma}}$
$6 \times 6 \times 6$	2.1357e-01	3.6144e-01	3.3263e-01	5.4536e-01
$8 \times 8 \times 8$	1.2738e-01	2.5609e-01	1.9617e-01	4.0681e-01
$16 \times 16 \times 16$	3.8688e-02	1.2221e-01	5.6934e-02	2.0523e-01
$32 \times 32 \times 32$	1.1687e-02	6.2290e-02	1.5125e-02	1.0168e-01
$64 \times 64 \times 64$	3.3517e-03	3.0082e-02	4.3012e-03	5.1756e-02
Rate	1.7477	1.0405	1.8403	0.9957

Table 1 Errors of Example 1 on uniform cubic mesh

4 Numerical Examples

In this section, we investigate the numerical performance of the proposed numerical scheme for the following model problem

$$\begin{cases} -\operatorname{div}(\mathbb{K}_{i}\nabla p_{i}) = g_{i} & \text{in } \Omega_{i}, \quad i = 1, 2, \\ -\operatorname{div}_{\tau}(K_{\gamma\tau}d\nabla_{\tau}p_{\gamma}) = \alpha \left(\frac{p_{1}\mid_{\Omega_{\gamma}} + p_{2}\mid_{\Omega_{\gamma}}}{2} - p_{\gamma}\right) + g_{\gamma} & \text{in } \Omega_{\gamma}, \\ \mathbb{K}_{1}\nabla p_{1} \cdot \mathbf{n}_{1}\mid_{\Omega_{\gamma}} + \mathbb{K}_{1}\nabla p_{2} \cdot \mathbf{n}_{2}\mid_{\Omega_{\gamma}} = \alpha \left(p_{\gamma} - \frac{p_{1}\mid_{\Omega_{\gamma}} + p_{2}\mid_{\Omega_{\gamma}}}{2}\right) & \text{in } \Omega_{\gamma}, \end{cases}$$

$$(4.1)$$

with $d = 10^{-3}$.

Example 1 Consider the model (4.1) on the domain $\Omega_p = (0, 1) \times (0, 1) \times (-0.5, 0.5)$ and $\Omega_{\gamma} = (0, 1) \times (0, 1) \times \{z = 0\}$. We use the uniform cubic meshes for this example. The right-hand side functions are determined according to the following analytic solution

$$\begin{cases} p_{\gamma} = (10,001\cos(4\pi y)\sin(2\pi x))/10,000 & \text{in } \Omega_{\gamma}, \\ p_{1} = e^{2z}\sin(2\pi x)\cos(4\pi y) & \text{in } (0,1) \times (0,1) \times (-1/2,0] \in \Omega_{1}, \\ p_{2} = e^{-2z}\sin(2\pi x)\cos(4\pi y) & \text{in } (0,1) \times (0,1) \times [0,1/2) \in \Omega_{2}, \end{cases}$$

$$(4.2)$$

with $\mathbb{K}_{\gamma} = 10\mathbb{I}, \mathbb{K}_1 = \mathbb{K}_2 = \mathbb{I}$ and $\xi = 1, \alpha = 40,000$.

Let (e_p, e_{γ}) denote the errors obtained by applying the new nonconforming finite element scheme (2.1) to model problem (4.1). The results are listed in Table 1. The convergence rates are calculated by applying a least-square fitting method to the computational errors with the various mesh sizes.

In order to demonstrate the advantages of the new nonconforming element for solving the Darcy equation in three-dimensional porous media, we compare this approach with the ones using piecewise bilinear Q_1 element and Wilson nonconforming finite element. The numerical errors are plotted in Fig. 3. One can observe that the performance of the new element are better than the others with same nodal points and computational costs, due to the fact that the new nonconforming element meets the physical property of the asymptotic model (1.3). The volumetric slice plots of exact solution and numerical solution obtained by our new method are shown in Fig. 4.

