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The finite element method has been widely used to discretize the Helmholtz equation with various types
of boundary conditions. The strong indefiniteness of the Helmholtz equation makes it difficult to es-
tablish stability estimates for the numerical solution. In particular, discontinuous Galerkin methods for
Helmholtz equation with a high wave number result in very large matrices since they typically have more
degrees of freedom than conforming methods. However, hybridizable discontinuous Galerkin (HDG)
methods offer an attractive alternative because they have build-in stabilization mechanisms and a reduced
global linear system. In this paper, we study the HDG methods for the Helmholtz equation with first order
absorbing boundary condition in two and three dimensions. We prove that the proposed HDG methods
are stable (hence well-posed) without any mesh constraint. The stability constant is independent of the
polynomial degree. By using a projection-based error analysis, we also derive the error estimates in L2
norm for piecewise polynomial spaces with arbitrary degree.

Keywords: Hybridizable discontinuous Galerkin methods; Helmholtz equation.

1. Introduction

In this paper, we provide a new a priori error analysis of the hybridizable discontinuous Galerkin (HDG)
method for solving the Helmholtz equation with first order absorbing boundary condition, namely,

−∆u−κ2u = f in Ω , (1.1a)
∂u
∂n

+ iκu = g on ∂Ω , (1.1b)

where Ω ⊂R
d , d = 2,3, is a bounded and strictly star-shaped polygonal/polyhedral domain with respect

to a point xxxΩ ∈ Ω . More precisely, there exists a positive constant CΩ such that

(xxx− xxxΩ ) ·nnnΩ > CΩ ∀xxx ∈ ∂Ω . (1.2)

We introduce qqq := −∇u. Then the Helmholtz equation can be rewritten in mixed form as finding
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(u,qqq) such that

qqq = −∇u in Ω , (1.3a)

∇ ·qqq−κ2u = f in Ω , (1.3b)
−qqq ·nnn+ iκu = g on ∂Ω . (1.3c)

It is well-known that the quality of numerical approximation of Helmholtz’s equation significantly
depends on the wave number. In Ihlenburg & Babuška (1995), it was first rigorously proved for the one
dimensional case that under the ”rule of thumb” constraint, κh 6 1, the relative H 1 error between the
approximation and true solution satisfies

|u−uh|1
|u|1

6 C(κh+κ3h2),

where uh is the approximate solution obtained from a standard finite element method and | · |1 denotes
the H1 semi-norm on domain Ω . The second term on the right hand side, which is known as the pol-
lution error, implies that the error grows significantly with increasing wave number, even if the ‘rule
of thumb’ is satisfied. In the past decades, a considerable deal of effort has been devoted to study
the explicit influence of wave number on the numerical approximation with the goal of minimizing
or eliminating the pollution effect. We refer the reader to Harari (1997); Babuška & Sauter (2000);
Deraemaeker et al. (1999); Gerdes & Ihlenburg (1999); Oberai & Pinsky (2000); Ainsworth (2004);
Ainsworth et al. (2006); Ainsworth & Wajid (2009) and the references therein. Various methods have
been proposed to obtain more stable numerical approximations, which include stabilizing the formu-
lation by Galerkin least square methods (see, e.g., Harari & Hughes, 1992; Babuška et al., 1995); by
discontinuous Galerkin methods (see, e.g., Ainsworth et al., 2006; Chung & Engquist, 2006; Feng &
Wu, 2009; Feng & Xing, 2010); by using non-polynomial trial and test functions or generalized finite
element methods (see, e.g., Babuška et al., 1995; Babuška & Melenk, 1997; Suleau et al., 2000; Farhat
et al., 2001; Laghrouche et al., 2002; Bao et al., 2004); and by using DG couplings of plane wave-based
methods (see, e.g., Cessenat & Després, 1998, 2003; Huttunen & Monk, 2007; Buffa & Monk, 2008;
Gittelson et al., 2009; Luostari et al., 2009; Hiptmair et al., 2011).

The cause of the pollution effect is related to the loss of stability of time harmonic wave equations.
On the other hand, one advantage of hybridizable discontinuous Galerkin (HDG) methods is their built-
in stabilization mechanisms. Moreover, the HDG methods are attractive because the degrees of freedom
in each element can be removed from the global computation and the method reduces to solving only for
degrees of freedom on the skeleton of the mesh. In Griesmaier & Monk (2011), the HDG method was
introduced for solving the interior Dirichlet problem for the Helmholtz equation. Optimal convergence
rates (with respect to h) for both u and qqq are achieved under the constraint that hκ2 is sufficiently small.
The goal of this paper is to investigate the stability and convergence result of the HDG methods for
(1.3) without any mesh constraint. We prove that the proposed HDG methods are stable for any wave
number κ and mesh size h. The stability constant is shown to be independent of the polynomial degree.
Moreover, by using a projection-based error analysis, we derive the error estimates in L2 norm for
polynomial spaces with arbitrary degree.

The rest of the paper is organized as follows. In Section 2, we introduce HDG method for the
Helmholtz equation (1.3). In Section 3, we state and discuss the stability and error estimates for the
proposed HDG method, and in Section 4 we present their proofs.
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2. The Hybridizable Discontinuous Galerkin Method

2.1 Meshes and Notations

Let Th be a shape-regular triangulation of Ω which consists of simplex T with faces F in R
3 (or triangles

T with edges F in R
2). We denote by Eh the set of all faces/edges F of all tetrahedra/triangle T of the

triangulation Th, by E I
h the set of all interior faces/edges, and by ∂Th the set of boundaries ∂T of the

elements T of Th. Let L2(Th) := ΠT∈ThL2(T ), LLL2(Th) := [L2(Th)]
d , L2(Eh) := ΠF∈EhL2(F) and we

denote

‖v‖2
Th

= ∑
T∈Th

‖v‖2
T ∀v ∈ L2(Th),

‖µ‖2
∂Th

= ∑
T∈Th

‖µ‖2
∂ T ∀µ ∈ L2(Eh).

