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Divergence-Free HDG Methods for the Vorticity-Velocity Formulation of

the Stokes Problem

Bernardo Cockburn and Jintao Cui

Abstract

We study a hybridizable discontinuous Galerkin method for solving the

vorticity-velocity formulation of the Stokes equations in three-space di-

mensions. We show how to hybridize the method to avoid the construction

of the divergence-free approximate velocity spaces, recover an approxima-

tion for the pressure and implement the method efficiently. We prove that,

when all the unknowns use polynomials of degree k ≥ 0, the L2 norm of

the errors in the approximate vorticity and pressure converge with order

k + 1/2 and the error in the approximate velocity converges with order

k + 1. We achieve this by letting the normal stabilization function go

to infinity in the error estimates previously obtained for a hybridizable

discontinuous Galerkin method.

Keywords: discontinuous Galerkin methods, hybridization, incompress-

ible fluid flow.

1 Introduction

In this paper, we analyze a hybridizable discontinuous Galerkin (HDG) method

for the numerical solution of the Stokes equations:

w −∇× u = 0 in Ω, (1.1a)

∇×w + ∇p = f in Ω, (1.1b)

1The first author was partially supported by the National Science Foundation (Grant

DMS-0712955) and by the Minnesota Supercomputiong Institute.
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∇ · u = 0 in Ω, (1.1c)

u = g on ∂Ω, (1.1d)
∫

Ω
p = 0. (1.1e)

Here we assume that
∫
∂Ω g · n = 0 and that Ω ⊂ R

3 is a Lipschitz polyhedral

domain.

The present study of the HDG method under consideration focuses on the

way in which the divergence-free condition is handled. Let us give a brief idea

of the main difficulties around this issue. Let us begin by noting, since the

approximate velocities in the test space are all taken to be divergence-free,

the pressure disappears from the formulation. This poses two problems. The

first is how to efficiently implement the method: It is well known that the

construction of basis functions for the velocity spaces are almost impossible to

construct, especially for high-order approximations in three space dimensions;

see the discussion in [1] and the references therein. The second is how to recover

an approximate pressure converging as well as the approximate vorticity does.

Here we address these questions by extending to our setting the approach taken

in [6] for HDG methods based on velocity gradient-velocity formulations.

We proceed as follows. First, we enhance the space of approximate ve-

locities by not requiring that they be elementwise divergence-free and by in-

troducing an approximate pressure in the interior of the elements. Then,

following [1], we show how the construction of basis functions for the space

of approximate velocities is avoided by relaxing the continuity of their nor-

mal component across elements and by introducing an approximate pressure

defined on the interelement boundaries. Finally, we argue that if these two

approximate pressures are related by suitably defined auxiliary unknowns on

each border of the elements, the HDG method under consideration can be
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formally thought of as a limit of the HDG method introduced in 2009 in [3]

and recently analyzed in [2]. More precisely, the HDG method in [3, 2] uses

a stabilization function τn to control the interelement jumps the normal com-

ponent of the approximate velocity. In this paper, we let τn go to infinity and

obtain an HDG method that provides a divergence-conforming and globally

divergence-free approximate velocity.

Here we prove that this limiting process does not degrade the already

proven convergence properties of the HDG method [2] as the error estimates

are independent of the normal stabilization function τn. This idea was pro-

posed in [6], where the HDG methods based on a velocity gradient-velocity

formulation were shown to be the limit as τn goes to infinity of the HDG

methods introduced in [9] and analyzed in [4]. Thus, the approximate vortic-

ity and pressure, which are piecewise polynomials of degree k, converge with

order k + 1/2 in L2 norm for any k ≥ 0; and, the approximate velocity, which

is piecewise polynomial of degree k, converges with order k + 1.

These results have to be compared with those corresponding to the method

proposed in [1], which hold for the two-dimensional case. Therein, the approx-

imate vorticity and pressure, are taken to be polynomials of degree k − 1

converge with order k in L2 norm for any k ≥ 1. Moreover, the approximate

velocity, which is piecewise polynomial of degree k, converges with order k + 1

if k ≥ 1.

Another finite element method for incompressible fluid flow problem, which

also uses a vorticity-velocity formulation and H(div)-conforming spaces for the

velocity approximation was developed in [8]. Therein, the second-type H(curl)-

conforming edge elements of order k are used to approximate the vorticity, and

the H(div)-conforming edge elements of order k − 1 are used for the approx-

imate velocity. In [8], it was shown that both vorticity and velocity converge

3



with order k − 1 in the L2-norm for k ≥ 1.