Example 2 Consider the same domain defined as in Example 1, and use cuboid meshes for this example. Here, we choose the following analytic solution and determine the right-hand

Fig. 3 Log–log plots of errors of p_1 and p_2 for Example 1 on uniform cubic grid. Left: L^2 norm; right: H^1 norm

Fig. 4 Plots of solutions for Example 1 on uniform cubic grid. Left: exact solution \mathbf{p} ; right: numerical solution \mathbf{p}_h

side functions accordingly.

$$\begin{cases} p_{\gamma} = (11,987x^2y^2(x-1)^2(y-1)^2)/12,000 & \text{in } \Omega_{\gamma}, \\ p_1 = (1-10z)(x-x^2)^2(y-y^2)^2 & \text{in } (0,1) \times (0,1) \times (-1/2,0] \in \Omega_1, \\ p_2 = (1+0.1z)^3(x-x^2)^2(y-y^2)^2 & \text{in } (0,1) \times (0,1) \times [0,1/2) \in \Omega_2, \\ (4.3) \end{cases}$$
with $\mathbb{K}_1 = \mathbb{I}, \mathbb{K}_2 = 10\mathbb{I}, \xi = \frac{2}{3}, \alpha = 12,000, \mathbb{K}_{\gamma} = \begin{pmatrix} K_{\gamma\tau} & 0 \\ 0 & K_{\gamma\eta} \end{pmatrix} = \begin{pmatrix} 10 & 0 \\ 0 & 1 \end{pmatrix}.$

The errors obtained by the new nonconforming element are listed in Table 2. One can observe second-order convergence rate for L^2 norm and first-order convergence rate for H^1 norm, which are consistent with the theoretical results in Theorems 3.1 and 3.2. We also compare our new nonconforming element with Q_1 element and Wilson element for this

V

Mesh	$\ e_p\ _{0,\Omega_p}$	$\ e_p\ _{1,h}$	$\ e_{\gamma}\ _{0,\Omega_{\gamma}}$	$\ e_{\gamma}\ _{1,\Omega_{\gamma}}$
$4 \times 4 \times 4$	8.8490e-02	2.5144e-01	1.4521e-01	4.0413e-01
$8 \times 8 \times 8$	2.0738e-02	1.2566e-01	4.1432e-02	2.2589e-01
$16 \times 16 \times 16$	4.9842e-03	6.2262e-02	1.0634e-02	1.1574e-01
$32 \times 32 \times 32$	1.2271e-03	3.1041e-02	2.6727e-03	5.8321e-02
$64 \times 64 \times 64$	3.0012e-04	1.5442e-02	6.7701e-04	2.9462e-02
Rate	2.0487	1.0068	1.9444	0.9509

 Table 2
 Errors of Example 2 on cuboid mesh

Fig. 5 Log-log plots of errors of p_1 and p_2 for Example 2 on cuboid grid. Left: L^2 norm; right: H^1 norm

example, and report the errors in Fig. 5. The exact solution and numerical solution obtained by the new nonconforming method are depicted in Fig. 6.

Example 3 Consider the model problem (4.1) on a domain with refined meshes near the fracture. The analytic solution is chosen as

$$\begin{cases} p_{\gamma} = 40,001\sin(2\pi x)\sin(\pi y)/40,000 & \text{in } \Omega_{\gamma}, \\ p_{1} = \sin(2\pi x)\sin(\pi y) & \text{in } \Omega_{1}, \\ p_{2} = (1-z)\sin(2\pi x)\sin(\pi y) & \text{in } \Omega_{2}, \end{cases}$$
(4.4)

with $\mathbb{K}_{\gamma} = 10\mathbb{I}$, $\mathbb{K}_1 = \mathbb{K}_2 = \mathbb{I}$ and $\xi = 1$, $\alpha = 40,000$. The right-hand side functions are determined accordingly.

The errors are reported in Table 3 (Fig. 7). The numerical solution \mathbf{p}_h and exact solution \mathbf{p} are depicted in Fig. 8, where refined meshes are employed near the fracture to capture the more rapid change of flow pressure. Moreover, as shown in Fig. 7, the errors obtained by new nonconforming element is evidently smaller than that of Q_1 element and Wilson element. In particular, the new method attains higher order convergence rates in H^1 norm.

Fig. 6 Plots of solutions for Example 2 on cuboid grid. Left: exact solution \mathbf{p} ; right: numerical solution \mathbf{p}_h

Mesh	$\ e_p\ _{0,\Omega_p}$	$ e_p _{1,h}$	$\ e_{\gamma}\ _{0,\Omega_{\gamma}}$	$\ e_{\gamma}\ _{1,\Omega_{\gamma}}$
$4 \times 4 \times 4$	1.9326e-02	5.5955e-02	4.8605e-2	2.2462e-01
$8 \times 8 \times 8$	4.1087e-03	1.4029e-02	1.2713e-2	1.1301e-01
$16 \times 16 \times 16$	9.7356e-04	3.5098e-03	3.2798e-3	5.6620e-02
$32 \times 32 \times 32$	2.2201e-04	8.9113e-04	8.3106e-4	2.8298e-02
$64 \times 64 \times 64$	5.4878e-05	2.2829e-04	2.2872e-4	1.3637e-02
Rate	2.1130	1.9851	1.9398	1.0081