We set the bilinear forms

(vvv,www)Th := ∑
T∈Th

∫

T
vvv ·wwwdx, (v,w)Th := ∑

T∈Th

∫

T
vwdx, 〈v,w〉∂Th

:= ∑
T∈Th

∫

∂ T
vwds.

We define on an interior edge/face F = ∂T +∩∂T− (T + has bigger global labelling) that

[[w]]
∣∣
F := w

∣∣
T + −w

∣∣
T− , [[vvv]]

∣∣
F := vvv

∣∣
T + − vvv

∣∣
T− .

On an boundary edge/face F, we set [[w]]
∣∣
F = w

∣∣
F and [[vvv]]

∣∣
F = vvv

∣∣
F . We define the average {{w}} and

{{vvv}} by

{{w}}
∣∣
F :=

1
2
(
w
∣∣
T + +w

∣∣
T−

)
, {{vvv}}

∣∣
F :=

1
2
(
vvv
∣∣
T + + vvv

∣∣
T−

)
for any F = ∂T + ∩∂T−,

and {{w}}
∣∣
F := w

∣∣
F , {{vvv}}

∣∣
F := vvv

∣∣
F for anyF ∈ ∂Ω .

2.2 HDG Method

Define the following discrete spaces:

VVV h :={vvv ∈ LLL2(Th) : vvv|T ∈ PPPp(T ) ∀ T ∈ Th}, (2.1a)
Wh :={w ∈ L2(Th) :w|T ∈ Pp(T ) ∀ T ∈ Th}, (2.1b)
Mh :={µ ∈ L2(Eh) : µ |T ∈ Pp(F) ∀ F ∈ Eh}, (2.1c)

Pp(T ) is the space of polynomials of total degree at most p defined on T , and PPPp(T ) = [Pp(T )]d .
The HDG method seeks approximations uh ∈ Wh of u, qqqh ∈VVV h of qqq, and a numerical trace ûh ∈ Mh

approximating u on Eh, which satisfy

(qqqh,τττh)Th − (uh,∇ · τττh)Th + 〈ûh,τττh ·nnn〉∂Th
= 0, (2.2a)

−(qqqh,∇vh)Th −κ2(uh,vh)Th + 〈q̂qqh ·nnn,vh〉∂Th
= ( f ,vh)Th , (2.2b)

〈−q̂qqh ·nnn+ iκ ûh,µh〉∂ Ω = 〈g,µh〉∂ Ω , (2.2c)
〈q̂qqh ·nnn,µh〉∂Th\∂ Ω = 0, (2.2d)
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for all (τττh,vh,µh) ∈VVV h ×Wh×Mh, where

q̂qqh = qqqh + iτ(uh− ûh)nnn on ∂Th, (2.3)

for some positive stabilization function τe, and nnn is the outward normal to T ∈Th. Throughout the paper,
we take τ to be constant on each faces and we denote τmax := max{τ ,e ∈ Th} and τmin := min{τ ,e ∈
Th}. We also denote by PW , PM the L2-orthogonal projection onto the space Wh and Mh, respectively.

REMARK 2.1 The HDG method considered in this work belongs to the class of hybridizable local
discontinuous Galerkin (LDG-H) methods (Cockburn et al., 2009). It is similar with the HDG method
studied in Griesmaier & Monk (2011) for the interior Dirichlet problem for the Helmholtz equation.
Note that in their paper, the flux qqq = −ik∇u while in our work qqq = −∇u. By a simple comparison, we
observe that we essentially recover the method proposed in Griesmaier & Monk (2011) if τ = O(κ).

3. The Main Results

3.1 Stability Estimates

We consider the following problem:
Find (qqqh,uh, ûh) ∈ (VVV h,Vh,Mh) such that

(qqqh,τττh)Th − (uh,∇ · τττh)Th + 〈ûh,τττh ·nnn〉∂Th
= (QQQ,τττh)Th , (3.1a)

−(qqqh,∇vh)Th −κ2(uh,vh)Th + 〈q̂qqh ·nnn,vh〉∂Th
= ( f ,vh)Th , (3.1b)

〈−q̂qqh ·nnn+ iκ ûh,µh〉∂ Ω = 〈g,µh〉∂ Ω , (3.1c)
〈q̂qqh ·nnn,µh〉∂Th\∂ Ω = 0, (3.1d)

for all (τττh,vh,µh) ∈VVV h ×Wh×Mh. Here q̂qqh is defined by (2.3).
The HDG method (2.2) can be viewed as a special case of (3.1) with QQQ = 0. We keep QQQ in the

numerical scheme (3.1) in order to obtain a general stability estimate, which will facilitate the error
analysis of the HDG method.

The following stability result holds for system (3.1). The proof will be given in Section 4.

THEOREM 3.1 Let (uh,qqqh, ûh) be the solution of (3.1). Then there exists a positive constant Csta inde-
pendent of p such that

‖qqqh‖
2
Th

+κ2‖uh‖
2
Th

. CstaM( f ,g,QQQ), (3.2)

where
M( f ,g,QQQ) := ‖ f‖2

Th
+‖g‖2

∂ Ω +‖QQQ‖2
Th

and

Csta := {κ2τ−1
min +κ + τ−1

minh−3 + τmaxh−1}2 +1. (3.3)

To prevent the proliferation of constants, henceforth we also use the notation A . B to represent the
inequality A 6 (constant)×B, where the positive constant is independent of the mesh size h and wave
number κ .
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REMARK 3.1 The stability estimates for the continuous Helmholtz equation (1.1) were established in
Melenk (1995) for two dimensional domains and in Cummings & Feng (2006) for the three dimensional
domains. The stability constant in both cases is proved to be (1+1/κ 2 +1/κ4). In Hetmaniuk (2007)
the result was extended to the Helmholtz equation with mixed boundary conditions.

