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Abstract: We study a nonconforming finite element approximation of the vibration modes of an acoustic
fluid-structure interaction. Displacement variables are used for both the fluid and the solid. The numerical
scheme is based on an irrotational fluid displacement formulation and hence it is free of spurious eigen-
modes. The method uses weakly continuous P1 vector fields for the fluid and classical piecewise linear
elements for the solid, and it has O(h2) convergence for the eigenvalues on properly graded meshes. The
theoretical results are confirmed by numerical experiments.
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1 Introduction
We consider the problemof determining the vibrationmodes of a linear elastic structure containing an acous-
tic (barotropic, inviscid and compressible) fluid.

Let ΩF and ΩS be the bounded polygonal domains inℝ2 occupied by the fluid and the solid, respectively,
as in Figure 1. We assume ΩF to be simply connected but not necessarily convex. Let ΓI denote the interface
between the solid and the fluid and let n be the unit normal vector pointing towardΩS. The exterior boundary
of the solid is the union of ΓD and ΓN : the structure is fixed along ΓD and free of stress along ΓN . Let η denote
the unit outward normal vector along ΓN .

We denote
Hs,γ(div;ΩF) = {u ∈ [Hs(ΩF)]2 : ∇ ⋅ u ∈ Hγ(ΩF)}

and
‖u‖2Hs,γ(div;ΩF) = ‖u‖2Hs(ΩF) + ‖∇ ⋅ u‖2Hγ(ΩF).

The classical acoustic model for small-amplitude motions yields the following eigenvalue problem for
the free vibration modes of the coupled system (see [8, 21]).
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Figure 1: Domains of fluid and solid.

Problem. Find λ ≥ 0 and (u,w) ∈ H0,1(div;ΩF) × [H1(ΩS)]2, (u,w) ̸= (0, 0), such that

c2∇(∇ ⋅ u) + λu = 0 in ΩF , (1.1a)
∇ ⋅ σ(w) + λρSw = 0 in ΩS , (1.1b)

σ(w)n − (c2ρF∇ ⋅ u)n = 0 on ΓI , (1.1c)
w ⋅ n − u ⋅ n = 0 on ΓI , (1.1d)

σ(w)η = 0 on ΓN , (1.1e)
w = 0 on ΓD . (1.1f)

The physical meanings of the terms in equation (1.1) are as follows:
∙ u (respectively, w) is the displacement of the fluid (respectively, solid) particle.
∙ √λ = ω is the frequency of the eigenmode.
∙ ρF (respectively, ρS) is the density of fluid (respectively, solid).
∙ ϵ(w) = 1

2 (∇w + (∇w)
T) is the strain tensor for the displacement w of the solid.

∙ σ(w) = 2μSϵ(w) + λS(∇ ⋅ w)δ is the stress tensor, where δ is the 2 × 2 identity matrix. Here μS = M
2(1+ν)

and λS = Mν(1+ν)(1−2ν) are the Lamé constants, where M is the Young’s modulus and ν is the Poisson ratio
of the solid.

Remark 1.1. Equations (1.1a) and (1.1b) must be understood in the sense of distributions. Equations (1.1c)
and (1.1d) hold in the sense of H−1/2(ΓI). But since ∇ ⋅ u ∈ H1(ΩF) and w ⋅ n ∈ H1/2(ΓI), both can be consid-
ered as equalities in L2(ΓI).

Problem (1.1) is the displacement formulation for the acoustic fluid-structure interaction. An advantage of
this formulation is that it is easy tomaintain compatibility when displacement variables are used for both the
fluid and the solid [23, 28]. On the other hand this is a non-elliptic formulation and hence the solution opera-
tor associatedwith the source problem is not a compact operator. Indeed it has an infinite-dimensional kernel
(cf. Section 2.1). The functions in the infinite-dimensional eigenspace for λ = 0 are pure rotations in the fluid
that do not produce vibrations in the solid. Hence they are not physically relevant. But a naive discretization
of the continuous problem would generate spurious eigenmodes that approximate these nonphysical eigen-
functions (cf. [21]). Such positive spurious eigenvalues pollute the approximation of the physical positive
eigenvalues of (1.1).

Several approaches have been proposed to circumvent this drawback. A penalty method was introduced
in [21]. It penalizes the curl-free condition so that the spurious eigenmodes are pushed towards higher fre-
quencies and hence can be separated from the physical eigenvalues. An alternative approach [2, 6] uses
standard piecewise linear elements for solid and the lowest order Raviart–Thomas elements for fluid. In this
approach the discrete nonphysical 0 eigenvalue is isolated and all the positive discrete eigenvalues are spec-
trally correct. Optimal-order convergence on quasi-uniformmeshes was established in [29]. This method has
been adapted to deal with incompressible fluids in [3, 29], curved interfaces in [30] and to three dimensions
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in [5]. Related work can also be found in [4, 7, 18, 25, 26]. The convergence analysis in these papers requires
sophisticated techniques due to the non-elliptic nature of the formulation.

In this paper, we introduce and analyze a nonconforming finite elementmethod for (1.1) that is based on
an elliptic formulation using only irrotational fluid displacement. Since all the pure rotational motions that
are not physically relevant are excluded from the variational problem, the spurious eigenvalues of the discrete
problem disappear. The method uses weakly continuous P1 vector fields for the fluid and classical piecewise
linear elements for the solid. Furthermore, the convergence for the source problem is O(h) and the conver-
gence of the eigenvalues is O(h2) (a well-known doubling phenomenon) on general domains, provided that
three consistency terms involving the jumps of the vector fields across element boundaries in the fluid and on
the fluid-solid interface are included in the discretization and properly graded meshes are used. The analy-
sis of the numerical scheme is facilitated by its connections to the nonconforming finite element methods
studied in [9–11] for the Maxwell’s equations. Furthermore, the compactness of the underlying operator
greatly simplifies the analysis of the method as an eigensolver, which is similar to that in [12] for Maxwell’s
eigenvalues.

The rest of the paper is organized as follows. In Section 2, we introduce a nonconforming finite element
method for the source problem associatedwith (1.1). Optimal order convergence of themethod is established
in both the energy norm and the L2-norm. In Section 3, we present the convergence analysis for the non-
conforming method as an eigensolver for (1.1). Results of a series of numerical experiments are reported in
Section 4. We end the paper with a few concluding remarks in Section 5.

2 A Nonconforming Finite Element Method for the Source Problem
In this section, we introduce and analyze a nonconformingmethod on gradedmeshes for the source problem
corresponding to (1.1).

2.1 The Source Problem

Let H1
ΓD (ΩS) be the subspace of H1(ΩS) whose members vanish on ΓD and

V = {(v,w) : v ∈ H0,1(div;ΩF), w ∈ [H1
ΓD (ΩS)]2, v ⋅ n = w ⋅ n on ΓI}. (2.1)

Note that V is a Hilbert space under the inner product defined by

((v1,w1), (v2,w2))V = ∫
Ω

[v1 ⋅ v2 + (∇ ⋅ v1)(∇ ⋅ v2) + w1 ⋅ w2 + ∇w1 : ∇w2] dx.

The corresponding norm is denoted by ‖(v,w)‖. We also use |(v,w)| to denote the standard norm on
[L2(ΩF)]2 × [L2(ΩS)]2.

Given (f , g) ∈ [L2(ΩF)]2 × [L2(ΩS)]2, the weak form of the source problem corresponding to (1.1) is to
find (u,w) ∈ V such that

a((u,w), (v, z)) = b((f , g), (v, z)) for all (v, z) ∈ V,

where

a((u,w), (v, z)) = ∫
ΩF

(ρFc2)(∇ ⋅ u)(∇ ⋅ v) dx + ∫
ΩS

(σ(w) : ϵ(z)) dx, (2.2)

b((f , g), (v, z)) = ∫
ΩF

ρF f ⋅ v dx + ∫
ΩS

ρSg ⋅ z dx. (2.3)

Note that
a((v1,w1), (v2,w2)) = 0 for all (v1,w1) ∈ E0 and (v2,w2) ∈ V,

Brought to you by | Hong Kong Polytechnic University
Authenticated

Download Date | 7/7/18 10:32 AM



386 | S. C. Brenner et al., A Nonconforming Finite Element Method

where E0 is the infinite-dimensional subspace of V given by

E0 = [∇ × H1
0(ΩF)] × {0}.

Therefore this is a non-elliptic problem.
It is known (cf. [2, Lemma 2.3]) that the orthogonal complement of E0 in V is the space

∘
V defined by∘

V = {(v,w) ∈ V : v ∈ H(curl0;ΩF)},

where

H(curl0;ΩF) = {u = (
u1
u2
) ∈ [L2(ΩF)]2 : ∇ × u =

∂u2
∂x
−
∂u1
∂y
= 0} .

We can avoid the complications of the non-elliptic weak problem by switching to the following source
problem:

Problem. Find (u,w) ∈
∘
V such that

a((u,w), (v, z)) = b((f , g), (v, z)) for all (v, z) ∈
∘
V. (2.4)

Thewell-posedness of (2.4) follows fromKorn’s inequality, the compatibility condition (1.1d) and the follow-
ing Friedrichs inequality [27, Section 4.4]:

‖v‖L2(ΩF) ≤ CΩF (‖∇ ⋅ v‖L2(ΩF) + ‖n ⋅ v‖L2(ΓI )) for all v ∈ H(div;ΩF) ∩ H(curl0;ΩF).