Tabl	e 3	Errors of	Example 3	with	mesh	refined	near	the	fracture
------	-----	-----------	-----------	------	------	---------	------	-----	----------

Fig. 7 Log–log plots of errors of p_1 and p_2 for Example 3 with mesh refinement near the fracture. Left: L^2 norm; right: H^1 norm

Table 4 Errors of Example 4 on

uniform mesh

Fig. 8 Plots of solutions for Example 3 with mesh refinement near the fracture. Left: exact solution **p**_{*h*} right:

Mesh	$\ E_p\ _{0,\Omega_p}$	$ E_p _{1,h}$	$\ E_{\gamma}\ _{0,\Omega_{\gamma}}$	$\ E_{\gamma}\ _{1,\Omega_{\gamma}}$
$8 \times 8 \times 8$	-	_	_	_
$16 \times 16 \times 16$	3.7213	1.8622	3.8479	1.8759
$32 \times 32 \times 32$	3.8766	1.8730	3.8731	1.8954
$64 \times 64 \times 64$	3.8972	1.9058	3.9016	1.9019
Rate	1.9158	0.9402	1.9371	0.9455

Example 4 In this example, we use the numerical scheme (2.1) and uniform cubic mesh to solve the problem with following source terms:

$$\begin{cases} g_{\gamma} = 1000 \sin(\pi x) \sin(2\pi y), \\ g_1 = 0, \\ g_2 = 0, \\ P|_{\Gamma_{\gamma}} = 0, \\ P|_{z=0.5} = 0, \\ P|_{z=-0.5} = 0, \\ P|_{x=0\cup x=1\cup y=0\cup y=1} = 0, \end{cases}$$
(4.5)

where $\mathbb{K}_{\gamma} = 2.5\mathbb{I}, \mathbb{K}_1 = \mathbb{K}_2 = \mathbb{I}$ and $\xi = 1, \alpha = 10,000$.

Since the analytic solutions are not available in this case, we define the following errors

$$E_i = \frac{p_{i,h} - p_{i,h/2}}{p_{i,h/2} - p_{i,h/4}}, (i = 1, 2), \quad E_{\gamma} = \frac{p_{\gamma,h} - p_{\gamma,h/2}}{p_{\gamma,h/2} - p_{\gamma,h/4}},$$

and the norm $||E_p|| = ||E_1|| + ||E_2||$. In order to test the accuracy using errors between consecutive levels, the bilinear interpolation method is used interpolate function values from coarse grids to fine grids. One can observe from Table 4 that the errors are second-order accurate in L^2 norm and first-order in H^1 norm.

The numerical solutions in fracture Ω_{γ} and whole domain are plotted in Fig. 9. According to the boundary condition in (4.5), the values of pressures vary faster along *z*-direction than the other two directions. The pressures on the fracture hyperplane show the sine and cosine

Fig. 9 Plots of numerical solution for Example 4 on uniform cubic grid. Left: $p_{\gamma h}$; right: \mathbf{p}_h

patterns with the source term g_{γ} . As shown in Fig. 9, the behavior of numerical pressure can effectively capture the desired physical feature.

Example 5 In this example, we extend the idea of constructing new nonconforming element to an inclined fracture. For example, one element is based on the combination of Q_1 element and Quasi-Wilson element. The basis functions can chosen as follows

$$\hat{\mathbb{P}} = Q_1(\hat{K}) \bigoplus span \left\{ \frac{(1-x^2)(1-y^2)(1-5x^2)(1-5y^2)}{144} \right\},$$
$$\widehat{\sum} = \left\{ \hat{q}(\hat{v}_i), i = 1, \dots, 8; \ \frac{\partial^4 \hat{q}}{\partial \hat{x}^2 \partial \hat{y}^2}(0, 0, 0) \right\}.$$