REMARK 3.2 The HDG method (2.2) is stable and well-posed for all wave numbers κ > 0 and mesh
size h > 0. As a comparison, in Griesmaier & Monk (2011) the HDG method for Helmholtz equation
(with Dirichlet boundary condition) is proven to be stable only if h satisfies a constraint such that hκ 2 is
sufficiently small.

REMARK 3.3 The stability estimate in Theorem 3.1 holds for all polynomial degrees. More precisely,
for p > 0, if we take τ = O(κ) in (2.3) and assume hκ . 1, the stability constant Csta in (3.3) behaves as
(κ +κ−1h−3)2. Note that the IPDG methods introduced in Feng & Wu (2009) and the “LDG” methods
introduced in Feng & Xing (2010) have similar stability results only for piecewise linear polynomials.
The results of IPDG methods using higher order polynomial spaces can be found in Feng & Wu (2011).
Note that the “LDG” methods studied in Feng & Xing (2010) are not local discontinuous Galerkin
methods since the numerical trace of u does depend on qqqh. Actually, for some special choice of the
stabilization parameters, the “LDG” methods treated therein are HDG methods.

In the rest of this section, we derive the error estimates for the solution of HDG method (2.2). This
will be done in two steps. First we introduce a projection operator Πh inspired by the particular form
of the numerical flux q̂qqh from (2.3). Second, we bound the error between the projection and the HDG
solution by using the stability results obtained in Theorem 3.1.

3.2 The Projection

Given a function (qqq,u) in HHH1(Th)×H1(Th), we define its projection Πh(qqq,u) := (πππqqq,Πu) ∈VVV h ×Wh
as follows. On an arbitrary element T of the triangulation Th, we require that

(πππqqq−qqq,τττ)T = 0 ∀ vvv ∈ PPPp−1(T ), (3.4a)

(Πu−u,w)T = 0 ∀ w ∈ Pp−1(T ), (3.4b)

〈(πππqqq−qqq) ·nnn+ iτ(Πu−u),µ〉F = 0 ∀ µ ∈ Pp(F), (3.4c)

for all T ∈ Th and faces/edges F of the element T . The projection defined above is similar to the one
used in Cockburn et al. (2010).

We denote by ‖v‖H`(T ) the usual H` norm of v on the domain T . We set HHH`(T ) := [H`(T )]d and
‖vvv‖HHH`(T ) := ∑d

i=1 ‖vi‖H`(T). The next result states that the projection Πh is well defined and has reason-
able approximation properties.

THEOREM 3.2 (Cockburn et al., 2010, Theorem 2.1) Suppose that τ > 0 in (3.4c) and p > 0. Then the
system (3.4) is uniquely solvable for πππqqq and Πu. Furthermore, there is a constant C independent of T ,
κ and τ such that

‖πππqqq−qqq‖T 6 C h`qqq+1
T |qqq|HHH`qqq+1(T )

+Ch`u+1
T τ∗T |u|H`u+1(T ),

‖Πu−u‖T 6 C h`u+1
T |u|H`u+1(T) +C

h`qqq+1
T

τmax
T

|∇ ·qqq|HHH`qqq+1(T ),
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for `qqq, `u in [0, p]. Here τmax
T := maxτ

∣∣
∂ T > 0, and τ∗T := maxτ |∂ T\F∗ , where F∗ is a face of T at which

τ |∂ T is maximum.

Here, we assume that the exact wave solution u satisfies

|u|H p+1(Ω) . κ |u|H p(Ω) for p > 0.

Under the assumptions of Theorem 3.1, we arrive at the following result.

COROLLARY 3.1 Assume that u ∈ H p+2(Ω) and f ∈ H p+1(Ω), there exists constant C such that

‖πππqqq−qqq‖T .(hκ)p+1(1+ τmaxκ−1)‖qqq‖L2(T ),

‖Πu−u‖T.(hκ)p+1(1+κ2τ−1
min)‖u‖L2(T ).

3.3 Error Estimates

Note that because τ is piecewise constant,

〈τ(PMu−u),µ〉∂Th
= 0 for all µ ∈ Mh. (3.5)

The projection of the errors satisfy the following. The proof will be given in Section 4.

LEMMA 3.1 Define the projection of errors εεεqqq
h := πππqqq−qqqh, εu

h := Πu− uh, and ε û
h := PMu− ûh. We

have

(εεεqqq
h ,τττh)Th − (εu

h ,∇ · τττh)Th + 〈ε û
h ,τττh ·nnn〉∂Th

=
(
(πππqqq−qqq),τττh

)
Th

, (3.6a)

−κ2(εu
h ,vh)Th − (εεεqqq

h ,∇vh)Th + 〈ε̂εεh ·nnn,vh〉∂Th
= −

(
κ2(Πu−u),vh

)
Th

, (3.6b)

〈−ε̂εεh ·nnn+ iκε û
h , µh〉∂ Ω = 0, (3.6c)

〈ε̂εεh ·nnn,µh〉∂Th\∂ Ω = 0, (3.6d)

for all (τττh,vh,µh) ∈VVV h ×Wh×Mh. Here,

ε̂εεh ·nnn := εεεqqq
h ·nnn+ iτ(εu

h − ε û
h ) = PM(qqq ·nnn)− q̂qqh ·nnn. on∂Th \∂Ω . (3.7)

In view of (2.3), (3.1), (3.6) and (3.7), we observe that the projection of errors is tailored to the very
structure of the numerical trace. Therefore, we can directly apply Theorem 3.1 with qqqh = εεεqqq

h , uh = εu
h ,

ûh = ε û
h , q̂qqh = ε̂εεh, QQQ = πππqqq−qqq, f = −κ2(Πu−u) and g = 0 to obtain the next Theorem.