Next we will show that the strong form of the reduced problem (2.4) is given by

−c2∇(∇ ⋅ u) = Qf in ΩF , (2.5a)
−∇ ⋅ σ(w) = ρSg in ΩS , (2.5b)

σ(w)n − (ρFc2∇ ⋅ u)n = 0 on ΓI , (2.5c)
w ⋅ n − u ⋅ n = 0 on ΓI , (2.5d)

σ(w)η = 0 on ΓN , (2.5e)
w = 0 on ΓD , (2.5f)

where Q is the orthogonal projection from [L2(ΩF)]2 onto H(curl0;ΩF).
Indeed, as (u,w) ∈

∘
V, conditions (2.5d) and (2.5f) are automatically satisfied. Let (0, z)with z ∈ [D(ΩS)]2

be a test function. Then
∫
ΩS

(σ(w) : ϵ(z)) dx = ∫
ΩS

ρSg ⋅ z dx,

which implies (2.5b)
Let v ∈ [D(ΩF)]2 be a test function. Then v − Qv ∈ ∇ × H1

0(ΩF). Hence (v − Qv, 0) ∈ V, which implies
(Qv, 0) ∈

∘
V. It follows from (2.4) that

∫
ΩF

(ρFc2)(∇ ⋅ u)(∇ ⋅ v) dx = ∫
ΩF

(ρFc2)(∇ ⋅ u)(∇ ⋅ [Qv + (v − Qv)]) dx

= ∫
ΩF

(ρFc2)(∇ ⋅ u)(∇ ⋅ Qv) dx

= ∫
ΩF

ρF f ⋅ (Qv) dx = ∫
ΩF

ρF(Qf ) ⋅ v dx,

which implies (2.5a). Now, for any (v, z) ∈
∘
V, integration by parts in (2.4), together with (2.5a), (2.5b), (2.5d)

and (2.5f), gives
∫
ΓI

[(ρFc2∇ ⋅ u)n − σ(w)n] ⋅ z ds + ∫
ΓN

[σ(w)η] ⋅ z ds = 0, (2.6)

which implies (2.5c) and (2.5e) in the sense of H−1/2(ΓI) and H−1/2(ΓN), respectively. In fact, we can take any
z ∈ [H1

ΓD (ΩS)]2 as a test function in (2.6) since there exists v ∈ H0,1(div;ΩF) such that (v, z) ∈
∘
V. For instance,

we can take v = ∇q, where q ∈ H1(ΩF) is a function satisfying ∂q
∂n = z ⋅ n on ΓI .
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2.2 Regularity of the Source Problem

The main difficulty arises at the interface where on one side we have the solid and on the other side we have
the fluid. The regularity of the coupled problem is closely related to the regularity of the elasticity problem
and because of the curl-free condition, the regularity of the Laplacian. Away from the interface, we can think
of the problems separately and use the well-known regularity results [19, 20] for the solid and the fluid.
However, on the interface the solutions from both sides are coupled through the interface conditions. In the
following we focus on the singularities at a corner on the fluid-solid interface ΓI .

First consider the homogeneous source problem defined as follows:

−c2∇(∇ ⋅ u) = 0 in ΩF ,
−∇ ⋅ σ(w) = 0 in ΩS ,

σ(w)n − (ρFc2∇ ⋅ u)n = 0 on ΓI ,
w ⋅ n − u ⋅ n = 0 on ΓI ,

σ(w)η = 0 on ΓN ,
w = 0 on ΓD .

For a given corner c of ΓI , we switch to the polar coordinates (r, θ) at c as the origin. We represent a vector
function v(r, θ) in polar coordinates as v(r, θ) = vr r̂ + vθ θ̂, where

r̂ = (cos(θ)
sin(θ)
) and θ̂ = (− sin(θ)

cos(θ)
).

In other words, with respect to the basis r̂, θ̂,

v(r, θ) = (vr
vθ
).

Assume that c is at the origin and the edges of ΓI emanating from c are defined by θ = −ωS and θ = ωS (cf.
Figure 2). We apply separation of variables on the whole coupled problem. For the elasticity part we obtain

Figure 2: Corner c with angle 2ωs.

the following general solution (cf. [24, Section 3.1.3]):

w(r, θ) = rγ ( A cos((γ + 1)θ) + B sin((γ + 1)θ) + C cos((γ − 1)θ) + D sin((γ − 1)θ)
B cos((γ + 1)θ) − A sin((γ + 1)θ) + ΘD cos((γ − 1)θ) − ΘC sin((γ − 1)θ)

) ,

where

Θ :=
μS

λS+2μS (γ − 1) − (γ + 1)
μS

λS+2μS (γ + 1) − (γ − 1)
Brought to you by | Hong Kong Polytechnic University

Authenticated
Download Date | 7/7/18 10:32 AM



388 | S. C. Brenner et al., A Nonconforming Finite Element Method

and the constants A, B, C, D are arbitrary. The curl-free condition implies that the problem in the fluid part is
equivalent to the Laplacian problem which has the general solution of the following form:

u(r, θ) = rγ (E cos((γ + 1)θ) + F sin((γ + 1)θ)
F cos((γ + 1)θ) − E sin((γ + 1)θ)

) ,

where E, F are arbitrary constants. When γ ̸= 1 (a value that is not important for our purposes), the equation
∇(∇ ⋅ u) = 0 for this type of u implies that ∇ ⋅ u = 0. Therefore the first interface condition is the same as the
traction boundary condition for the elasticity problem, i.e.,

σ(w)n = 0 on ΓI .

This is equivalent to the following set of equations:

cos((γ + 1)ωS)B +
(γ − 1)(μS + λS)
(μS + λS)γ − (3μS + λS)

cos((γ − 1)ωS)D = 0,

sin((γ + 1)ωS)A +
(γ − 1)(μS + λS)
(μS + λS)γ − (3μS + λS)

sin((γ − 1)ωS)C = 0,

cos((γ + 1)ωS)A +
(γ + 1)(μS + λS)
(μS + λS)γ − (3μS + λS)

cos((γ − 1)ωS)C = 0,

sin((γ + 1)ωS)B +
(γ + 1)(μS + λS)
(μS + λS)γ − (3μS + λS)

sin((γ − 1)ωS)D = 0.

Therefore, the coupled problem has a nontrivial solution when γ satisfies

γ2 sin2(2ωS) − sin2(2γωS) = 0, (2.7)

where ωS ∈ (0, π).
The second interface condition yields

B cos((γ + 1)ωS) + ΘD cos((γ − 1)ωS) + F cos((γ + 1)ωF) = 0,
A sin((γ + 1)ωS) + ΘC sin((γ − 1)ωS) + E sin((γ + 1)ωF) = 0,

where ωF = π − ωS.
Assume B = D = F = 0, sin((γ + 1)ωF) ̸= 0 and solve for A and E in terms of C. This choice corresponds

to γ sin(2ωS) + sin(2γωS) = 0, one of the two factors of equation (2.7). We have

A = −( (γ − 1)(μS + λS)
(μS + λS)γ − (3μS + λS)

)
sin((γ − 1)ωS)
sin((γ + 1)ωS)

C,

E = − 2(2μS + λS)
(μS + λS)γ − (3μS + λS)

sin((γ − 1)ωS)
sin((γ + 1)ωF)

C.

Therefore, letting C = 1, we have

w(r, θ) = rγ(
−( (γ−1)(μS+λS)(μS+λS)γ−(3μS+λS)) sin((γ−1)ωS)

sin((γ+1)ωS) cos((γ + 1)θ) + cos((γ − 1)θ)
( (γ−1)(μS+λS)(μS+λS)γ−(3μS+λS)) sin((γ−1)ωS)

sin((γ+1)ωS) sin((γ + 1)θ) − Θ sin((γ − 1)θ)
) (2.8)

and

u(r, θ) = −rγ(
2(2μS+λS)(μS+λS)γ−(3μS+λS) sin((γ−1)ωS)

sin((γ+1)ωF) cos((γ + 1)θ)
− 2(2μS+λS)(μS+λS)γ−(3μS+λS) sin((γ−1)ωS)

sin((γ+1)ωF) sin((γ + 1)θ)) . (2.9)

A similar solution can be obtained if we assume A = C = E = 0, cos((γ + 1)ωF) ̸= 0 and solve for B, F in
terms of D. This choice corresponds to γ sin(2ωS) − sin(2γωS) = 0, the other factor of equation (2.7).

Remark 2.1. Equation (2.7) is precisely the transcendental equation that determines the singularity of the
elasticity problem with pure traction boundary condition (cf. [20, Section 4.2] and [24, Section 4.2]). Note
that it is independent of the Lamé constants.
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Consider the transcendental equation

γ2 sin2(ω) − sin2(γω) = 0, ω ∈ (0, 2π). (2.10)

Define the angle ω0 ∈ (π, 3π2 ) by
ω0 = tan(ω0).

The following lemma defines the singularities from the solid side.

Lemma 2.2 ([20, Lemma 3.3.1, Lemma 3.3.2]). In the strip 0 < Re(z) < 1, equation (2.10) has no root when
ω < π, has only one single real root γ1 when π < ω < ω0 and has two distinct simple real roots γ1 < γ2 when
ω0 < ω < 2π. Moreover, when ω > π,

1
2 < γ1 <

π
ω
< γ2.

Remark 2.3. One interesting observation is that the singularities of (2.4) are completely determined by the
solid side and they are independent of the Lamé constants of the solid (cf. Remark 2.1). Note that for the
fluid-structure interaction problemwe takeω = 2ωS,ωS ∈ (0, π). For example,whenωS = 3π

4 , the singularity
index corresponding to equation γ sin(3π2 ) + sin(γ

3π
2 ) = 0 is γ = 0.544483661651611.

We conclude this subsection by the following lemma. The proof, which is based on the a priori estimates for
the Poisson problem and the linear elasticity problem, is similar to the proof of [2, Theorem 2.5].

Lemma 2.4. The solution (u,w) of (2.4) belongs to H1+γ1 ,1(div;ΩF) × [H1+γ1 (ΩS)]2 and

{‖u‖H1+γ1 ,1(div;ΩF) + ‖w‖[H1+γ1 (ΩS)]2 } ≤ C|(f , g)|, (2.11)

where γ1 is as in Lemma 2.2.