The inclined fracture domain is defined as $\Omega_{\gamma} := \{z = x/4, x \in [0, 1], y \in [0, 1]\}$. We divide each edge along *z*-direction into equal-length segments and obtain the meshes with $n \times n \times n$ hexahedron elements for porous media Ω_p . Consider the problem with the following exact solution

$$\begin{cases} p_{\gamma} = \left(\frac{\sqrt{17}}{3.2 \times 10^4} + 1 - \frac{x}{4}\right) \sin(2\pi x) \sin(2\pi y) & \text{in } \Omega_{\gamma}, \\ p_1 = \left(1 - \frac{x}{4}\right) \sin(2\pi y) \sin(2\pi x) & \text{in } \Omega_1, \\ p_2 = (1 - z) \sin(2\pi y) \sin(2\pi x) & \text{in } \Omega_2, \end{cases}$$
(4.6)

where $\mathbb{K}_{\gamma} = 2\mathbb{I}, \mathbb{K}_1 = \mathbb{K}_2 = \mathbb{I}$ and $\xi = 1, \alpha = 8000$. The right-hand side functions are determined accordingly. The errors of new nonconforming element are reported in Table 5.

In order to show the advantages of new element, we compare it with Q_1 element and quasi-Wilson element. It can be seen from Fig. 10 that the errors obtained by the new element is the smallest one. Moreover, from the Fig. 11 we can see that the new nonconforming method is effective in approximating solutions of the asymptotic model with inclined fracture.

5 Conclusion

In this work we introduced and analyzed a numerical method coupled a new nonconforming element with a conforming element for solving the asymptotic model problem (1.3). The

with

Mesh	$\ e_p\ _{0,\Omega_p}$	$ e_{p} _{1,h}$	$\ e_{\gamma}\ _{0,\Omega_{\gamma}}$	$\ e_{\gamma}\ _{1,\Omega_{\gamma}}$
$4 \times 4 \times 4$	2.1455e-01	4.5261e-01	2.6720e-01	5.2125e-01
$8 \times 8 \times 8$	5.5276e-02	2.3989e-01	6.8576e-02	2.7102e-01
$16 \times 16 \times 16$	1.4953e-02	1.2212e-01	1.8462e-02	1.471e-01
$32 \times 32 \times 32$	3.6267e-03	6.4017e-02	4.9210e-03	7.6667e-02
$64 \times 64 \times 64$	9.1759e-04	3.2733e-02	1.9035e-03	4.1869e-02
Rate	1.9668	0.9485	1.8067	0.9098

Table 5 Errors of Example 5 with inclined fracture

Fig. 10 Log–log plots of errors of p_1 and p_2 for Example 5 with inclined fracture. Left: L^2 norm; right: H^1 norm

Fig. 11 Plots of solutions for Example 5 with inclined fracture. Left: exact solution \mathbf{p} ; right: numerical solution \mathbf{p}_h

new element is anisotropic and continuous along the direction parallel to the fracture and discontinuous along the direction perpendicular to the fracture. It is an appropriate scheme for solving the fractured aquifer model since it coincides with the physical feature of the solution of practical problem. On the same mesh grids with the same amount of computational cost, the errors obtained by the new nonconforming element are smaller than those of Q_1 element and Wilson element. For other domains with more complicated geometry, one can deduce the shape functions for new elements by using similar idea introduced in this paper. This is also our future work.