THEOREM 3.3 Under the assumptions of Theorem 3.1, we have

‖πππqqq−qqqh‖
2
Th

+κ2‖Πu−uh‖
2
Th

. Csta
(
‖πππqqq−qqq‖2

Th
+κ4‖Πu−u‖2

Th

)
,

where Csta is defined in (3.3).

We are ready to state the explicit bounds for the errors of HDG method (3.1) in terms of wave
number κ and mesh size h. The proof follows from Corollary 3.1, Theorem 3.3 and an application of
the triangle inequality.
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COROLLARY 3.2 Let (qqq,u) and (qqqh,uh) denote the solutions of (1.3) and (2.2) , respectively. As-
sume that u ∈ H p+2(Ω) and f ∈ H p+1(Ω). There exist two positive constants C1 and C2 such that the
following error estimates hold:

‖qqq−qqqh‖
2
Th

6
{

C1(hκ)2p+2(1+ τmaxκ−1)2 (3.8)

+C2Csta(hκ)2p+2[(1+ τmaxκ−1)2 +κ4(κ−1 +κτ−1
min)

2]
}
‖qqq‖2

Th
,

‖u−uh‖
2
Th

6
{

C1(hκ)2p+2(1+κ2τ−1
min)

2 (3.9)

+C2Csta(hκ)2p+2[(1+ τmaxκ−1)2 +κ4(κ−1 +κτ−1
min)

2]
}
‖u‖2

Th
,

where Csta is defined in (3.3).

REMARK 3.4 The error estimates above hold for any κ and h. We recall that in Ihlenburg & Babuška
(1995) the preasymptotic error estimates for the finite element method solution were proven only in the
one dimensional case provided that κh 6 1.

REMARK 3.5 The second term on the right-hand side of (3.9) is the pollution term for ‖qqq−qqqh‖Th .

REMARK 3.6 Taking τ = κ , we essentially recover the HDG method proposed in Griesmaier & Monk
(2011). In this case, we observe that

‖qqq−qqqh‖
2
Th

6 C1(hκ)2p+2 +C2(hκ)2p+2κ4(κ +κ−1h−3)2
.

Note that when hκ2 is sufficiently small, optimal order convergence for qqq (with respect to h) is proved in
Griesmaier & Monk (2011) for Dirichlet boundary condition. The stabilization function in the definition
of numerical trace therein is taken to be constant on each edge/face F ∈ Eh. Moreover, in the case hκ2

is sufficiently small, one can follow the similar approach in Griesmaier & Monk (2011) to establish the
super-convergence of the approximation uh to the projection Πu, and further obtain an approximation
u∗h of improved accuracy by a postprocessing scheme outlined in Cockburn et al. (2010). In the case
p = 1, the above error estimate is similar with the one obtained by the IPDG method in Feng & Wu
(2009) for piecewise linear polynomials.

REMARK 3.7 In Chen et al. (2012) a HDG method for Helmholtz equation (1.1) with high wave num-
bers is proposed and analyzed. L2-projections and duality techniques are used therein to prove the
stability and convergence properties of the numerical scheme. Numerical experiments are performed
with τ = p

κh . Numerical examinations of the HDG methods studied in this paper constitute future work.

4. Proofs

In this section, we provide the proofs of our main results presented in Section 3. To derive the stability
estimate in Theorem 3.1, we mimic the analysis for the Helmholtz equation (Cummings, 2001; Cum-
mings & Feng, 2006; Hetmaniuk, 2007) and that for the discrete problem based on IPDG methods (Feng
& Wu, 2009). The key ingredient is to take the test function vh = ααα ·∇uh and τττh = ααα(∇ ·qqqh) and to use
Rellich identity on each element. Here ααα(xxx) := xxx−xxxΩ . This idea can be traced back to Melenk (1995).

Let us begin by gathering several useful lemmas.
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LEMMA 4.1 (TWO INTEGRAL IDENTITIES) It holds that

κ2Re(uh,ααα ·∇uh)Th =
κ2

2 ∑
T∈Th

∫

∂ T
ααα ·nnn|uh|

2ds−
κ2d

2
‖uh‖

2
Th

. (4.1)

Re{2
(
qqqh,ααα(∇ ·qqqh)

)
Th
} = Re{2〈ααα ·qqqh,qqqh ·nnn〉∂Th

−〈(ααα ·nnn), |qqqh|
2〉∂Th

(4.2)

+(d−2)‖qqqh‖
2
Th

+2
(
A(qqqh)ααα ,qqqh

)
Th
},

where A(qqqh) is a d ×d matrix whose component

(Aqqqh)i j =
∂qqqi

h
∂xxx j −

∂qqq j
h

∂xxxi , (4.3)

where qqqi
h denote the i-th component of qqqh.

Proof. The identity (4.1) can be proved by a direct calculation. Details can be found in Feng & Wu
(2009). Next we prove identity (4.2). For each T ∈ Th,

(2−d)

∫

T
qqqh ·qqqhdx+2

∫

T
qqqh · [ααα(∇ ·qqqh)]dx

=(2−d)

∫

T
qqqh ·qqqhdx+2

∫

T
∇ · [(qqqh ·ααα)qqqh]dx−2

∫

T
[(∇qqqh)ααα ] ·qqqhdx−2

∫

T
[qqqh(∇ααα)] ·qqqhdx.