2.3 A Nonconforming Finite Element Method

Let Th be a family of triangulations of ΩF ∪ ΩS such that every triangle is completely contained either in ΩF
or ΩS. We denote by h = maxT∈Th hT the mesh parameter of Th, where hT is the diameter of the triangle T.
The triangulation Th is graded around the corners c1, . . . , cL on ΓI with property that

C1hT ≤ hΦμ(T) ≤ C2hT , (2.12)

where

Φμ(T) =
L
∏ℓ=1 |cℓ − cT |1−μℓ . (2.13)

Here cT is the center of T and the positive constants C1 and C2 are independent of h. The vector μ contains
the grading parameters μ1, . . . , μL chosen according to

μℓ = 1 if ωℓ ≤ π,
1
2 < μℓ < γ1(< π

ωℓ ) if ωℓ > π, (2.14)

where ω1, . . . , ωL are the interior angles at the corners c1, . . . , cL of ΩS. (An example of such gradedmeshes
for the domain in Figure 1 is given in Figure 4.)

Note that

hT ≲ h for all T ∈ Th , (2.15)
hT ≈ h1/μℓ if the corner cℓ is a vertex of T ∈ Th . (2.16)

LetEh,ΩF be the set of the edges in Th ∩ ΩF . LetEih,ΩF
denote set of the interior edges in Th ∩ ΩF and letEΓIh

(respectively, EΓNh , EΓDh ) denote the set of the edges on ΓI (respectively, ΓN , ΓD). We define

Nh(ΩF) = {v ∈ [L2(ΩF)]2 : vT = v|T ∈ [P1(T)]2, v is continuous at the midpoint of any e ∈ Eih,ΩF
}

Brought to you by | Hong Kong Polytechnic University
Authenticated

Download Date | 7/7/18 10:32 AM



390 | S. C. Brenner et al., A Nonconforming Finite Element Method

and

Lh(ΩS) = {z ∈ [H1(ΩS)]2 : zT = z|T ∈ [P1(T)]2 for all T ∈ Th, T ∈ ΩS, and z = 0 on any e ∈ EΓDh }.

Then we define

Vh = {(v, z) ∈ Nh(ΩF) × Lh(ΩS) : ∫
e

(v − z) ⋅ n ds = 0 on any e ∈ EΓIh }.

Let ∇h ⋅ and ∇h be the piecewise div and grad operators defined by

(∇h ⋅ v)T = ∇ ⋅ (vT) for all T ∈ Th ,
(∇hv)T = ∇(vT) for all T ∈ Th .

Let e ∈ Eih be shared by the two triangles Te,1, Te,2 ∈ Th and let n1 (respectively, n2) be the unit normal
of e pointing towards the outside of Te,1 (respectively, Te,2). We define, on e,

[[n × v]] = n1 × (vTe,1 |e) + n2 × (vTe,2 |e), (2.17a)
[[n ⋅ v]] = n1 ⋅ (vTe,1 |e) + n2 ⋅ (vTe,2 |e). (2.17b)

The nonconforming finite element method for (2.4) is:

Problem. Find (uh ,wh) ∈ Vh such that

ah((uh ,wh), (v, z)) = b((f , g), (v, z)) for all (v, z) ∈ Vh , (2.18)

where

ah((u,w), (v, z)) = ∫
ΩF

(ρFc2)(∇h ⋅ u)(∇h ⋅ v) dx + h−2 ∫
ΩF

(ρFc2)(∇h × u)(∇h × v) dx

+ ∫
ΩS

(σ(w) : ϵ(z)) dx + ∑
e∈Ei

h,ΩF

1
|e| ∫

e

(ρFc2)[[n ⋅ u]][[n ⋅ v]] ds

+ ∑
e∈Ei

h,ΩF

1
|e| ∫

e

(ρFc2)[[n × u]] [[n × v]] ds

+ ∑
e∈EΓI

h

1
|e| ∫

e

(ρFc2)(n ⋅ (u − w))(n ⋅ (v − z)) ds. (2.19)

Here ϵh(z) = 1
2 (∇hz + (∇hz)

T) and σh(ψ) = 2μSϵh(w) + λS(∇h ⋅ w)δ are the discrete versions of the strain and
stress tensors defined in Section 1. From now on we will no longer keep track of the dependence on the
constants ρF, ρS, c, μS and λS.

For any s > 1
2 , we define a weak interpolation operator ΠT : [Hs(T)]2 → [P1(T)]2 as follows:

(ΠTζ )(mej ) =
1
|ej|
∫
ej

ζ ds for 1 ≤ j ≤ 3, (2.20)

where e1, e2 and e3 are the edges of T, and me and |e| denote the midpoint and the length of the edge e.
It follows immediately from (2.20), the midpoint rule and Green’s theorem that

∫
T

∇ × (ΠTζ ) dx = ∫
T

∇ × ζ dx, (2.21)

∫
T

∇ ⋅ (ΠTζ ) dx = ∫
T

∇ ⋅ ζ dx. (2.22)

Furthermore, the operator ΠT satisfies a standard error estimate [16]:

‖ζ − ΠTζ ‖L2(T) + hmin(s,1)
T |ζ − ΠTζ |Hmin(s,1)(T) ≤ CThsT |ζ |Hs(T) (2.23)

for all ζ ∈ [Hs(T)]2 and s ∈ (12 , 2], where the positive constant CT depends on the minimum angle of T.
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We can define a global interpolation operator Πh,ΩF : Hs,1(div;ΩF)→ Nh by piecing together the local
interpolation operators:

(Πh,ΩF v)T = ΠTvT for all T ∈ Th,ΩF .

A suitable Vh-interpolation operator Ih : {H1+α,1(div;ΩF) × [H1+α(ΩS)]2} ∩ V→ Vh (α > 1
2 ) is defined in the

following way:

Ih(u,w)|T =
{{{
{{{
{

(Lh,ΩSw)|T if T ⊂ ΩS ,
(Πh,ΩFu)|T if T ⊂ ΩF and ∂T ∩ ΓI = 0,
(Π̂h,ΩFu)|T if T ⊂ ΩF and ∂T ∩ ΓI ̸= 0,

(2.24)

where Lh,ΩSw is the Lagrange interpolant of w in Lh(ΩS), and (Π̂h,ΩFu)|T is the function in Nh(ΩF) such that

((Π̂h,ΩFu) × n)|e = ((Πh,ΩFu) × n)|e for all e ∈ Eh,ΩF (2.25)

and

(Π̂h,ΩFu ⋅ n)(me) =
{
{
{

((Πh,ΩFu) ⋅ n)(me) if e ̸⊂ ΓI ,
1|e| ∫e((Lh,ΩSw) ⋅ n)|Te ds if e ⊂ ΓI ,

(2.26)

with Te the triangle contained in ΩS such that ∂T ∩ ∂Te = e, and me is the midpoint of e.

2.4 Preliminary Error Estimates

We will measure the discretization error in the mesh-dependent energy norm ‖( ⋅ , ⋅ )‖h defined by

‖(v, z)‖2h = ‖∇h ⋅ v‖
2
L2(ΩF) + h−2‖∇h × v‖2L2(ΩF) + ‖∇hz‖2L2(ΩS) + ∑

e∈Ei
h,ΩF

1
|e|
‖[[n ⋅ v]]‖2L2(e)

+ ∑
e∈Ei

h,ΩF

1
|e|
‖[[n × v]]‖2L2(e) + ∑

e∈EΓI
h

1
|e|
‖n ⋅ (v − z)‖2L2(e). (2.27)

Observe that ah(( ⋅ , ⋅ ), ( ⋅ , ⋅ )) is bounded by the energy norm, i.e.,

|ah((ϕ,ψ), (v, z))| ≤ C‖(ϕ,ψ)‖h‖(v, z)‖h (2.28)

for all (ϕ,ψ), (v, z) ∈ {H1+α,1(div;ΩF) × [H1+α(ΩS)]2} ∩
∘
V + Vh.

Due to Korn’s inequality, ah(( ⋅ , ⋅ ), ( ⋅ , ⋅ )) is also coercive with respect to ‖( ⋅ , ⋅ )‖h, i.e.,

ah((v, z), (v, z)) ≥ γ‖(v, z)‖2h (2.29)

for all (v, z) ∈ {H1+α,1(div;ΩF) × [H1+α(ΩS)]2} ∩
∘
V + Vh.

Lemma 2.5. Let (u,w) ∈
∘
V be the solution of (2.4), and let (uh ,wh) satisfy the discrete problem (2.18). It holds

that

‖(u,w) − (uh ,wh)‖h ≤ (1 +
C
γ )

inf(v,z)∈Vh
‖(u,w) − (v, z)‖h +

1
γ

sup(ϕ,ψ)∈Vh\{(0,0)} ah((u,w) − (uh ,wh), (ϕ,ψ))
‖(ϕ,ψ)‖h

.

Proof. Let (v, z) ∈ Vh be arbitrary. It follows from (2.28) and (2.29) that

‖(u,w) − (uh ,wh)‖h ≤ ‖(u,w) − (v, z)‖h + ‖(v, z) − (uh ,wh)‖h

≤ ‖(u,w) − (v, z)‖h +
1
γ

sup(ϕ,ψ)∈Vh\{(0,0)} ah((v, z) − (uh ,wh), (ϕ,ψ))
‖(ϕ,ψ)‖h

≤ (1 + Cγ )‖(u,w) − (v, z)‖h +
1
γ

sup(ϕ,ψ)∈Vh\{(0,0)} ah((u,w) − (uh ,wh), (ϕ,ψ))
‖(ϕ,ψ)‖h

,

as desired.