The organization of the paper is as follows. In Section 2, we introduce the

method and show how to formally relate it to the HDG methods introduced

in [3] and analyzed in [2]. We also state the main convergence results which

are then proven in Section 3.

2 The HDG method

Here, we present the divergence-conforming method based on a vorticity-

velocity formulation. We then show how to introduce an approximate pressure

and how to render it efficiently implementable by using a hybridization tech-

nique. Finally, we relate the resulting method to the HDG method based on a

vorticity-velocity-pressure formulation introduced in [3] and analyzed in [2].

2.1 The mesh and the associated spaces

Let Th be a shape-regular, conforming triangulation of Ω which consists of

tetrahedra T . We denote by Eh the set of all faces of all tetrahedra T of Th

and by ∂Th the set of boundaries ∂T of Th.

We associate to the triangulation Th the following finite dimensional spaces

that will be used to define the HDG method:

W h :={w ∈ L2(Th) : w|T ∈ P k(T ) ∀ T ∈ Th}, (2.1a)

V h :={v ∈ L2(Th) : v|T ∈ P k(T ) ∀ T ∈ Th}, (2.1b)

Mh :={µ ∈ L2(Eh) : µ|F ∈ P k(F ) ∀ F ∈ Eh}, (2.1c)

M∂
h :={µ ∈ L2(∂Th) :µ|∂T ∈ Rk(∂T ) ∀ T ∈ Th}, (2.1d)

where Pk(T ) is the space of polynomials of total degree at most k defined on T ,

and P k(T ) = [Pk(T )]n, Pk(F ) and P k(F ) are the corresponding polynomial
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spaces on F , and

Rk(∂T ) := {δ ∈ L2(∂T ) : δ|F ∈ Pk(F ) ∀F ∈ ∂T}.

Note that functions in M ∂
h are allowed to have different values on two sides of

an interior face F . We are also going to use the affine manifolds

V̂ h(g) ={v ∈ V h ∩H(div,Ω) : 〈(v − g) · n, η〉∂Ω = 0 ∀ η ∈ M∂
h }, (2.2a)

Ṽ h(g) ={v ∈ V̂ h(g) : ∇ · v = 0}, (2.2b)

as well as the pressure space

Ph :=P k−1
h ⊕ P⊥

h , (2.3a)

P k−1
h :={q ∈ L2(Th) : q|T ∈ Pk−1(T ) ∀ T ∈ Th}, (2.3b)

P⊥
h :={q ∈ L2(Th) : q|T ∈ Pk(T )⊥ ∀ T ∈ Th}, (2.3c)

where Pk(T )⊥ is the space of polynomials in Pk(T ) which are L2(K)-orthogonal

to the elements of Pk−1(T ).

2.2 The divergence-free method

The method consists in looking for (wh,uh, ûh) ∈ W h × Ṽ h(g) ×Mh such

that

(wh, τ )Th
− (uh,∇× τ )Th

− 〈ûh, τ × n〉∂Th
= 0, (2.4a)

(wh,∇× v)Th
+ 〈n× ŵh,vt〉∂Th

= (f ,v)Th
, (2.4b)

〈uh · n− ûh · n,µ · n〉∂Th
= 0, (2.4c)

〈n× ŵh,µt〉∂Th\∂Ω = 0, (2.4d)

〈ûh,t,µt〉∂Ω = 〈gt,µt〉∂Ω, (2.4e)

5



for all (τ ,v,µ) ∈W h × Ṽ h(0) ×Mh, where

ŵh := wh + τt(uh − ûh) × n on ∂Th on ∂Th. (2.4f)

Here the stabilization function τt is taken to be constant on each face on ∂Th.

Note that vt := v−(v ·n)n = n×v×n. We also use the standard notation

(v, w)Th
:=

∑
T∈Th

(v, w)T , (v,w)Th
:=

∑n
i=1(vi, wi)Th

, where (·, ·)T denotes

the L2-inner product on L2(T ). Similarly, 〈v, w〉∂Th
:=

∑
T∈Th

〈v, w〉∂T and

〈v,w〉∂Th
:=

∑n
i=1〈vi, wi〉∂Th

, where 〈·, ·〉∂T is the inner product on L2(∂T ).

Note that the pressure does not appear in the formulation due to the fact

that the velocity test functions lie on Ṽ h(0) and are thus divergence-free.

A similar method was introduced in [6] for HDG methods based on velocity

gradient-velocity formulations. Therein, the stabilization function ûh could

also be eliminated from the formulation by setting τt equal to zero. In our

case, the existence and uniqueness of the approximate solution is guaranteed

only when τt is strictly positive function, as we see in the following result.

Proposition 2.1 Assume that Ω is simply connected and that τt > 0 on ∂Th.