By the definition of ααα , we have −2
∫

T [qqqh(∇ααα)] · qqqhdx = −2
∫

T qqqh · qqqhdx. Therefore, by divergence
theorem,

Re{(2−d)

∫

T
qqqh ·qqqhdx+2

∫

T
qqqh · [ααα(∇ ·qqqh)]dx}

=Re{−d
∫

T
qqqh ·qqqhdx+2

∫

∂ T
(qqqh ·ααα)(qqqh ·nnn)ds−2

∫

T
[(∇qqqh)ααα ] ·qqqhdx}

=Re{−d
∫

T
qqqh ·qqqhdx+2

∫

∂ T
(qqqh ·ααα)(qqqh ·nnn)ds−

∫

T
ααα · (∇|qqqh|

2)dx+2
∫

T
[A(qqqh)ααα ] ·qqqhdx}.

Note that ∇ ·ααα = d, hence

Re{(2−d)

∫

T
qqqh ·qqqhdx+2

∫

T
qqqh · [ααα(∇ ·qqqh)]dx}

=Re{−
∫

T
(∇ ·ααα)qqqh ·qqqhdx−

∫

T
ααα · (∇|qqqh|

2)dx+2
∫

∂ T
(qqqh ·ααα)(qqqh ·nnn)ds+2

∫

T
[A(qqqh)ααα ] ·qqqhdx}

=Re{−
∫

T
∇ · (ααα |qqqh|

2)dx+2
∫

∂ T
(qqqh ·ααα)(qqqh ·nnn)ds+2

∫

T
[A(qqqh)ααα ] ·qqqhdx}

=Re{−
∫

∂ T
(ααα ·nnn)|qqqh|

2ds+2
∫

∂ T
(qqqh ·ααα)(qqqh ·nnn)ds+2

∫

T
[A(qqqh)ααα ] ·qqqhdx}.

Identity (4.2) can be obtained by summing above equation over all T ∈ Th. �

The following lemma shows that the residuals in the elements is related with the residuals on the
boundary.
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LEMMA 4.2 (ESTIMATE OF RESIDUALS) It holds

‖qqqh +∇uh‖Th 6 Ch−
1
2 ‖uh− ûh‖∂Th

. (4.4)

‖∇ ·qqqh −κ2uh − fh‖∂Th
6 Ch−1/2‖∇ ·qqqh −κ2uh − fh‖Th 6 Ch−1‖τ(uh − ûh)‖∂Th

, (4.5)

∑
e∈E I

h

‖[[qqqh ·nnn]]‖2
L2(e) 6 C‖τ(uh − ûh)‖

2
∂Th

, (4.6)

∑
e∈E I

h

‖[[qqqh ×nnn]]‖2
L2(e) 6 Ch−2‖uh− ûh‖

2
∂Th

. (4.7)

where fh is the L2-orthogonal projection of the function f into the space Wh.

Proof. From (3.1a), a simple application of integration by parts yields

(qqqh +∇uh,τττh)T = 〈uh − ûh,τττh ·nnn〉∂ T

for each T ∈ Th. Note that qqqh +∇uh is in the L2-orthogonal complement of VVV 0
h(T ) where

VVV 0
h(T ) := {τττh ∈VVV h|τττh ·nnn = 0 on∂T},

we have
‖(qqqh +∇uh) ·nnn‖∂ T 6 Ch−1/2‖qqqh +∇uh‖T .

Taking τττh = qqqh +∇uh, estimate (4.4) follows immediately from the inequality above.
We omit the proof of inequality (4.5) since the inequality can be proved in a similar fashion. To

prove (4.6), we obtain, due to the single-valuedness of q̂qqh ·nnn (3.1d),

∑
e∈E I

h

‖[[qqqh ·nnn]]‖2
L2(e) = ∑

e∈E I
h

‖[[(qqqh − q̂qqh) ·nnn]]‖2
L2(e)

6‖τ(uh − ûh)‖
2
∂Th

,

by the definition of the numerical flux (2.3).
It remains to show (4.7). Note that by inverse inequality, we have

∑
e∈E I

h

‖[[qqqh ×nnn]]‖2
L2(e)6 ∑

e∈E I
h

‖[[(qqqh +∇uh)×nnn]]‖2
L2(e) + ∑

e∈E I
h

‖[[∇uh ×nnn]]‖2
L2(e)

. ∑
T∈Th

h−1‖qqqh +∇uh‖
2
L2(T ) + ∑

e∈E I
h

h−2‖[[uh]]‖
2
L2(e)

.h−2‖uh− ûh‖
2
∂Th

,

by (4.4). This completes the proof of the lemma. �

Finally, we need to derive a control on the jumps and show the following Gårding-type identity.

LEMMA 4.3 (GÅRDING-TYPE IDENTITY) It holds

‖qqqh‖
2
Th

= Re
{
( f ,uh)Th + 〈g, ûh〉∂ Ω

}
+κ2‖uh‖

2
Th

. (4.8)

κ‖ûh‖
2
∂ Ω + 〈τ(uh − ûh),(uh − ûh)〉∂Th

= Im
{
( f ,uh)Th + 〈g, ûh〉∂ Ω

}
. (4.9)
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Proof. Taking τττh = qqqh and vh = uh in (2.2), we obtain the following identity:

‖qqqh‖
2
Th

− (∇ ·qqqh,uh)Th + 〈qqqh ·nnn, ûh〉∂Th
= 0,

−(qqqh,∇uh)Th −κ2(uh,uh)Th + 〈q̂qqh ·nnn,uh〉∂Th
= ( f ,uh)Th ,

Adding the equations above, we obtain

‖qqqh‖
2
Th

−κ2(uh,uh)Th + 〈(q̂qqh −qqqh) ·nnn,(uh − ûh)〉∂Th
+ iκ〈q̂qqh ·nnn, ûh〉∂ Ω = ( f ,uh)Th ,

by a simple calculation. Due to the Robin boundary condition (2.2c) and the definition of the numerical
flux (2.3), we get

‖qqqh‖
2
Th

−κ2(uh,uh)Th + i〈τ(uh − ûh),(uh − ûh)〉∂Th

+ iκ〈ûh, ûh〉∂ Ω = ( f ,uh)Th + 〈g, ûh〉∂ Ω .