The following lemma is useful for the error analysis.
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Lemma 2.6. For any (u,w) ∈ {H1+α,1(div;ΩF) × [H1+α(ΩS)]2} ∩ V, T ∈ ΩF such that ∂T ∩ ΓI ̸= 0 and Te ∈ ΩS
with ∂T ∩ ∂Te = e, there exists a positive constant C (depending on the minimum angle of T and Te) such that

∑
T∈ΩF

∂T∩ΓI ̸=0 ‖ΠTu − (Π̂h,ΩFu)|T‖2H(div;T) ≤ Ch2|(f , g)|2. (2.30)

Proof. Letϕe,n be the basis vectors ofNh(ΩF) corresponding to the normal vectors on e. It follows from (2.1),
(2.20) and (2.26) that

(Πh,ΩFu − Π̂h,ΩFu)|T =


1
|e| ∫

e

(u − Lh,ΩSw) ⋅ n ds

ϕe,n =


1
|e| ∫

e

(w − Lh,ΩSw) ⋅ n ds

ϕe,n . (2.31)

Therefore,

‖ΠTu − (Π̂h,ΩFu)|T‖2H(div;T) =  1|e| ∫e (w − Lh,ΩSw) ⋅ n ds


2
‖ϕe,n‖

2
H(div;T). (2.32)

Note that

∫
T

|∇ ⋅ ϕe,n|
2 dx = 1
|T|


∫
T

∇ ⋅ ϕe,n dx


2
=

1
|T|


∫
∂T

ϕe,n ⋅ nT ds


2
=
|e|2

|T|
.

Hence ‖ϕe,n‖
2
H(div;T) ≤ C for a constant C that depends on the minimum angle of T.

If Te is away from the reentrant corners on ΓI , by using (2.11), the trace theorem (with scaling) and
standard interpolation results [13, 15], we have



1
|e| ∫

e

(w − Lh,ΩSw) ⋅ n ds


2
≤

1
|e|
‖w − Lh,ΩSw‖2[L2(e)]2

≤ C{h−2T ‖w − Lh,ΩSw‖2[L2(Te)]2 + |w − Lh,ΩSw|2[H1(Te)]2}
≤ Ch2T |w|

2[H2(Te)]2 . (2.33)

For triangles Te inside the neighborhood of a reentrant corner but not touching the corner, it follows
from (2.12) that



1
|e| ∫

e

[(w − Lh,ΩSw) ⋅ n ds


2
≤

1
|e|
‖w − Lh,ΩSw‖2[L2(e)]2

≤ C{h−2T ‖w − Lh,ΩSw‖2[L2(Te)]2 + |w − Lh,ΩSw|2[H1(Te)]2}
≤ Ch2T |w|

2[H2(Te)]2
≤ Ch2[Φμ(T)]2|w|2[H2(Te)]2
≤ Ch2|w|2[H2(Te)]2 , (2.34)

where we have applied the fact that
1

∫
0

r2(1−μℓ)r2(γ1−2)r dr <∞ if μℓ < γ1. (2.35)

For triangles Te touching a reentrant corner, we can apply an interpolation error estimate for the frac-
tional order Sobolev spaces [17] together with (2.11), (2.16), (2.14) and the trace theorem with scaling to
obtain



1
|e| ∫

e

[(w − Lh,ΩSw) ⋅ n ds


2
≤

1
|e|
‖w − Lh,ΩSw‖2[L2(e)]2

≤ C{h−2T ‖w − Lh,ΩSw‖2[L2(Te)]2 + |w − Lh,ΩSw|2[H1(Te)]2}
≤ Ch2μℓT |w|

2[H1+μℓ (Te)]2 . (2.36)

Estimate (2.30) then follows from the regularity result (2.11) and the summation of (2.32)–(2.36) over T ∈ ΩF
with ∂T ∩ ΓI ̸= 0.
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Lemma 2.7. Let (u,w) ∈
∘
V be the solution of (2.4). We have

∑
T∈ΩF

∂T∩ΓI=0 ‖∇ ⋅ (u − ΠTu)‖2L2(T) + ∑
T∈ΩF

∂T∩ΓI ̸=0 ‖∇ ⋅ (u − (Π̂h,ΩFu)|T)‖2L2(T) ≤ Ch2|(f , g)|. (2.37)

Proof. Observe that (2.22) implies
∇ ⋅ (ΠTu) = Π0

T(∇ ⋅ u),

whereΠ0
T is the orthogonal projection from L2(Ω) onto the space of piecewise constant functionswith respect

to T ∈ Th,ΩF . Hence, by using a standard interpolation error estimate [13, 15], we have

∑
T∈ΩF

∂T∩ΓI=0 ‖∇ ⋅ (u − ΠTu)‖2L2(T) = ∑
T∈ΩF

∂T∩ΓI=0 ‖∇ ⋅ u − Π
0
h(∇ ⋅ u)‖

2
L2(T) ≤ Ch2|∇ ⋅ u|2H1(ΩF). (2.38)

It then follows from (2.38), Lemma 2.6 and the regularity result (2.11) that

∑
T∈ΩF

∂T∩ΓI ̸=0 ‖∇ ⋅ (u − (Π̂h,ΩFu)|T)‖2L2(T) ≤ ∑
T∈ΩF

∂T∩ΓI ̸=0 ‖∇ ⋅ (u − ΠTu)‖2L2(T) + ∑
T∈ΩF

∂T∩ΓI ̸=0 ‖∇ ⋅ (ΠTu − (Π̂h,ΩFu)|T)‖2L2(T)
≤ C{h2|∇ ⋅ u|2H1(ΩF) + h2|(f , g)|2}. (2.39)

We conclude the proof of (2.37) by combining (2.11), (2.38) and (2.39).

Note that the interpolation operator Πh,ΩF defined on Eih,ΩF
is identical with the one employed in [9]. The

following result can be proved similarly as in [9, Lemma 5.2]:

Lemma 2.8. Let (u,w) ∈
∘
V be the solution of (2.4). We have

∑
e∈Ei

h,ΩF

1
|e|
‖[[u − Πh,ΩFu]]‖2L2(e) ≤ Ch2|(f , g)|2. (2.40)

Proof. Let e ∈ Eih,ΩF
and let Te be the set of the triangles in Th having e as an edge. We have

1
|e|
‖[[u − Πh,ΩFu]]‖2L2(e) ≲ ∑

T∈Te

|e|−1‖u − ΠTu‖2L2(e). (2.41)

If T ∈ Te is away from the reentrant corners on ΓI , then we have, by the trace theorem (with scaling), (2.15)
and (2.23) (with s = 2),

|e|−1‖u − ΠTu‖2L2(e) ≲ h−2T ‖u − ΠTu‖2L2(T) + |u − ΠTu|2H1(T) ≤ Ch2T |u|2H2(T). (2.42)

Note that if T ∈ Te is inside the neighborhood of a reentrant corner but not touching the corner, estimate
(2.42) also holds in view of (2.35). On the other hand, if T ∈ Te has a reentrant corner cℓ as one of its vertices,
we can use (2.16) and (2.23) (with s = 1 + μℓ) to obtain

|e|−1‖u − ΠTu‖2L2(e) ≲ h−2T ‖u − ΠTu‖2L2(T) + |u − ΠTu|2H1(T) ≲ h2μℓT |u|
2
H1+μℓ (T). (2.43)

Estimate (2.40) follows from the regularity result (2.11) and the summation of (2.41)–(2.43) over e ∈ Eih,ΩF
.

This completes the proof of the lemma.

The following lemma, which is identical with [9, Lemma 5.3], is useful for estimating terms involving the
jumps of the weakly continuous P1 vector fields across the edges. The proof is based on the trace theorem
(with scaling) and a standard interpolation error estimate [13, 15].

Lemma 2.9. It holds that

∑
e∈Eh,ΩF

|e|‖η − η̄Te‖2L2(e) ≤ Ch2|η|2H1(ΩF) for all η ∈ H1(ΩF),

where
η̄Te =

1
|Te|
∫
Te

η dx (2.44)

is the mean of η over Te, one of the triangles in Th that has e as an edge.
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Recall that Q is the L2-orthogonal projection onto H(curl0;ΩF). The following result is useful in addressing
the consistency error caused by Q in (2.5a).

Lemma 2.10. The following estimate holds:

‖v − Qv‖[L2(ΩF)]2 ≤ Ch‖(v,w)‖h (2.45)

for all (v,w) ∈ [H1+α,1(div;ΩF) × [H1+α(ΩS)]2] + Vh.

Proof. For any v ∈ H1+α,1(div;ΩF),wehave (v−Qv) ∈ ∇×H1
0(ΩF), the orthogonal complement ofH(curl0;ΩF).

Hence by duality,

‖v − Qv‖[L2(ΩF)]2 = sup
η∈H1

0(ΩF)\{0} (v − Qv, ∇ × η)‖∇ × η‖L2(ΩF) = sup
η∈H1

0(ΩF)\{0} (v, ∇ × η)‖∇ × η‖L2(ΩF) . (2.46)

It follows from integration by parts that

(v, ∇ × η) = (∇h × v, η) + ∑
e∈Ei

h,ΩF

∫
e

η[[n × v]] ds.

In view of (2.27) and the Poincaré–Friedrichs inequality, we have

(∇h × v, η) ≤ ‖∇h × v‖L2(ΩF)‖η‖L2(ΩF) ≤ Ch‖(v,w)‖h‖∇ × η‖L2(ΩF). (2.47)

Since [[n × v]] vanishes at the midpoints of the interior edges, using the midpoint rule we can write

∑
e∈Ei

h,ΩF

∫
e

η[[n × v]] ds = ∑
e∈Ei

h,ΩF

∫
e

(η − η̄Te )[[n × v]] ds

≤ C{ ∑
e∈Ei

h,ΩF

|e|‖η − η̄Te‖2L2(e)}1/2{ ∑
e∈Ei

h,ΩF

1
|e|
‖[[n × v]]‖2L2(e)}1/2

≤ Ch|η|H1(ΩF)‖(v,w)‖h , (2.48)

where η̄Te is defined by (2.44) and we used Lemma 2.9 for the last inequality.
Estimate (2.45) follows from (2.46), (2.47) and (2.48).