Then the approximate solution (wh,uh, ûh) defined by the equations (2.4)

exists and is unique.

Proof. Since the system defining the approximate solution is square, we only

have to show that the only solution in the case (f , g) := (0,0) is the trivial

solution.

So, assuming that this is the case, taking τ := wh, v := uh, µ := −ûh and

µ := −n× ŵh in the first four equations of the weak formulation, respectively,

and adding them up, we get

(wh,wh)Th
+ 〈n× (ŵh −wh),uh − ûh〉∂Th

= 0
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Since τt > 0 on ∂Th, the equations (2.4c) and (2.4f) allow us to conclude that

wh = 0 in Th and that uh = ûh on Eh.

The first equation defining the method implies that ∇ × uh = 0 in Th.

Since Ω is simply connected, this implies that uh = ∇S. The fact that S must

be a harmonic function follows from the fact that ∇ · uh = 0 in Ω. Finally,

since n · ∇S|∂Ω = n · ûh|∂Ω = 0, we conclude that S is a constant and hence

that uh = 0 in Th and that ûh = 0 on Eh. This completes the proof. �

2.3 The HDG method

Next, we hybridize the method just described in order to define an approximate

pressure and in order to render it efficiently implementable. We do this in

several steps.

• Step 1: Introduction of the pressure p
k−1
h in Th

We begin by relaxing the condition ∇ · uh = 0. Thus, instead of taking the

test velocities v in Ṽ h(0), we take them in the larger space in V̂ h(0). This

allows us to introduce an approximation for the pressure, pk−1
h ∈ P k−1

h , into the

equations. Consequently, instead of taking uh in Ṽ h(g), we take it in V̂ h(g).

We then must force its divergence on each element to be zero by introducing

new equations in the formulation.

Thus, we now define the approximation (wh,uh, pk−1
h , ûh) ∈W h×V̂ h(g)×

P k−1
h ×Mh by requiring that

(wh, τ )Th
− (uh,∇× τ )Th

− 〈ûh, τ × n〉∂Th
= 0, (2.5a)

(wh,∇× v)Th
− (pk−1

h ,∇ · v)Th
+ 〈n× ŵh,vt〉∂Th

= (f ,v)Th
, (2.5b)

(∇ · uh, q)Th
= 0, (2.5c)

〈uh · n− ûh · n,µ · n〉∂Th
= 0, (2.5d)
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〈n× ŵh,µt〉∂Th\∂Ω = 0, (2.5e)

〈ûh,t,µt〉∂Ω = 〈gt,µt〉∂Ω, (2.5f)

(pk−1
h , 1)Th

= 0, (2.5g)

for all (τ ,v, q,µ) ∈W h × V̂ h(0) × P k−1
h ×Mh, where

ŵh := wh + τt(uh − ûh) ×n on ∂Th on ∂Th. (2.5h)

• Step 2: Introduction of the pressure p̂h on Eh

Now, we relax the continuity constraint of the normal component of the ap-

proximate velocity on interelement boundaries. Thus, instead of taking the

test velocities v in V̂ h(0), we take them in the larger space in V h. This allows

us to introduce an approximation for the pressure, p̂h ∈ M∂
h , into the equa-

tions. Consequently, instead of taking uh in V̂ h(g), we take it in V h. We

then must enforce the continuity of its normal component across interelement

boundaries by introducing new equations in the formulation.

So, we look for (wh,uh, pk−1
h , ûh, p̂h) in the space W h×V h×P k−1

h ×Mh×

M∂
h and determine it by requiring that

(wh, τ )Th
− (uh,∇× τ )Th

− 〈ûh, τ × n〉∂Th
= 0, (2.6a)

(wh,∇× v)Th
− (pk−1

h ,∇ · v)Th
+ 〈n× ŵh + p̂hn,v〉∂Th

= (f ,v)Th
, (2.6b)

(∇ · uh, q)Th
= 0 (2.6c)

〈ûh,µ〉∂Ω = 〈g,µ〉∂Ω, (2.6d)

〈n× ŵh + p̂hn,µ〉∂Th\∂Ω = 0, (2.6e)

〈(uh − ûh) · n, η〉∂Th
= 0, (2.6f)

(pk−1
h , 1)Th

= 0, (2.6g)
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for all (τ ,v, q,µ, η) ∈W h × V h × P k−1
h ×Mh × M∂

h , where

ŵh := wh + τt(uh − ûh) × n on ∂Th on ∂Th. (2.6h)

Note that the divergence-conforming constraint on uh is imposed by equation

(2.6f) in the above formulation.