The lemma follows from taking the real part and the imaginary part of the above equation. �

Now we are ready to prove the stability estimate, Theorem 3.1.
Proof of Theorem 3.1. Step 1. From integration by parts, equations (3.1a) and (3.1b) defining HDG
methods that

(qqqh +∇uh,τττh)Th = 〈uh − ûh,τττh ·nnn〉∂Th
+(QQQ,τττh)Th

( fh −∇ ·qqqh +κ2uh,vh)Th = 〈(q̂qqh −qqqh) ·nnn,vh〉∂Th
,

Taking the test function τττh = ααα(∇ ·qqqh) and v = ααα ·∇uh, adding two equations above and taking the
real part, we obtain

Re
{(

ααα(∇ ·qqqh),qqqh
)
Th

+κ2(uh,ααα ·∇uh
)
Th

+ 〈(ααα ·nnn)(∇ ·qqqh),(ûh −uh)〉∂Th
(4.10)

−〈(q̂qqh −qqqh) ·nnn,ααα ·∇uh〉∂Th

}
= Re

{(
QQQ,ααα(∇ ·qqqh)

)
Th

−
(

fh,ααα ·∇uh
)
Th

}
.

It follows from identities (4.1) and (4.2) that

−
dκ2

2
‖uh‖

2
Th

+
d−2

2
‖qqqh‖

2
Th

+Re
{
−

1
2
〈(ααα ·nnn), |qqqh|

2〉∂Th
+ 〈ααα ·qqqh,qqqh ·nnn〉∂Th

−〈(q̂qqh −qqqh) ·nnn,ααα ·∇uh〉∂Th
+

κ2

2
〈(ααα ·nnn), |uh|

2〉∂Th
+ 〈(ûh −uh),(ααα ·nnn)(∇ ·qqqh)〉∂Th

+
(
A(qqqh)ααα ,qqqh

)
Th

}
= Re

{(
QQQ,ααα(∇ ·qqqh)

)
Th

−
(

fh,ααα ·∇uh
)
Th

}
.

With a simple manipulation, we have

dκ2

2
‖uh‖

2
Th

−
d−2

2
‖qqqh‖

2
Th

= T1 +T2 +T3 +T4, (4.11)

where

T1 := Re{−
1
2
〈(ααα ·nnn), |qqqh|

2〉∂Th
+ 〈ααα ·qqqh,qqqh ·nnn〉∂Th

−〈(q̂qqh −qqqh) ·nnn,ααα ·∇uh〉∂Th
},

T2 := Re{
κ2

2
〈(ααα ·nnn), |uh|

2〉∂Th
+ 〈(ûh −uh),(ααα ·nnn)(∇ ·qqqh)〉∂Th

}
,

T3 := Re{
(

fh,ααα ·∇uh
)
Th

−
(
QQQ,ααα(∇ ·qqqh)

)
Th
},

T4 := Re{(A(qqqh)ααα ,qqqh
)
Th
}.
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We estimate the terms on the right-hand side of (4.11) separately.
Step 2: Estimate of T1. By a straightforward calculation, we can rewrite T1 as follows.

T1 = Re{−
1
2
〈(ααα ·nnn), |qqqh|

2〉∂Th
+ 〈ααα ·qqqh, q̂qqh ·nnn〉∂Th

−〈(q̂qqh −qqqh) ·nnn,ααα · (∇uh +qqqh)〉∂Th
}

= Re{−
1
2
〈(ααα ·nnn), |qqqh|

2〉∂Th\∂ Ω + 〈ααα ·qqqh, q̂qqh ·nnn〉∂Th\∂ Ω (4.12)

−〈(q̂qqh −qqqh) ·nnn,ααα · (∇uh +qqqh)〉∂Th
−

1
2
〈(ααα ·nnn), |qqqh|

2〉∂ Ω + 〈ααα ·qqqh, q̂qqh ·nnn〉∂ Ω}.

We estimate the first two terms of T1 as follows. Since q̂qqh ·nnn is single-valued (3.1d), we have

Re{−
1
2
〈(ααα ·nnn), |qqqh|

2〉∂Th\∂ Ω + 〈ααα ·qqqh, q̂qqh ·nnn〉∂Th\∂ Ω}

6 ∑
e∈E I

h

|ααα ·nnn||〈[[qqqh]],{{qqqh}}〉e|+ ∑
e∈E I

h

〈[[ααα ·qqqh]], q̂qqh ·nnn〉e

6(max
e∈E I

h

|ααα ·nnn|) ∑
e∈E I

h

|〈[[qqqh]],{{qqqh}}〉e|+(max
e∈E I

h

|ααα |) ∑
e∈E I

h

〈[[qqqh]],qqqh ·nnn+ iτ(uh − ûh)〉e,

by (2.3). Moreover, by the definitions of jumps,

‖[[qqqh]]‖
2
L2(e) = ‖[[qqqh ·nnn]]‖2

L2(e) +‖[[qqqh ×nnn]]‖2
L2(e),

we have

Re{−
1
2
〈(ααα ·nnn),|qqqh|

2〉∂Th\∂ Ω + 〈ααα ·qqqh, q̂qqh ·nnn〉∂Th\∂ Ω}

6
1
6
‖qqqh‖

2
Th

+C1h‖τ(uh − ûh)‖
2
∂Th

+C2 ∑
e∈E I

h

h−1‖[[qqqh ·nnn]]‖2
L2(e) +C3 ∑

e∈E I
h

h−1‖[[qqqh ×nnn]]‖2
L2(e) (4.13)