2.5 Convergence Analysis

We begin with the approximation property of Vh:

Lemma 2.11. Let (u,w) ∈
∘
V be the solution of (2.4). We have

inf(v,z)∈Vh
‖(u,w) − (v, z)‖h ≤ ‖(u,w) − Ih(u,w)‖h ≤ Ch|(f , g)|. (2.49)

Proof. Since ∇ × u = 0 implies ∇h × (Πh,ΩFu) = 0, and because of (2.21), (2.24) and (2.25), we have

‖(u,w) − Ih(u,w)‖2h = ∑
T∈ΩF

∂T∩ΓI=0 ‖∇ ⋅ (u − ΠTu)‖2L2(T) + ∑
T∈ΩF

∂T∩ΓI ̸=0 ‖∇ ⋅ (u − (Π̂h,ΩFu)|T)‖2L2(T)
+ ‖∇h(w − Lh,ΩSw)‖2L2(ΩS) + ∑

e∈Ei
h,ΩF

1
|e|
‖[[n ⋅ (u − Πh,ΩFu)]]‖2L2(e)

+ ∑
e∈Ei

h,ΩF

1
|e|
‖[[n × (u − Πh,ΩFu)]]‖2L2(e)

+ ∑
e∈EΓI

h

1
|e|
‖n ⋅ ((u − Π̂h,ΩFu) − (w − Lh,ΩSw))‖2L2(e). (2.50)
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The first two terms on the right-hand side of (2.50) have been estimated by Lemma 2.7. The fourth and fifth
terms are estimated by Lemma 2.8. The following estimate for the third term on the right-hand side of (2.50)
can be obtained by a similar argument as in the proof of Lemma 2.6:

‖∇h(w − Lh,ΩSw)‖2L2(ΩS) = ∑
T∈ΩS

|w − Lh,ΩSw|2[H1(T)] ≤ Ch2|(f , g)|2. (2.51)

For the last term, we have

∑
e∈EΓI

h

1
|e|
‖n ⋅ ((u − Π̂h,ΩFu) − (w − Lh,ΩSw))‖2L2(e)
≤ C ∑

e∈EΓI
h

{
1
|e|
‖n ⋅ (u − Π̂h,ΩFu)‖2L2(e) + 1

|e|
‖n ⋅ (w − Lh,ΩSw)‖2L2(e)}. (2.52)

The second term on the right-hand side of (2.52) can be bounded by Ch2|(f , g)|2, by a similar argument as
in Lemma 2.6.

It only remains to estimate the first term on the right-hand side of (2.52). Note that
1
|e|
‖n ⋅ (u − Π̂h,ΩFu)‖2[L2(e)]2 ≤ 1

|e|
‖n ⋅ (u − Πh,ΩFu)‖2[L2(e)]2 + 1

|e|
‖n ⋅ (Πh,ΩFu − Π̂h,ΩFu)‖2[L2(e)]2 . (2.53)

The first term on the right-hand side of (2.53) can be estimated by a trace theorem as in Lemma2.8.Moreover,

(Πh,ΩFu − Π̂h,ΩFu)|T =


1
|e| ∫

e

[(w − Lh,ΩSw) ⋅ n] ds

ϕe,n ,

where T ∈ ΩF has e as an edge andϕe,n is defined as in (2.31). Therefore, the second term on the right-hand
side of (2.53) becomes

1
|e|
‖n ⋅ (Πh,ΩFu − Π̂h,ΩFu)‖2[L2(e)]2 =  1|e| ∫e [(w − Lh,ΩSw) ⋅ n] ds



2
(
1
|e|
‖n ⋅ ϕe,n‖

2
L2(e)). (2.54)

Note that 1|e| ‖n ⋅ ϕe,n‖
2
L2(e) ≤ C, where C is a constant that depends on theminimum angle of T. Therefore, we

can derive from (2.52), the summation of (2.53)–(2.54) over e ∈ ΓI , and similar arguments as in Lemma 2.6
and Lemma 2.8 that

∑
e∈EΓI

h

1
|e|
‖n ⋅ ((u−Π̂h,ΩFu) − (w − Lh,ΩSw))‖2L2(e) ≤ Ch2|(f , g)|2. (2.55)

Estimate (2.49) then follows from (2.51), (2.55) and Lemmas 2.7–2.8.

Lemma 2.12. Let (u,w) ∈
∘
V be the solution of (2.4), and (uh ,wh) satisfy the discrete problem (2.18). It holds

that

sup(ϕ,ψ)∈Vh\{(0,0)} ah((u,w) − (uh ,wh), (ϕ,ψ))
‖(ϕ,ψ)‖h

≤ Ch|(f , g)|. (2.56)

Proof. Let (ϕ,ψ) ∈ Vh be arbitrary. Using (2.5), integration by parts, the fact that ∇ × u = 0 inΩF, and
σ(w)n = [(ρFc2)(∇ ⋅ u)]n, we find

ah((u,w), (ϕ,ψ)) = ∑
T∈ΩF

∫
T

(ρFc2)(∇ ⋅ u)(∇ ⋅ ϕ) dx + ∫
ΩS

(σh(w) : ϵh(ψ)) dx

= b((Qf , g), (ϕ,ψ)) + ∑
e∈Eh,ΩF

∫
e

(ρFc2)(∇ ⋅ u)[[n ⋅ ϕ]] ds − ∑
e∈EΓI

h

∫
e

(σh(w)n) ⋅ ψ ds

= b((Qf , g), (ϕ,ψ)) + ∑
e∈Ei

h,ΩF

∫
e

(ρFc2)(∇ ⋅ u)[[n ⋅ ϕ]] ds

+ ∑
e∈EΓI

h

∫
e

(ρFc2)(∇ ⋅ u)[n ⋅ (ϕ − ψ)] ds. (2.57)
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Therefore, by (2.18),

ah((u,w) − (uh ,wh), (ϕ,ψ)) = b((Qf − f , 0), (ϕ,ψ)) + ∑
e∈Ei

h,ΩF

∫
e

(ρFc2)(∇ ⋅ u)[[n ⋅ ϕ]] ds

+ ∑
e∈EΓI

h

∫
e

(ρFc2)(∇ ⋅ u)[n ⋅ (ϕ − ψ)] ds

= ∫
ΩF

ρF f ⋅ (Qϕ − ϕ) dx + ∑
e∈Ei

h,ΩF

∫
e

(ρFc2)(∇ ⋅ u)[[n ⋅ ϕ]] ds

+ ∑
e∈EΓI

h

∫
e

(ρFc2)(∇ ⋅ u)[n ⋅ (ϕ − ψ)] ds. (2.58)

We observe from (2.58) that there are three sources for the consistency error of scheme (2.18), namely
the projection Q, the discontinuity of the vector fields Vh inside ΩF, and on ΓI .

In view of Lemma 2.10, the first term on the right-hand side of equation (2.58) satisfies the estimate

∫
ΩF

f ⋅ (Qϕ − ϕ) dx ≤ C‖f ‖[L2(ΩF)]2‖Qϕ − ϕ‖[L2(ΩF)]2 ≤ Ch|(f , g)|‖(ϕ,ψ)‖h . (2.59)

By the definition of Vh, the Cauchy–Schwarz inequality, (2.27) and Lemma 2.9, we can estimate the second
term on the right-hand side of (2.58) as follows:

∑
e∈Ei

h,ΩF

∫
e

(∇ ⋅ u)[[n ⋅ ϕ]] ds = ∑
e∈Ei

h,ΩF

∫
e

(∇ ⋅ u − (∇ ⋅ u)Te )[[n ⋅ ϕ]] ds

≤ { ∑
e∈Ei

h,ΩF

|e|‖∇ ⋅ u − (∇ ⋅ u)Te‖
2
L2(e)}1/2{ ∑

e∈Ei
h,ΩF

1
|e|
‖[[n ⋅ ϕ]]‖2L2(e)}1/2

≤ Ch|∇ ⋅ u|H1(ΩF)‖(ϕ,ψ)‖h
≤ Ch|(f , g)|‖(ϕ,ψ)‖h . (2.60)

Now we turn to estimate the third term on the right-hand side of (2.58). For any e ∈ EΓIh , note that

∫
e

(ϕ − ψ) ⋅ n ds = 0.

Let TFe ∈ ΩF and TSe ∈ ΩS be the triangles such that TFe ∩ TSe = e. By the Cauchy–Schwarz inequality,

∫
e

(∇ ⋅ u)[(ϕ − ψ) ⋅ n] ds

=

∫
e

(∇ ⋅ u − (∇ ⋅ u)TF
e
)(ϕ ⋅ n − ψ ⋅ n) ds



≤ (|e|1/2‖∇ ⋅ u − (∇ ⋅ u)TF
e
‖L2(e))(|e|−1/2‖ϕ ⋅ n − ψ ⋅ n‖L2(e)). (2.61)

In view of Lemma 2.9, we have

∑
e∈EΓI

h

|e|‖∇ ⋅ u − (∇ ⋅ u)TF
e
‖2L2(e) ≤ Ch2|∇ ⋅ u|2H1(ΩF) ≤ Ch2|(f , g)|2. (2.62)

Combining (2.27), (2.61), and (2.62), we obtain that

∑
e∈EΓI

h

∫
e

(ρFc2)(∇ ⋅ u)[n ⋅ (ϕ − ψ)] ds ≤ Ch|(f , g)|‖(ϕ,ψ)‖h . (2.63)

Finally, estimate (2.56) follows from (2.58), (2.59), (2.60) and (2.63). This completes the proof of the
lemma.

The following theorem is an immediate consequence of Lemma 2.5, Lemma 2.11 and Lemma 2.12.
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Theorem 2.13. The following discretization error estimates hold for the solution (uh ,wh) ∈ Vh of (2.18):

‖(u,w) − (uh ,wh)‖h ≤ Ch|(f , g)|.

In the rest of this section,wederive the error estimate in the standard L2-norm |( ⋅ , ⋅ )|on [L2(ΩF)]2×[L2(ΩS)]2.

Theorem 2.14. Let (u,w) ∈
∘
V be the solution of (2.4) and (uh ,wh) ∈ Vh satisfy (2.18). Then we have

|(u,w) − (uh ,wh)| ≤ C(h2|(f , g)| + h‖(u,w) − (uh ,wh)‖h). (2.64)

Proof. Let (p, q) ∈
∘
V satisfy

a((v, z), (p, q)) = b((v, z), (u,w) − (uh ,wh)) (2.65)

for all (v, z) ∈
∘
V. Here a( ⋅ , ⋅ ) and b( ⋅ , ⋅ ) are defined by (2.2) and (2.3).