• Step 3: The form of p̂h and the introduction of the pressure

ph

Finally, we give a particular form to the numerical trace of the pressure p̂h

which will allow us to improve the quality of the approximation of the pressure

in the interior of the elements.

So, for each element T ∈ Th, we take

p̂h := ph + δh on ∂T,

ph := pk−1
h + p⊥h in T,

where p⊥h |T ∈ P⊥
k (T ) and δh|∂T ∈ Rk(∂T ) is such that

〈δh, q⊥〉∂Th
= 0 ∀ q⊥ ∈ P⊥

h .

Now, note that, since p⊥h |T ∈ P⊥
k (T ), we can write that

(pk−1
h , 1)Ω = (pk−1

h + p⊥h , 1)Ω = (ph, 1)Ω,

and that, for any v ∈ P k(T ),

−(pk−1
h ,∇ · v)Th

= −(pk−1
h + p⊥h ,∇ · v)Th

= −(ph,∇ · v)Th

= −〈phn,v〉∂Th
+ (∇ph,v)Th

.
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Note also that, by the definitions of ŵh and p̂h, the equations (2.6b) and (2.6e)

read

(∇×wh + ∇ph,v)Th
+ 〈τt(uh − ûh)t + δhn,v〉∂Th

= (f ,v)Th
,

〈n×wh + phn+ τt(uh − ûh)t + δhn,µ〉∂Th\∂Ω = 0.

Thus, we arrive at a HDG method which seeks the approximate solution

(wh,uh, ph, ûh, δh) in the space W h × V h × Ph ×Mh × M∂
h such that

(wh, τ )Th
− (uh,∇× τ )Th

− 〈ûh, τ × n〉∂Th
= 0, (2.7a)

(∇×wh + ∇ph,v)Th
+ 〈τt(uh − ûh)t + δhn,v〉∂Th

= (f ,v)Th
, (2.7b)

(∇ · uh, q)Th
= 0, (2.7c)

〈δh, q⊥〉∂Th
= 0, (2.7d)

〈ûh,µ〉∂Ω = 〈g,µ〉∂Ω, (2.7e)

〈n×wh + phn+ τt(uh − ûh)t + δhn,µ〉∂Th\∂Ω = 0, (2.7f)

〈(uh − ûh) · n, η〉∂Th
= 0, (2.7g)

(ph, 1)Th
= 0. (2.7h)

for all (τ ,v, q, q⊥,µ, η) ∈W h × V h × P k−1
h × P⊥

h ×Mh × M∂
h .

Note that, due to the last equation of this formulation, the number of

unknowns seems to be exactly one less than the number of linearly independent

equations. However, there is one equation that is linearly dependent, namely

the one obtained by taking q := 1 in the equation (2.7c). Indeed, we have

(∇ · uh, 1)Th
= 〈uh · n, 1〉∂Th

= 〈ûh · n, 1〉∂Th
by (2.7g) with η := 1,

= 〈ûh · n, 1〉∂Ω

= 〈g · n, 1〉∂Ω by (2.7e) with µ := n,
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= 0.

Therefore, by excluding the choice q := 1 as a test function in (2.7c), we can

consider that the above system of equations defined by (2.7) is actually square.

Moreover, the method is actually well defined, as we see in the next result.

Proposition 2.2 Assume that Ω is simply connected and that τt > 0 on

∂Th. Then the approximate solution (wh,uh, ph, ûh, δh) given by the HDG

method (2.7) exists and is unique. Moreover, the component (wh,uh, ûh) is

the solution of the equations (2.4).

This result allows us to say that we have successfully introduced an ap-

proximation for the pressure, ph, in the original formulation of the method,

as wanted. Moreover, as exactly as for the HDG method developed in [6], we

can verify that the method can be implemented in such a way that the only

globally coupled unknown are ûh and the elementwise averages of ph.

Proof. Let us begin by noting that, if (wh,uh, ph, ûh, δh) ∈W h ×V h ×Ph ×

Mh ×M∂
h solves the equations (2.7), then (wh,uh, ûh) solves equations (2.4).

To do that, let us note first that (wh,uh, ûh) ∈W h×Ṽ h(g)×Mh. Indeed,

uh ∈ V h and, by equations (2.7c), (2.7g), and (2.7e) with µ := ηn for η ∈ M ∂
h ,

we readily see that uh also belongs to Ṽ h(g).

Note that the equation (2.7a) is the same as (2.4a). The fact that (wh,uh, ûh)

satisfies (2.4b) follows from equations (2.7b), the fact that v ∈ Ṽ h(0) ⊂ V h,

and by equation (2.7f). The equation (2.4d) is a direct consequence of (2.7f)

with vectors µ with only tangential components. Finally, the equation (2.4e)

holds in view of (2.7e) and (2.7g).