References

- Bauer, S., Liedl, R., Sauter, M.: Modeling of karst aquifer genesis: influence of exchange flow. Water Resour. Res. 39(10), 371–375 (2003)
- Bauer, S., Liedl, R., Sauter, M., Stauffer, F., Kinzelbach, W., Kovar, K., Hoehn, E.: Modelling of karst development considering conduit-matrix exchange flow. In: Calibration and Reliability in Groundwater Modelling: Coping with Uncertainty. Proceedings of the ModelCARE'99 Conference Held in Zurich, Switzerland, 20–23 Sept 1999 (2000)
- Birk, S., Liedl, R., Sauter, M., Teutsch, G.: Hydraulic boundary conditions as a controlling factor in karst genesis: a numerical modeling study on artesian conduit development in gypsum. Water Resour. Res. 39(1), SBH 2-1–SBH 2-14 (2003)
- Espinosa-Paredes, G., Morales-Zárate, E., Vázquez-Rodríguez, A.: Analytical analysis for mass transfer in a fractured porous medium. Pet. Sci. Technol. 31(19), 2004–2012 (2013)
- Cao, Y., Fei, H., Wang, X.: Analysis and finite element approximation of a coupled, continuum pipeflow/Darcy model for flow in porous media with embedded conduits. Numer. Methods Partial Differ. Equ. 27(5), 1242–1252 (2011)
- Chen, N., Gunzburger, M., Hu, B., Wang, X., Woodruff, C.: Calibrating the exchange coefficient in the modified coupled continuum pipe-flow model for flows in karst aquifers. J. Hydrol. 414–415(2), 294–301 (2012)
- Liu, W., Zhao, Q., Li, X., Li, J.: Anisotropic wilson element with conforming finite element approximation for a coupled continuum pipe-flow/Darcy model in karst aquifers. Math. Methods Appl. Sci. 38(17), 4024–4037 (2015)
- Liu, W., Kang, Z., Rui, H.: Finite volume element approximation of the coupled continuum pipeflow/Darcy model for flows in karst aquifers. Numer. Methods Partial Differ. Equ. 30(2), 376–392 (2014)
- Liu, W., Cui, J., Xin, J.: A block-centered finite difference method for an unsteady asymptotic coupled model in fractured media aquifer system. J. Comput. Appl. Math. 337, 319–340 (2018)
- Wang, X.: On the coupled continuum pipe flow model (CCPF) for flows in karst aquifer. Discrete Contin. Dyn. Syst. Ser. B 13(2), 489–501 (2009)
- Chen, Z., An, K., Liu, Y., Chen, W.: Adjoint method for an inverse problem of CCPF model. Chin. Ann. Math. 3(3), 337–354 (2014)
- 12. Liedl, R., Sauter, M., Hückinghaus, D., Clemens, T., Teutsch, G.: Simulation of the development of karst aquifers using a coupled continuum pipe flow model. Water Resour. Res. **39**(3), 597–676 (2003)
- Wu, X., Kügler, P., Lu, S.: Identification of the exchange coefficient from indirect data for a coupled continuum pipe-flow model. Chin. Ann. Math. 35(3), 483–500 (2014)
- Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005)
- Hoang, T.-T.-P., Japhet, C., Kern, M., Roberts, J.E.: Space-time domain decomposition for reduced fracture models in mixed formulation. SIAM J. Numer. Anal. 54(1), 288–316 (2016)
- Loper, D.E.: An analytic benchmark test for karst-aquifer flow. Geophys. Astrophys. Fluid Dyn. 107(5), 587–602 (2013)
- Yao, B., Wei, J., Wang, D., Ma, D., Chen, Z.: Numerical study on seepage property of karst collapse columns under particle migration. CMES Comput. Model. Eng. Sci. 91(2), 81–100 (2013)
- Lesinigo, M., DAngelo, C., Quarteroni, A.: A multiscale Darcy–Brinkman model for fluid flow in fractured porous media. Numer. Math. 117(4), 717–752 (2011)
- Angot, P., Boyer, F., Hubert, F.: Asymptotic and numerical modelling of flows in fractured porous media. ESAIM Math. Model. Numer. Anal. 43(2), 239–275 (2009)

- Frih, N., Martin, V., Roberts, J.E., Saâda, A.: Modeling fractures as interfaces with nonmatching grids. Comput. Geosci. 16(4), 1043–1060 (2012)
- Tunc, X., Faille, I., Gallouët, T., Cacas, M.C., Havé, P.: A model for conductive faults with non-matching grids. Comput. Geosci. 16(2), 277–296 (2012)
- Morales, F., Showalter, R.E.: The narrow fracture approximation by channeled flow. J. Math. Anal. Appl. 365(1), 320–331 (2010)
- Shi, D., Chen, S.: A class of nonconforming arbitrary quadrilateral elements. Numer. Math. A J. Chin. Univ. 2, 231–238 (1996)
- Shi, Z.C., Chen, S.C.: Analysis of a nine degree plate bending element of Shecht. Chin. J. Numer. Math. Appl. 4, 73–79 (1989)
- Shi, Z.C., Jiang, B., Xue, W.: A new superconvergence property of Wilson nonconforming finite element. Numer. Math. 78(2), 259–268 (1997)
- Wilson, E.L., Taylor, R.L., Doherty, W.P., Ghaboussi, J.: Incompatible Displacement Models. Numerical and Computer Methods in Structural Mechanics, pp. 43–57. Academic Press, New York (1973)
- Ciarlet, P.G., Lions, J.L.: Handbook of Numerical Analysis. Gulf Professional Publishing (Distributors for the United States), Amsterdam (1990)
- Shi, Z.C.: A convergence condition for the quadrilateral Wilson element. Numer. Math. 44(3), 349–361 (1984)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.