Note that the strong form of (2.65) is

−c2∇(∇ ⋅ p) = Q(u − uh) in ΩF , (2.66)
−∇ ⋅ σ(q) = ρS(w − wh) in ΩS , (2.67)

and we have the following estimate:

|∇ ⋅ p|H1(ΩF) ≤ C|(u,w) − (uh ,wh)|. (2.68)

Furthermore, we can rewrite (2.65) as

ah((v, z), (p, q)) = b((v, z), (u,w) − (uh ,wh)) (2.69)

for all (v, z) ∈
∘
V. Here ah( ⋅ , ⋅ ) is defined by (2.19).

It follows from (2.65), (2.66), (2.67), and integration by parts that the following analog of (2.57) holds:

ah((uh ,wh), (p, q)) = ∑
T∈ΩF

∫
T

(ρFc2)(∇ ⋅ q)(∇ ⋅ uh) dx + ∫
ΩS

(σh(q) : ϵh(wh)) dx

= b((uh ,wh), (Q(u − uh), (w − wh))) + ∑
e∈Eh,ΩF

∫
e

(ρFc2)(∇ ⋅ p)[[n ⋅ uh]] ds

− ∑
e∈EΓI

h

∫
e

(σh(q)n) ⋅ wh ds

= b((uh ,wh), (Q(u − uh), (w − wh))) + ∑
e∈Ei

h,ΩF

∫
e

(ρFc2)(∇ ⋅ p)[[n ⋅ uh]] ds

+ ∑
e∈EΓI

h

∫
e

(ρFc2)(∇ ⋅ p)[n ⋅ (uh − wh)] ds. (2.70)

Combining (2.69) and (2.70), we have

|(u,w) − (uh ,wh)|2 ≈ b((u,w) − (uh ,wh), (u,w) − (uh ,wh))

= b((u,w), (u,w) − (uh ,wh)) − b((uh ,wh), (u,w) − (uh ,wh))

= ah((u,w) − (uh ,wh), (p, q)) − b((uh ,wh), ((I − Q)(u − uh), 0))

+ ∑
e∈Ei

h,ΩF

∫
e

(ρFc2)(∇ ⋅ p)[[n ⋅ uh]] ds + ∑
e∈EΓI

h

∫
e

(ρFc2)(∇ ⋅ p)[n ⋅ (uh − wh)] ds. (2.71)

We will estimate the four terms on the right-hand side of (2.71) separately.
We can rewrite the first term as

ah((u,w)−(uh ,wh), (p, q)) = ah((u,w)−(uh ,wh), (p, q)−Ih(p, q))+ah((u,w)−(uh ,wh), Ih(p, q)). (2.72)
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Then from (2.28) and Lemma 2.11 (applied to (p, q)) we immediately have

ah((u,w) − (uh ,wh), (p, q) − Ih(p, q)) ≤ C‖(u,w) − (uh ,wh)‖h‖(p, q) − Ih(p, q)‖h
≤ Ch‖(u,w) − (uh ,wh)‖h|(u,w) − (uh ,wh)|. (2.73)

We can rewrite the second term on the right-hand side of (2.72) as

ah((u,w) − (uh ,wh), Ih(p, q)) = b((Qf − f , 0), Ih(p, q)) + ∑
e∈Ei

h,ΩF

∫
e

(ρFc2)(∇ ⋅ u)[[n ⋅ (Πh,ΩFp)]] ds

+ ∑
e∈EΓI

h

∫
e

(ρFc2)(∇ ⋅ u)[n ⋅ (Π̂h,ΩFp − Lh,ΩSq)] ds. (2.74)

Since p ∈ H(curl0;ΩF), we have Qp = p. By Lemma 2.10 (applied to p) and Lemma 2.11 (applied to (p, q)),
we have

b((Qf − f , 0), Ih(p, q)) = ρF(Qf − f , Πh,ΩFp)ΩF

= ρF(f , Q(Πh,ΩFp) − Πh,ΩFp)ΩF

= ρF(f , Q(Πh,ΩFp − p) − (Πh,ΩFp − p))ΩF

≤ Ch‖f ‖L2(ΩF)‖(p, q) − Ih(p, q)‖h
≤ Ch2|(f , g)||(u,w) − (uh ,wh)|. (2.75)

Here

Πh,ΩFp|T =
{
{
{

(Πh,ΩFp)|T if T ⊂ ΩF and ∂T ∩ ΓI = 0,
(Π̂h,ΩFp)|T if T ⊂ ΩF and ∂T ∩ ΓI ̸= 0.

We can rewrite the second term on the right-hand side of (2.74) using the notation introduced in (2.44) as

∑
e∈Ei

h,ΩF

∫
e

(ρFc2)(∇ ⋅ u)[[n ⋅ (Πh,ΩFp)]] ds = ∑
e∈Ei

h,ΩF

∫
e

(ρFc2)(∇ ⋅ u − (∇ ⋅ u)Te )[[n ⋅ (Πh,ΩFp)]] ds

= ∑
e∈Ei

h,ΩF

∫
e

(ρFc2)(∇ ⋅ u − (∇ ⋅ u)Te )[[n ⋅ (Πh,ΩFp − p)]] ds, (2.76)

since n ⋅ p is continuous at the midpoints of any edge e ∈ Eih,ΩF
. It then follows from the Cauchy–Schwarz

inequality, (2.11), Lemma 2.8 (applied to (p, q)) and Lemma 2.9 that

∑
e∈Ei

h,ΩF

∫
e

(ρFc2)(∇ ⋅ u)[[n ⋅ (Πh,ΩFp)]] ds ≤ C[ ∑
e∈Ei

h,ΩF

|e|‖∇ ⋅ u − (∇ ⋅ u)Te‖2L2(e)]1/2
× [ ∑

e∈Ei
h,ΩF

|e|−1‖[[n ⋅ (Πh,ΩFp − p)]]‖2L2(e)]1/2
≤ C(h|∇ ⋅ u|H1(ΩF))(h|(u,w) − (uh ,wh)|)

≤ Ch2|(f , g)||(u,w) − (uh ,wh)|. (2.77)

Using the definition of Π̂h,ΩF and the fact that n ⋅ p = n ⋅ q on ΓI , we can rewrite the third term on the right-
hand side of (2.74) as

∑
e∈EΓI

h

∫
e

(ρFc2)(∇ ⋅ u)[n ⋅ (Π̂h,ΩFp − Lh,ΩSq)] ds

= ∑
e∈EΓI

h

∫
e

(ρFc2)(∇ ⋅ u − (∇ ⋅ u)Te )[n ⋅ (Π̂h,ΩFp − Lh,ΩSq)] ds

= ∑
e∈EΓI

h

∫
e

(ρFc2)(∇ ⋅ u − (∇ ⋅ u)Te )[n ⋅ (p − Π̂h,ΩFp) − n ⋅ (q − Lh,ΩSq)] ds. (2.78)
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It follows from the Cauchy–Schwarz inequality, (2.11), Lemma 2.9 and similar arguments as in Lemma 2.11
that

∑
e∈EΓI

h

∫
e

(ρFc2)(∇ ⋅ u)[n ⋅ (Π̂h,ΩFp − Lh,ΩSq)] ds ≤ C[ ∑
e∈EΓI

h

|e|‖∇ ⋅ u − (∇ ⋅ u)Te‖2L2(e)]1/2
× [ ∑

e∈EΓI
h

|e|−1‖n ⋅ (p − Π̂h,ΩFp) − n ⋅ (q − Lh,ΩSq)‖2L2(e)]1/2
≤ C(h|∇ ⋅ u|H1(ΩF))(h|(u,w) − (uh ,wh)|)

≤ Ch2|(f , g)||(u,w) − (uh ,wh)|. (2.79)

Combining (2.72)–(2.79), we obtain

ah((u,w) − (uh ,wh), (p, q)) ≤ C(h2|(f , g)| + h‖(u,w) − (uh ,wh)‖h)|(u,w) − (uh ,wh)|. (2.80)

Next we estimate the second term on the right-hand side of (2.71). By Lemma 2.10 and the fact that
(I − Q)u = 0, we have

−b((uh ,wh), ((I − Q)(u − uh), 0)) = b((u − uh ,w − wh), ((I − Q)(u − uh), 0))
≤ Ch|(u − uh ,w − wh)|‖(u − uh ,w − wh)‖h . (2.81)

We then estimate the third term on the right-hand side of (2.71). Since n ⋅ uh is continuous at the mid-
points of the interior edges and [[n ⋅ u]] = 0, we get, using the notation introduced in (2.44),

∑
e∈Ei

h,ΩF

∫
e

(ρFc2)(∇ ⋅ p)[[n ⋅ uh]] ds = ∑
e∈Ei

h,ΩF

∫
e

(ρFc2)(∇ ⋅ p − (∇ ⋅ p)Te )[[n ⋅ uh]] ds

= ∑
e∈Ei

h,ΩF

∫
e

(ρFc2)(∇ ⋅ p − (∇ ⋅ p)Te )[[n ⋅ (uh − u)]] ds. (2.82)

Using the Cauchy–Schwarz inequality, (2.27), Lemma 2.9 (applied to p) and (2.68), we can obtain that

∑
e∈Ei

h,ΩF

∫
e

(ρFc2)(∇ ⋅ p)[[n ⋅ uh]] ds ≤ C[ ∑
e∈Ei

h,ΩF

|e|‖∇ ⋅ p − (∇ ⋅ p)Te‖2L2(e)]1/2[ ∑
e∈Ei

h

|e|−1‖[[uh − u]]‖2L2(e)]1/2
≤ Ch|∇ ⋅ p|H1(ΩF)‖(u,w) − (uh ,wh)‖h

≤ Ch|(u,w) − (uh ,wh)|‖(u,w) − (uh ,wh)‖h . (2.83)