Now, let us prove that the solution (2.7) exists and is unique. Since this is

a square system, we only have to prove that, when (f , g) := (0,0), the only

solution is the trivial one.
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Since (wh,uh, ûh) solves equations (2.4), we get, by Proposition 2.1 that

(wh,uh, ûh) = (0,0,0). It remains to show that (ph, δh) = (0, 0).

To do that, we begin by noting that equations (2.7b) and (2.7f) are now

reduced to

(∇ph,v)Th
+ 〈δhn,v〉∂Th

= 0 ∀v ∈ V h, (2.8a)

〈ph + δh,µ · n〉∂Th\∂Ω = 0 ∀µ ∈Mh. (2.8b)

By [6, Lemma 4.5], we have that

Rk(∂T ) = {v · n|∂T : v ∈ P k(T )⊥} ⊕ {q|∂T : q ∈ Pk(T )⊥}

is an orthogonal decomposition in L2(∂T ). As a consequence, there exists

v ∈ V h such that v|∂T ∈ P k(T )⊥ and v · n|∂T = δh|∂T ∀T ∈ Th. Using this

v as a test function in (2.8a), we readily get δh = 0. We now take v := ∇ph

and conclude that ph is a constant on each element T ∈ Th.

Since the equation (2.8b) implies that ph ∈ H1(Ω), we conclude that ph is

a constant on Ω and by equation (2.7h), that such a constant is actually zero.

This completes the proof. �

2.4 HDG methods with completely discontinuous velocities

Here, we are going to establish a relation between the HDG method just consid-

ered and the HDG method introduced and studied in [2]. Such HDG method

uses spaces for the velocity which are completely discontinuous and uses a

stabilization function τn in order to control the interelement jumps of their

normal component.

The method is defined as follows. We look for (wτh ,uτh , pτh

h , ûτh

h ) ∈W h ×

V h × Ph ×Mh such that

(wτh

h , τ )Th
− (uτh

h ,∇× τ )Th
− 〈ûτh

h , τ × n〉∂Th
= 0, (2.9a)
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(∇×wτh

h + ∇pτh

h ,v)Th
+ 〈Sτ (uh − ûh),v〉∂Th

= (f ,v)Th
, (2.9b)

−(uτh

h ,∇q)Th
+ 〈ûτh

h , qn〉∂Th
= 0, (2.9c)

〈n×wτh

h + pτh

h n+ Sτ (u
τh

h − ûτh

h ),µ〉∂Th\∂Ω = 0, (2.9d)

〈ûτh

h ,µ〉∂Ω = 〈g,µ〉∂Ω, (2.9e)

(pτh

h , 1)Th
= 0. (2.9f)

for all (τ ,v, q,µ) ∈W h × V h × Ph ×Mh. Here

Sτµ := τtn× µ× n+ τn(µ · n)n,

and the stabilization function τn is taken to be constant on each face on ∂Th.

We make here explicit dependence of τn in the notation since we want to study

the behavior of the approximations as τn tends to infinity. We want to rewrite

this method in the same manner we wrote the HDG method (2.7). To do that,

we introduce the quantity

δτn

h = τn(uτn

h − ûτn

h ) · n ∈ M∂
h

as an unknown, and then split (2.9c) into two equations, one corresponding to

q ∈ Pk−1(T ) and the other one corresponding to q ∈ P ⊥
k (T ).

We can rewrite the above method as follows. We look for the approximation

(wτn ,uτn , pτn

h , ûτn

h , δτn

h ) ∈W h × V h × Ph ×Mh × M∂
h defined by

(wτn

h , τ )Th
− (uτn

h ,∇× τ )Th
− 〈ûτn

h , τ × n〉∂Th
= 0, (2.10a)

(∇×wτn

h + ∇pτn

h ,v)Th
+ 〈τt(u

τn

h − ûτn

h )t + δτn

h n,v〉∂Th
= (f ,v)Th

, (2.10b)

(∇ · uτn

h , q)Th
− 〈τ−1

n δτn

h , q〉∂Th
= 0, (2.10c)

〈δτn

h , q⊥〉∂Th
= 0, (2.10d)

〈ûτn

h ,µ〉∂Ω = 〈g,µ〉∂Ω, (2.10e)

〈n×wτn

h + pτn

h n+ τt(u
τn

h − ûτn

h )t + δτn

h n,µ〉∂Th\∂Ω = 0, (2.10f)
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〈τ−1
n δτn

h − (uτn

h − ûτn

h ) · n, η〉∂Th
= 0, (2.10g)

(pτn

h , 1)Th
= 0. (2.10h)

for all (τ ,v, q, q⊥,µ, η) ∈W h×V h×P k−1
h ×P⊥

h ×Mh×M∂
h . We can now see

that the HDG method (2.7) appears when we formally set τ−1
n = 0 in (2.10c)

and (2.10g). Next we explore an important consequence of this fact.