6
1
6
‖qqqh‖

2
Th

+C1h‖τ(uh − ûh)‖
2
∂Th

+C2h−1‖τ(uh − ûh)‖
2
∂Th

+C3h−3‖uh− ûh‖
2
∂Th

.

by (4.6) and (4.7). Next, from the definition of numerical flux (2.3), the third term on the right-hand
side of (4.12) satisfies

Re{−〈(q̂qqh −qqqh) ·nnn,ααα · (∇uh +qqqh)〉∂Th
} .‖τ(uh − ûh)‖

2
∂Th

+‖∇uh +qqqh‖
2
∂Th

(4.14)

.‖τ(uh − ûh)‖
2
∂Th

+h−1‖uh− ûh‖
2
∂Th

. by (4.4)

Finally, by noting that q̂qqh · nnn = iκuh −PMg on e ∈ ∂Ω , we can estimate the last two terms on the



12 of 17 J. CUI AND W. ZHANG

right-hand side of (4.12) as follows.

Re{−
1
2
〈(ααα ·nnn), |qqqh|

2〉∂ Ω + 〈ααα ·qqqh, q̂qqh ·nnn〉∂ Ω} (4.15)

=Re{−
1
2
〈(ααα ·nnn), |qqqh|

2〉∂ Ω + 〈ααα ·qqqh, iκ ûh −PMg〉∂ Ω}

6−
CΩ
2

‖qqqh‖
2
L2(∂ Ω) +

CΩ
6

‖qqqh‖
2
L2(∂ Ω) +C4κ2‖ûh‖

2
L2(∂ Ω) +C5‖PMg‖2

L2(∂ Ω) by (1.2)

6−
CΩ
3

‖qqqh‖
2
L2(∂ Ω) +C4κIm

{
( f ,uh)Th + 〈g, ûh〉∂ Ω

}
+C5‖g‖2

L2(∂ Ω). by (4.9)

Therefore, combining (4.12)–(4.15), we arrive at

T1 6 (C +C1h+C6h−1)‖τ(uh − ûh)‖
2
∂Th

+C4κIm
{
( f ,uh)Th + 〈g, ûh〉∂ Ω

}

+(Ch−1 +C3h−3)‖uh− ûh‖
2
∂Th

+
1
6
‖qqqh‖

2
Th

+C5‖g‖2
L2(∂ Ω) −

CΩ
3

‖qqqh‖
2
L2(∂ Ω) (4.16)

6 {C4κ +C7h−1(τmax + τ−1
min)+C3h−3τ−1

min}Im
{
( fh,uh)Th + 〈g, ûh〉∂ Ω

}

+
1
6
‖qqqh‖

2
Th

+C5‖g‖2
L2(∂ Ω) −

CΩ
3

‖qqqh‖
2
L2(∂ Ω). by (4.9)

Step 3: Estimate of T2. We rewrite

T2 = Re{
κ2

2
〈(ααα ·nnn), |uh|

2〉∂Th
+ 〈(ûh−uh),(ααα ·nnn)( fh +κ2uh)〉∂Th

+ 〈(ûh−uh),(ααα ·nnn)(∇ ·qqqh − fh −κ2uh)〉∂Th

}

= Re{−
κ2

2
〈(ααα ·nnn), |uh − ûh|

2〉∂Th
+

κ2

2
〈(ααα ·nnn), |ûh|

2〉∂Th
+ 〈(ûh −uh),(ααα ·nnn) fh〉∂Th

+ 〈(ûh−uh),(ααα ·nnn)(∇ ·qqqh − fh −κ2uh)〉∂Th

}

Applying Young’s inequality, we obtain

T2 6 C8κ2‖uh − ûh‖
2
∂Th

+C9κ2‖ûh‖
2
∂ Ω +C10h−1‖uh− ûh‖

2
∂Th

+C11h−2‖uh − ûh‖
2
∂Th

+C12‖ f‖2
Th

+C13h2‖∇ ·qqqh − fh −κ2uh‖
2
∂Th

.

By (4.5), we have

T2 6 C8κ2‖uh − ûh‖
2
∂Th

+C9κ2‖ûh‖
2
∂ Ω

+{(C10h−1 +C11h−2)τ−1
min +C14hτmax}‖τ1/2(uh − ûh)‖

2
∂Th

+C12‖ f‖2
Th

.

Hence, by (4.9) ,

T2 6
(
C8κ2τ−1

min +C9κ +(C10h−1 +C11h−2)τ−1
min +C14hτmax

)
Im

{
( f ,uh)Th + 〈g, ûh〉∂ Ω

}
+C12‖ f‖2

Th
.

(4.17)
Step 4: Estimate of T3. We rewrite

T3 = Re{
(

fh,ααα · (∇uh +qqqh)
)
Th

−
(

fh,ααα ·qqqh
)

−
(
QQQ,ααα(∇ ·qqqh − fh −κ2uh)

)
Th

−
(
QQQ,ααα( fh +κ2uh)

)
Th

}
. (4.18)
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Therefore, by applying Young’s inequality, we get

T3 6 C15‖ f‖2
Th

+C16‖∇uh +qqqh‖
2
Th

+C17‖∇ ·qqqh − fh −κ2uh‖
2
Th

+
1
6
‖qqqh‖

2
Th

+C18‖QQQ‖2
Th

+
κ2

6
‖uh‖

2
Th

.

It then follows from (4.4) and (4.5) that

T3 6 C16h−1‖uh − ûh‖
2
∂Th

+C17h−1‖τ(uh − ûh)‖
2
∂Th

+C15‖ f‖2
Th

+
1
6
‖qqqh‖

2
Th

+C18‖QQQ‖2
Th

+
κ2

6
‖uh‖

2
Th

.