Finally, we estimate the fourth term on the right-hand side of (2.71). Using the notation introduced
in (2.44) and the fact that on any e ∈ ΓI , n ⋅ u = n ⋅ w and ∫e n ⋅ (uh − wh) ds = 0, we have

∑
e∈EΓI

h

∫
e

(ρFc2)(∇ ⋅ p)[n ⋅ (uh −wh)] ds = ∑
e∈EΓI

h

∫
e

(ρFc2)(∇ ⋅ p − (∇ ⋅ p)Te )[n ⋅ (uh −wh)] ds

= ∑
e∈EΓI

h

∫
e

(ρFc2)(∇ ⋅ p − (∇ ⋅ p)Te )[n ⋅ (uh − u)− n ⋅ (wh −w)] ds. (2.84)

Using the Cauchy–Schwarz inequality, (2.27), Lemma 2.9 (applied to p) and (2.68), we can obtain that

∑
e∈EΓI

h

∫
e

(ρFc2)(∇ ⋅ p)[n ⋅ (uh − wh)] ds ≤ C[ ∑
e∈EΓI

h,ΩF

|e|‖∇ ⋅ p − (∇ ⋅ p)Te‖2L2(e)]1/2
× [ ∑

e∈EΓI
h

|e|−1‖n ⋅ (uh − u) − n ⋅ (wh − w)‖2L2(e)]1/2
≤ Ch|∇ ⋅ p|H1(ΩF)‖(u,w) − (uh ,wh)‖h

≤ Ch|(u,w) − (uh ,wh)|‖(u,w) − (uh ,wh)‖h . (2.85)

Estimate (2.64) follows from (2.71), (2.80), (2.81)–(2.85).
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Combining Theorem 2.13 and Theorem 2.14, we have the following corollary for the L2-error estimate.

Corollary 2.15. The following estimate holds for the solution (uh ,wh) ∈ Vh of (2.18):

|(u,w) − (uh ,wh)| ≤ Ch2|(f , g)|.

3 A Nonconforming Finite Element Method for the Eigenproblem
The nonconforming method studied in Section 2 can be applied to (1.1) as an eigensolver. In this section, we
summarize the convergence property of the nonconforming eigensolver by using the results from Section 2.

We consider the following weak problem:

Problem. Find λ ∈ ℝ and (u,w) ∈
∘
V such that

a((u,w), (v, z)) = λb((u,w), (v, z)) for all (v, z) ∈
∘
V, (3.1)

where a( ⋅ , ⋅ ) and b( ⋅ , ⋅ ) are defined by (2.2) and (2.3).

Given (f , g) ∈ [L2(ΩF)]2 × [L2(ΩS)]2, we define T(f , g) ∈
∘
V by

a(T(f , g), (v, z)) = b((f , g), (v, z)) for all (v, z) ∈
∘
V.

It is clear that (λ, (u,w)) is a solution of (3.1) if and only if (1λ , (u,w)) is an eigenpair of T, i.e.,

T(u,w) = 1
λ
(u,w).

By Lemma 2.4, T is a bounded linear operator from [L2(ΩF)]2 × [L2(ΩS)]2 to H1+γ,1(div;ΩF) × [H1+γ(ΩS)]2

with γ > 1
2 . Therefore, the operator T : [L2(ΩF)]2 × [L2(ΩS)]2 → [L2(ΩF)]2 × [L2(ΩS)]2 is symmetric, positive

and compact. Hence the spectrumof T consists of a sequence of finite-multiplicity eigenvalues μn > 0, n ∈ ℕ,
converging to 0.

It was shown in [4] that λ is a positive eigenvalue of (1.1) if and only if μ = 1
λ is a positive eigenvalue of

the operator T, and the corresponding associated eigenfunctions coincide.
Next, we consider a nonconforming approximation of T. The nonconforming eigensolver for (3.1) is

defined as follows:

Problem. Find λh ∈ ℝ and (uh ,wh) ∈ Vh such that

ah((uh ,wh), (v, z)) = λhb((uh ,wh), (v, z)) for all (v, z) ∈ Vh , (3.2)

where ah( ⋅ , ⋅ ) is defined by (2.19).

The discrete analog of T is the operator Th : [L2(ΩF)]2 × [L2(ΩS)]2 → Vh ⊂ [L2(ΩF)]2 × [L2(ΩS)]2 defined by

ah(Th(f , g), (v, z)) = b((f , g), (v, z)) for all (v, z) ∈ Vh .

In other words Th(f , g) ∈ Vh is the nonconforming finite element approximation of the solution T(f , g) of the
source problem. Moreover,

Th(u,w) =
1
λh
(u,w)

is equivalent to (3.2).
The following discretization error estimates for the source problem have been derived in Corollary 2.15:

|(T − Th)(f , g)| ≤ Ch2|(f , g)| (3.3)

for all (f , g) ∈ [L2(ΩF)]2 × [L2(ΩS)]2. The following theorem can be obtained by applying the classical theory
of spectral approximation [1, 14, 22] to the nonconforming eigensolver (3.2). The proof, which is based on
estimate (3.3), is identical with that of [12, Theorem 3.1] for the Maxwell eigenvalues.
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Theorem 3.1. Let 0 ≤ λ1 ≤ λ2 ≤ ⋅ ⋅ ⋅ be the eigenvalues of (3.1), and let λ = λj = λj+1 = λj+m−1 be an eigenvalue
with multiplicity m. Let 0 ≤ λh,1 ≤ λh,2 ≤ ⋅ ⋅ ⋅ be the eigenvalues obtained by (3.2). Then as h ↓ 0, we have

|λh,ℓ − λ| ≤ Cλh2 ℓ = j, j + 1, . . . , j + m − 1.
Furthermore, if Vλ is the eigenspace for λ and Vh,λ is the space spanned by the discrete eigenfunctions cor-
responding to λh,1, . . . , λh,j+m−1, then the gap between Vh,λ and Vλ is O(h2) in the L2-norm and O(h) in the
norm ‖ ⋅ ‖h.

4 Numerical Experiments
In this section we report the results of a series of numerical experiments that corroborate the theoretical
results obtained in Section 2 and Section 3.

4.1 Numerical Results for the Source Problem

We first examine the convergence behavior of the numerical scheme (2.18) for the source problem (2.4) on
gradedmeshes. The computational domain is depicted in Figure 3, where ΩF = (1, 3)2 and ΩS = (0, 4)2 \ ΩF .
We take ρS, ρF, c, μS and λS all to be 1 in the experiment.

Note that at the corner c = (3, 3) of ΩF, ωF = π
4 and ωS = 3π

4 . The corresponding singularity index is
γ = 0.544483661651611.

Let (r, θ) be the polar coordinates at the corner c = (3, 3) of the interface ΓI . In view of (2.8) and (2.9), we
take

ŵ(r, θ) = rγ (−A cos((γ + 1)θ) + cos((γ − 1)θ)
A sin((γ + 1)θ) − Θ sin((γ − 1)θ)

) and ũ(r, θ) = rγ ( E cos((γ + 1)θ)
−E sin((γ + 1)θ)

) ,

where

A := −( (γ − 1)(μ + λ)
(μ + λ)γ − (3μ + λ))

sin((γ − 1)ωS)
sin((γ + 1)ωS)

,

E := 2(2μ + λ)
(μ + λ)γ − (3μ + λ)

sin((γ − 1)ωS)
sin((γ + 1)ωF)

,

Θ :=
μ

λ+2μ (γ − 1) − (γ + 1)
μ

λ+2μ (γ + 1) − (γ − 1) .
It can easily be checked that ŵ and ũ satisfy the compatibility conditions (2.5c) and (2.5d). Moreover, we
have ũ = ∇p, where p(r, θ) = E rγ+1

γ+1 cos(γ + 1)θ.

Figure 3: Domains of fluid and solid.
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Define the cut-off function around the corner c = (3, 3) by

ϕ(r) =
{{{
{{{
{

1, r ≤ 0.25,
−16(r − 0.75)3[5 + 15(r − 0.75) + 12(r − 0.75)2], 0.25 ≤ r ≤ 0.75,
0, r ≥ 0.75.

We take w̃ = ŵϕ(r) and u = ∇(p(r, θ)ϕ(r)). It is clear that σ(w̃)η = 0 on ΓN , w̃ = 0 on ΓD and ∇ × u = 0 in ΩF .
Since [∇ϕ(r)] ⋅ n = 0, we still have w̃ ⋅ n = u ⋅ n on ΓI . However, σ(w̃)n ̸= (ρFc2∇ ⋅ u)n on the part of ΓI where
0 < ϕ(r) < 1. To fix this problem, we introduce a vector field z̃ in ΩS and define w = w̃ + z̃.

We take z̃ = z̃a + z̃b, where z̃a (respectively, z̃b) is associated with the edge Γa (respectively, Γb) that
has (3, 1) and (3, 3) (respectively, (1, 3) and (3, 3)) as endpoints. The vector field z̃a is given by

z̃a = (
v1(x2)(x1−3)

2μ+λ
v2(x2)(x1−3)

μ
) ρ(x),

where

v(x2) = (
v1(x2)
v2(x2)
) = (ρFc2∇ ⋅ u)n − σ(w̃)n on Γa

and ρ(x) is the following C2-function defined on the interval [3, 4]:

ρ(x) =
{
{
{

−192x5 + 3120x4 − 20240x3 + 65520x2 − 105840x + 68257, 3 ≤ x ≤ 3.5,
0, x ≥ 3.5.