2.5 The divergence-free HDG method as a limit

We now show that the divergence-free HDG method (2.7) is the limit of the

HDG method (2.10) as the normal stabilization term τn goes to infinity. We

follow [6].

Proposition 2.3 Let (wτn

h ,uτn

h , pτn

h , ûτn

h , δτn

h ) be the solution of (2.10) and

(wh,uh, ph, ûh, δh) solve (2.7). Then

(wτn

h ,uτn

h , pτn

h , ûτn

h , δτn

h ) → (wh,uh, ph, ûh, δh),

in the space W h × V h × Ph ×Mh × M∂
h = Ph(Th) as τn → ∞.

Proof. Set s = τ−1
n and denote X(s) := (wτn

h ,uτn

h , pτn

h , ûτn

h , δτn

h ) ∈ Ph(Th).

Then (2.10) can be written as

A(s)X(s) = B,

where A(s) is a linear operator from Ph(Th) to its dual space Ph(Th)′ and

B ∈ Ph(Th)′.

Note that A(s) is an affine function of s and A(s) is invertible for all s > 0,

see [3, 2], and also for s = 0, see Proposition 2.2. Therefore,

lim
s→0

A(s)−1 = A−1(0),

14



and

lim
s→0

X(s) = A−1(0)B = (wh,uh, ph, ûh, δh).

This completes the proof. �

3 Convergence estimates

Here, we state and prove our error estimates. We begin by introducing a

projection (Πw,Πu,Πp). We then obtain upper bounds for the projection of

the errors, namely, εw := Πw −wh, εu := Πu− uh, εp := Πp − ph and also

εû := P ∂u − ûh, where (wh,uh, ph, ûh) is the approximate solution of (2.7)

and P ∂ is the L2 projection into Mh. Finally, we obtain the wanted error

estimates. The remainder of this section is devoted to proving the estimates.

3.1 The projection

Given a function (w,u, p) in H1(Th)×H1(Th)×H1(Th), we define its projec-

tion (Πw,Πu,Πp,Π∂δ) ∈W h × V h × Ph ×M∂
h as follows. On an arbitrary

element T of the triangulation Th, we require that

(Πw −w, τ )T = 0 ∀ τ ∈ P k(T ), (3.1a)

(Πu− u,v)T = 0 ∀ v ∈ P k−1(T ), (3.1b)

(Πp − p, q)T = 0 ∀ q ∈ Pk−1(T ), (3.1c)

〈(Πp − p) + (Π∂δ), µ〉F = 0 ∀ µ ∈ Pk(F ), (3.1d)

〈Π∂δ, q〉∂T = 0 ∀ q ∈ Pk(T )⊥, (3.1e)

〈(Πu · n− u · n),v · n〉∂T = 0 ∀ v ∈ P k(T )⊥. (3.1f)

for all faces F of the tetrahedron T .

The following result states that the above projection is actually well defined

and that is has optimal convergence properties.
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Theorem 3.1 The system (3.1) is uniquely solvable for (Πw,Πu,Πp,Π∂δ).

Moreover, if ∇ · u = 0, there is a constant C independent of T such that

‖Πw −w ‖T ≤ C h`w+1
K |w|

H
`u+1(T ),

‖Πu− u ‖T ≤ C h`u+1
K |u|

H
`u+1(T ),

‖Πp − p‖T ≤ C h
`p+1
K |p|H`p+1(T ),

for `p, `w, `u in [0, k].

3.2 Main results

To state our error estimates, we need introduce the following dual problem.

For any given θ ∈ L2(Ω), let (ψ,φ, φ) be the solution of

ψ + ∇× φ = 0 in Ω, (3.2a)

−∇×ψ −∇φ = θ in Ω, (3.2b)

−∇ · φ = 0 in Ω, (3.2c)

φ = 0 on ∂Ω, (3.2d)
∫

Ω
φ = 0. (3.2e)

We assume

‖ψ‖Hs+1(Ω) + ‖φ‖Hs+2(Ω) + ‖φ‖Hs+1(Ω) ≤ C‖θ‖Hs(Ω), (3.3)

for some real number s. In three dimensional case, s ≤ 0 if the domain is

convex (cf. [7]).