Hence, by (4.9),

T3 6
(
C16h−1τ−1

min +C17h−1τmax
)
Im

{
( f ,uh)Th + 〈g, ûh〉∂ Ω

}
(4.19)

+C15‖ f‖2
Th

+
1
6
‖qqqh‖

2
Th

+C18‖QQQ‖2
Th

+
κ2

6
‖uh‖

2
Th

.

Step 5: Estimate of T4. For the last term T4, we have

T4 = Re
{(

A(qqqh +∇uh)ααα ,qqqh
)
Th

}

6 C19h−2‖qqqh +∇uh‖
2
Th

+
1
6
‖qqqh‖

2
Th

(4.20)

6 C19h−3‖uh− ûh‖
2
∂Th

+
1
6
‖qqqh‖

2
Th

by (4.4)

6 C19h−3τ−1
minIm

{
( f ,uh)Th + 〈g, ûh〉∂ Ω

}
+

1
6
‖qqqh‖

2
Th

. by (4.9)

Step 6: Conclusion.
Combining (4.11), (4.16), (4.17), (4.19) and (4.20), we arrive at

d
2

κ2‖uh‖
2
Th
−

d−2
2

‖qqqh‖
2
Th

6 C(κ ,h,τ)Im
{
( f ,uh)Th + 〈g, ûh〉∂ Ω

}

+C5‖g‖2
L2(∂ Ω) +C18‖QQQ‖2

Th
+C23‖ f‖2

Th
−

CΩ
3

‖qqqh‖
2
L2(∂ Ω) +

1
2
‖qqqh‖

2
Th

+
κ2

6
‖uh‖

2
Th

where
C(κ ,h,τ) := C8κ2τ−1

min +C20κ +C22τ−1
min(h

−3 +h−2 +h−1)+C21τmax(h−1 +h).

It follows from (4.8) that

κ2

3
‖uh‖

2
Th

6 {C(κ ,h,τ)+
d−1

2
}
∣∣( f ,uh)Th + 〈g, ûh〉∂ Ω

∣∣

+C5‖g‖2
L2(∂ Ω) +C18‖QQQ‖2

Th
+C23‖ f‖2

Th
(4.21)

. {C(κ ,h,τ)2 +C23}M( f ,g,QQQ)

+
κ2

6
‖uh‖

2
Th

+
κ2

6
‖ûh‖

2
∂ Ω

. CstaM( f ,g,QQQ).
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where

Csta := {C8κ2τ−1
min +C20κ +C22τ−1

minh−3 +C21τmaxh−1}2 +C.

We have used the fact that κ2‖ûh‖
2
∂ Ω 6 κ2‖uh‖

2
Th

+CM( f ,g,0) to derive the last inequality. Finally, by
(4.8), we arrive at

‖qqqh‖
2
Th

+κ2‖uh‖
2
Th

. CstaM( f ,g,QQQ).

This completes the proof of the Theorem 3.1. �

In the rest of this section, we prove Lemma 3.1.
Proof of Lemma 3.1. Since the exact solution (qqq,u) of (1.3) satisfies

(qqq,τττh)Th − (u,∇ · τττh)Th + 〈u,τττh ·nnn〉∂Th
= 0,

−κ2(u,vh)Th − (qqq,∇vh)Th + 〈qqq ·nnn,vh〉∂Th
=

(
f ,vh

)
Th

,

for all τττh ∈VVV h and vh ∈Wh, we obtain, by The definitions of Πh (cf. (3.4)) and PM , that

(πππqqq,τττh)Th − (Πu,∇ ·τττh)Th + 〈PMu,τττh ·nnn〉∂Th
=

(
(πππqqq−qqq),τττh

)
Th

, (4.22a)

−κ2(Πu,vh)Th − (πππqqq,∇vh)Th + 〈πππqqq ·nnn+ iτ(Πu−u),vh〉∂Th

=
(

f ,vh
)
Th

−
(
κ2(Πu−u),vh

)
Th

, (4.22b)

for all τττh ∈VVV h and vh ∈Wh. Now subtracting (2.2a) from (4.22a), we obtain

(πππqqq−qqqh,τττh)Th − (Πu−uh,∇ ·τττh)Th + 〈PMu− ûh,τττh ·nnn〉∂Th
=

(
(πππqqq−qqq),τττh

)
Th

,

which yields (3.6a). Similarly, subtracting (2.2b) from (4.22b) gives

−κ2(Πu−uh,vh)Th − (πππqqq−qqqh,∇vh)Th + 〈(πππqqq− q̂qqh) ·nnn+ iτ(Πu−u),vh〉∂Th

=−
(
κ2(Πu−u),vh

)
Th

It follows from the definition of ε̂εεh in (3.7) and of the numerical flux q̂qqh in (2.3), we find that

ε̂εεh ·nnn =(πππqqq−qqqh) ·nnn+ iτ(Πu−uh−PMu+ ûh)

=(πππqqq− q̂qqh) ·nnn+ iτ(uh − ûh)+ iτ(Πu−u)− iτ(uh +PMu− ûh−u),

which together with (3.5) yields (3.6b). The equation (3.6c) follows directly from (1.3c), (2.2c), (3.4c)
and (3.7).

Furthermore, using (2.3), (3.4c), (3.5) and the definition of ε̂εεh ·nnn in (3.7) we obtain

〈ε̂εεh ·nnn,µ〉∂Th\∂ Ω = 〈(πππqqq−qqqh) ·nnn+ iτ(Πu−uh−PMu+ ûh),µ〉∂Th\∂ Ω

= 〈(qqq−qqqh) ·nnn+ iτ(u−uh−u+ ûh),µ〉∂Th\∂ Ω

= 〈qqq ·nnn,µ〉∂Th\∂ Ω−〈q̂qqh,µ〉∂Th\∂ Ω .

This proves (3.7). Finally, the equation (3.6d) follows from (2.2d) and the fact that qqq ∈ H(div;Ω). �
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