Note that ρ(3) = 1.
The vector field z̃b on ΩS is defined by symmetry. Then (u,w) satisfies all the boundary conditions and

compatibility conditions in (2.4) and we can take it to be an exact solution for the source problem (2.4).
We solve the source problem by the numerical scheme (2.18) on graded meshes, where the grading

parameter μ = γ ≈ 0.54448366 at corners (1, 1), (1, 3), (3, 1) and (3, 3). The first three levels of triangu-
lations are depicted in Figure 4. The errors in the L2-norm |( ⋅ , ⋅ )| on [L2(ΩF)]2 × [L2(ΩS)]2 and the energy
norm ‖( ⋅ , ⋅ )‖h are tabulated in Table 1. The benefit of the graded meshes is observed.
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Figure 4: The first three levels of triangulations with graded meshes.

h ‖(ũ,ŵ)−(uh ,wh )‖h|(f ,g)| Order |(ũ,ŵ)−(uh ,wh )||(f ,g)| Order
1
8 1.82 E−1 – 6.86 E−2 –
1
16 9.56 E−2 0.93 1.36 E−2 2.32
1
32 5.16 E−2 0.88 3.71 E−3 1.88
1
64 3.37 E−2 0.81 1.02 E−3 1.86

Table 1: Convergence of the scheme with graded meshes.
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4.2 Numerical Results for the Eigenproblem

In this subsection we examine the convergence behavior of the numerical scheme (3.2) for the eigenprob-
lem (3.1). The first three numerical experiments are conducted on the domain depicted in Figure 1, where
ΩF = (0.25, 1.25)2 and ΩS = (0, 1.5)2 \ ΩF . The same set-up was used in [6].

In the first numerical experiment, we consider the case where ΩS is made with steel and ΩF is filled with
air. In this case, the physical parameters in (1.1) are taken to be ρF = 1 kg/m3, ρS = 7700 kg/m3, c = 340m/s,
M = 1.44 × 1011 Pa and ν = 0.35. They are identical to the parameters in the third numerical experiment
in [6]. We use uniform meshes and compute the eigenfrequencies by (3.2). The computed eigenvalues are
reported in Table 2. Since we do not know the analytical eigenvalues, the order of convergence is computed
in terms of the “exact” eigenvalues obtained by extrapolating the approximate solutions for h = 1

128 and
1

256 .
The results are very close to the ones reported in [6, Table 3]. Since the density of air is much smaller than the
density of steel, this is a small perturbation of an uncoupled problemwith a rigid cavity where the eigenfunc-
tions are smooth (cf. [6]). Hence the order of convergence for eigenvalues is close to 2 with uniform meshes.

In the secondexperiment,we replace airwithwater,which corresponds to the choices of ρF = 1000 kg/m3

and c = 1430m/s. They are identical to the choices in the fourth experiment in [6]. The results obtained on
uniform meshes are tabulated in Table 3, where the extrapolated eigenvalues obtained on graded meshes
in Table 4 are used as “exact” solutions. In this case the order of magnitude of solid and fluid densities are
similar so the interaction is much stronger. Therefore the order of convergence of the computed eigenvalues
is lower than the case of a steel-air interaction in Table 2. Again they are very close to the results reported
in [6, Table 4].

In the third experiment, we investigate the case of water in a steel cavity as in the second set of experi-
ments, but with graded meshes. The meshes are graded around the corners (0.25, 0.25), (0.25, 1.25),
(1.25, 0.25), (1.25, 1.25)with grading parameter μ = γ ≈ 0.54448366. The results are tabulated in Table 4,
where the “exact” eigenvalues are obtained by extrapolating the approximate solutions for h = 1

128 and
1

256 .

Mode h = 1
64 h = 1

128 h = 1
256 Orders “Exact”

1 695.115 675.990 669.280 1.58 1.65 2.00 667.044
2 1067.768 1068.055 1068.118 2.07 2.13 2.00 1068.139
3 1068.188 1068.168 1068.162 1.88 1.91 2.00 1068.160
4 1509.982 1510.439 1510.549 2.11 2.04 2.00 1510.585
5 2134.651 2135.673 2135.911 2.13 2.07 2.00 2135.991
6 2134.843 2135.927 2136.186 2.08 2.03 2.00 2136.274
7 2350.401 2304.084 2290.394 0.44 1.82 2.00 2285.831
8 2384.996 2387.605 2388.235 1.52 2.04 2.00 2388.445
9 2387.387 2388.197 2388.388 1.52 2.07 2.00 2388.451

Table 2: Air in a rectangular steel cavity: the eigenvalues computed with uniform meshes.

Mode h = 1
64 h = 1

128 h = 1
256 Orders “Exact”

1 671.958 653.327 646.805 1.46 1.38 642.733
2 2203.156 2159.534 2146.480 1.72 1.66 2140.444
3 3511.318 3439.433 3413.737 1.45 1.38 3397.769
4 3951.314 3900.298 3880.075 1.31 1.27 3865.819
5 4239.285 4219.354 4213.419 1.77 1.81 4211.056
6 4726.272 4705.872 4697.966 1.34 1.30 4692.539
7 5189.372 5165.067 5157.320 1.60 1.50 5153.047
8 5522.207 5449.036 5426.561 1.67 1.61 5415.586
9 6291.773 6275.419 6268.471 1.25 1.28 6263.591

Table 3:Water in a rectangular steel cavity: the eigenvalues computed with uniform meshes.
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Mode h = 1
64 h = 1

128 h = 1
256 Orders “Exact”

1 664.078 648.593 644.198 1.74 1.86 2.00 642.733
2 2199.476 2156.226 2144.390 1.78 1.90 2.00 2140.444
3 3479.186 3420.264 3403.393 1.67 1.86 2.00 3397.769
4 3919.545 3880.839 3869.574 1.68 1.84 2.00 3865.819
5 4242.217 4219.668 4213.209 1.74 1.86 2.00 4211.056
6 4713.047 4698.381 4693.999 1.62 1.81 2.00 4692.539
7 5182.508 5160.915 5155.014 1.85 1.90 2.00 5153.047
8 5505.496 5439.868 5421.657 1.80 1.89 2.00 5415.586
9 6283.721 6269.711 6265.121 1.30 1.72 2.00 6263.591

Table 4:Water in a rectangular steel cavity: the eigenvalues computed with graded meshes.

The benefit of graded meshes is observed, but the asymptotic order of convergence in Theorem 3.1 has not
yet been reached.

Remark 4.1. Since the extrapolated eigenvalues are computed by using the approximate solutions corre-
sponding to h = 1

128 and
1

256 , the last order of convergence in Tables 2 and 4 is exactly 2.

The set-up for the last two experiments is depicted in Figure 5, where ΩF is an L-shaped domain with vertices
(0.25, 0.25), (1.25, 0.25), (0.75, 0.75), (1.25, 0.75), (0.25, 1.25), (0.75, 1.25) and ΩS = [0, 1.5]2 \ ΩF .

Figure 5: The domain of fluid-structure interaction. The outer dimensions are 1.5 × 1.5m2 and the inner domain is L-shaped.

In the fourth experiment the solid is madewith steel and ΩF is filled with water so that ρF = 1000 kg/m3,
ρS = 7700 kg/m3, c = 1430m/s, M = 1.44 × 1011 Pa and ν = 0.35. The results obtained on uniform meshes
are tabulated in Table 5. The extrapolated eigenvalues obtained on graded meshes in Table 6 are used as
“exact” solutions in Table 5.

Mode h = 1
64 h = 1

128 h = 1
256 Orders “Exact”

1 860.551 806.439 786.546 1.47 1.52 775.913
2 2284.585 2185.225 2152.371 1.62 1.66 2137.153
3 3816.121 3685.666 3639.322 1.50 1.52 3614.502
4 4125.524 3974.467 3924.566 1.63 1.61 3900.743
5 4811.590 4732.613 4707.209 1.70 1.66 4695.887
6 4533.367 5027.816 5264.461 1.19 1.36 5413.846
7 6899.529 6795.979 6744.889 1.13 1.28 6709.262
8 7657.389 7348.713 7241.233 1.52 1.51 7183.215
9 8283.759 8148.368 8098.794 1.45 1.47 8070.865

Table 5:Water in an L-shaped steel cavity: the eigenvalues computed with uniform meshes.
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Mode h = 1
64 h = 1

128 h = 1
256 Orders “Exact”

1 796.096 781.464 777.301 1.73 1.86 2.00 775.913
2 2179.638 2147.821 2139.820 1.75 1.99 2.00 2137.153
3 3657.074 3623.638 3616.786 1.89 2.22 2.00 3614.502
4 3961.971 3917.148 3904.844 1.84 1.90 2.00 3900.743
5 4730.336 4705.406 4698.267 1.71 1.86 2.00 4695.887
6 5345.490 5396.282 5409.456 1.83 1.96 2.00 5413.846
7 5779.461 6447.883 6643.917 1.33 1.83 2.00 6709.262
8 7334.446 7222.159 7192.952 1.60 1.95 2.00 7183.215
9 8131.221 8086.949 8074.885 1.76 1.90 2.00 8070.865

Table 6:Water in an L-shaped steel cavity: the eigenvalues computed with graded meshes.

In the final experiment we replace the uniform meshes in the fourth experiment with meshes graded
around the corners (0.25, 0.25), (0.25, 1.25), (1.25, 0.25), (0.75, 1.25), (1.25, 0.75)with grading parame-
ter μ = γ ≈ 0.54448366. The results are tabulated in Table 6. The benefit of gradedmeshes is again observed.

5 Conclusions
In this paper,we introduce a nonconformingfinite elementmethod for the acoustic fluid-structure interaction
problem. The approximation spaces are weakly continuous P1 vector fields for the fluid and standard piece-
wise linear polynomials for the solid. Optimal estimates in both the energy and the L2-norms are obtained
and validated by our numerical experiments. By excluding the pure rotational motions from the weak for-
mulation of the problem, we guarantee that our discrete solution does not possess any spurious eigenvalues.
Furthermore, this exclusion simplifies our analysis.

We note that it is also possible to use locally curl-free vector fields in the construction of the finite element
space on the fluid side, in which case the penalty term for the curl of the fluid displacement in (2.19) is not
needed. Such an approach was carried out for the Maxwell equations in [9, 10].

The approach in this paper can also be applied to the acoustic fluid-structure interaction problem in
three dimensions. The convergence analysis in the case of quasi-uniform meshes can be carried out as in
Sections 2.4 and 2.5. On the other hand the construction of graded meshes in three dimensions with the
desired properties would be much more challenging.
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