We are now ready to state our main results. They are going to be stated

in terms for the following quantity:

|||(Πw −w,Πu− u)|||τt,∂Th
:= ‖τ

−1/2
t n× (Πw −w) + τ

1/2
t (Πu− u)t‖∂Th

,

which can be estimated by the following result (c.f. [2, Proposition 2.2]).

16



Proposition 3.2 ([2]) For all (ζ,η) ∈H 1(Th) ×H1(Th), we have

|||(Πζ − ζ,Πη − η)|||τt,∂Th
≤ C max

T∈Th

h
1/2
T ‖τ−1

t ‖
1/2
L∞(∂T ) E(Πζ, ζ)

+ C max
T∈Th

h
1/2
T ‖τt‖

1/2
L∞(∂T ) E(Π η,η),

where

E2(Θ,θ) := inf
S∈W h

∑

T∈Th

(
h−2

T (‖Θ − θ‖2
T + ‖S − θ‖2

T ) + ‖∇(S − θ)‖2
T

)
,

and C is a constant depending on the shape-regularity constant of the elements

and on the polynomial degree k.

Theorem 3.3 Assume Ω is simply connected and that τt > 0 on ∂Th. Then

‖εw‖Ω ≤|||(Πw −w,Πu− P ∂u)|||τt,∂Th
,

‖εp‖Ω ≤(Πp − p)||Ω|1/2 + Cτt |||(Πw −w,Πu− P ∂u)|||τt,∂Th
,

where

Cτt := 1 +
(

max
T∈Th

hT ‖τt‖L∞(∂T )

)1/2
.

Moreover, if the elliptic regularity inequality (3.3) holds with s = 0, we have

‖εu‖Ω ≤ Hτt |||(Πw −w,Πu− P ∂u)|||τt,∂Th
,

where

Hτt := C2
τt

max
T∈Th

h
1/2
T ‖τ−1

t ‖
1/2
L∞(∂T ).

It follows from Proposition 3.2 and Theorem 3.3 that, when τt and τ−1
t are

of order one, the L2 norm of the projection of the errors in the approximate

vorticity and pressure converge to zero with order k+1/2 and with order k+1

in the approximate velocity for k ≥ 0.

Combining Theorem 3.1 and Theorem 3.3, we immediately obtain the errors

in the following Corollary.
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Corollary 3.4 Under the hypotheses of Theorem 3.3, and when the solution

is very smooth, we have that

‖w −wh‖Ω ≤C hk+1/2,

‖p − ph‖Ω ≤C hk+1/2,

‖u− uh‖Ω ≤C hk+1,

provided τt and τ−1
t are of order one on ∂Th.

3.3 Proof of the approximation properties of the projection

Here, we give a detailed proof of Theorem 3.1. We proceed in several steps.

Step 1: The projection is well defined

We begin by showing the following result.

Proposition 3.5 The projection given by (3.1) is well defined.

Proof. We first note that, by (3.1a), the Πw is the simple L2-projection of w

into P k(T ).

Next, we note that the equations defining the projection of the velocity are

(Πu− u,v)T = 0 ∀ v ∈ P k−1(T ),

〈(Πu · n− u · n),v · n〉∂T = 0 ∀ v ∈ P k(T )⊥.

We can see that this is a square system and that if u = 0, we immediately get

that Πu = 0. The projection for the velocity is thus well defined.

Now, we have that Πp is given by

(Πp − p, q)T = 0 ∀ q ∈ Pk−1(T ),

〈Πp − p, q〉∂T = 0 ∀ q ∈ P⊥
k (T ),
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since 〈Π∂δ, q〉∂T = 0 for all q ∈ P⊥
k (T ). This readily implies that Πp is well

defined.

Finally, we have that Π∂δ satisfies

〈Π∂δ, µ〉∂T = 〈Πp − p, µ〉∂T ∀µ ∈ Rk(∂T ),

This also defines Π∂δ since the right-hand side is equal to zero whenever µ =

q ∈ P⊥
k (T ). This completes the proof. �

Step 2: The projection for the HDG method in [2]

Next, we recall the projection considered in [2]. We do this because we are

going to show that such projection converges to the projection just defined as

the stabilization function τn tends for infinity.

The projection is defined as follows:

(Πτnw, τ )T = (w, τ )T ∀ τ ∈ P k(T ), (3.6a)

(Π τnu,v)T = (u,v)T ∀ v ∈ P k−1(T ), (3.6b)

(Πτnp, q)T = (p, q)T ∀ q ∈ Pk−1(T ), (3.6c)

〈Πτnp + τn(Π τnu) · n, µ〉F = 〈p + τnu · n, µ〉F ∀ µ ∈ Pk(F ), (3.6d)

Note that the Πτnw is the L2-projection ofw into P k(T ) and that (Π τnu,Πτnp)

is the same projection used in the analysis of HDG methods for diffusion prob-

lems in [5] with the stabilization parameter τ used therein replaced by 1/τn.

Consequently, we have the following result.

Theorem 3.6 ([5]) Assume that τn|∂T is nonnegative and that (τmin
n )T :=

min τn|T > 0. Then the projection given by (3.6) is well defined. Moreover, if

∇ · u = 0, there is a constant C independent of T and τn such that

‖Π τnw −w ‖T ≤ C h`w+1
K |w|

H
`u+1(T ),
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‖Π τnu− u ‖T ≤ C h`u+1
K |u|

H
`u+1(T ) + C

h
`p+1
T

(τn)∗T
|p|H`p+1(T ),

‖Πτnp − p‖T ≤ C h
`p+1
K |p|H`p+1(T ),

for `w, `p, `u in [0, k]. Here (τn)∗T := min τh|∂T\F ∗ , where F ∗ is a face of T at

which τn|T is minimum.

Step 3: Letting τn go to infinity

In order to compare the two projections introduced above, we are gong to

rewrite the last projection in a suitable manner.

To this effect, we set

Π∂
e δ := τn

(
Π

τnu · n− P∂T (u · n)
)
∈ Rk(∂T ),

and treat it as an additional unknown. Here P∂T : L2(∂T ) → Rk(∂T ) is the

orthogonal projection onto Rk(∂T ).

Then, we define (Πew,Π eu,Πep,Π∂
e δ) ∈ W h × V h × Ph × M∂

h on the

element T ∈ Th as the solution of

(Πew, τ )T = (w, τ )T ∀ τ ∈ P k(T ), (3.7a)

(Π eu,v)T = (u,v)T ∀ v ∈ P k−1(T ), (3.7b)

(Πep, q)T = (p, q)T ∀ q ∈ Pk−1(T ), (3.7c)

〈Πep + (Π∂
e δ), µ〉F = 〈p, µ〉F ∀ µ ∈ Pk(F ), (3.7d)

τ−1
n 〈Π∂

e δ, q〉∂T = −(∇ · u, q)T ∀ q ∈ Pk(T )⊥, (3.7e)

〈τ−1
n Π∂

e δ −Π eu · n,v · n〉∂T = −〈u · n,v · n〉∂T ∀ v ∈ P k(T )⊥. (3.7f)

Note that if ∇ · u = 0 and we formally set τ−1
n = 0, we obtain equations

defining the projection (3.1). In fact, we have the following result.
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Proposition 3.7 Under the same hypotheses of Theorem 3.6, the projection

given by (3.7) is well-defined. Moreover,

(Πew,Π eu,Πep,Π∂
e δ) =

(
Πτnw,Π τnu,Πτnp, τn(Π τnu · n− P∂T (u · n))

)
,

and

(Πew,Π eu,Πep,Π∂
e δ) → (Πw,Πu,Πp,Π∂δ)

as τn → ∞.

Proof. The fact that the projection given by (3.7) is well-defined can be

proven in a way similar as the proof that the projection given by (3.1) is well

defined.

To prove the first identity, we only have to show that the solution of (3.6)

with Π∂
e δ = τn(Π τnu · n − P∂T (u · n)) solves (3.7). In other words, we only

have to deal with (3.7d), (3.7e), and (3.7f).

Note that 〈τn

(
P∂T (u ·n)−u ·n

)
, µ〉F = 0 ∀µ ∈ Pk(F ), ∀F ∈ ∂T. Hence

(3.7d) follows from (3.6d) and the definition of Π∂
e . Moreover, (3.7f) is a direct

consequence of the definition of Π∂
e and P∂T .

Finally,

〈τ−1
n Π∂

e δ, q〉∂T =〈(Π τnu− u) · n, q〉∂T

=
(
∇ · (Π τnu− u), q

)
T

+ (Π τnu− u,∇q)T

=
(
∇ · (Π τnu), q

)
T
− (∇ · u, q)T

= − (∇ · u, q)T ∀ q ∈ Pk(T )⊥,

which implies (3.7e).

We now can set τn goes to infinity and show that the solution of (3.7)

converges to the solution of (3.1). The argument is exactly the same as the

one in Proposition 2.3.

This completes the proof. �
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3.4 Proof of the error estimates

We are now ready to prove Theorems 3.1 and 3.3.

Theorem 3.1 follows from Theorem 3.6 by letting τn go to infinity and by

applying Proposition 2.3.

The estimates Theorem 3.3 follow from similar estimates in [2] by letting

τn go to infinity and by applying Propositions 2.3 and 3.7.

This completes the proof of our main results.
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