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Abstract In this paper, a block-centered finite difference method is proposed to discretize
the compressible Darcy–Forchheimer model which describes the high speed non-Darcy flow
in porous media. The discretized nonlinear problem on the fine grid is solved by a two-
grid algorithm in two steps: first solving a small nonlinear system on the coarse grid, and
then solving a nonlinear problem on the fine grid. On the coarse grid, the coupled term
of pressure and velocity is approximated by using the fewest number of node values to
construct a nonlinear block-centered finite difference scheme. On the fine grid, the original
nonlinear term is modified with a small parameter ε to construct a linear block-centered finite
difference scheme. Optimal order error estimates for pressure and velocity are obtained in
discrete l∞(L2) and l2(L2) norms, respectively. The two-grid block-centered finite difference
scheme is proved to be unconditionally convergent without any time step restriction. Some
numerical examples are given to testify the accuracy of the proposed method. The numbers
of iterations are reported to illustrate the efficiency of the two-grid algorithm.
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1 Introduction

In the study of fluid flow in porous medium, it is well known that Darcy’s law is valid when
the fluid velocity is low.When the velocity is high, a second-order term needs to be added, so
the equation becomes nonlinear as suggested by Forchheimer [8]. The Darcy–Forchheimer
equation takes the following form [1,2,8,24]:

μ

K
u + βρ|u|u + ∇ p = 0. (1)

Equation (1) describes the nonlinear relationship between the Darcy velocity u and the
gradient of pressure ∇ p. Here μ and ρ denote the viscosity coefficient and the density of the
fluid, respectively. The tensor function K represents the permeability tensor. The constant β
denotes theForchheimer number. Themost important feature ofDarcy–Forchheimer equation
is that it combines themonotonicity of the nonlinear termand the non-degeneracy of theDarcy
part.

In this paper, we consider the compressible Darcy–Forchheimer equation. The continuity
equation governing the motion of the fluid is given by

∂(φρ)

∂t
+ ∇ · (ρu) = ρ f, (2)

where φ is the porosity of the porous media and f is the source or sink term. If the fluid is
compressible, it holds the following state equation,

∂ρ

∂p
= CFρ,

where ρ = ρ0eCF (p−p0). Then the governing equation (2) can be rewritten as

φCF
∂p

∂t
+ ρ∇ · u + ∂ρ

∂p
u · ∇ p = ρ f. (3)

For the compressible fluid, the coefficient of compressibility CF is of the order of 10−8.

Therefore, the term
∂ρ

∂p
u · ∇ p can be neglected as shown in [1,2,14].

Combining the velocity–pressure relation equation (1)with the governing equation (3), the
two-dimensional nonlinear compressible Darcy–Forchheimer model describing high-speed
non-Darcy flow in porous media is presented as follows.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φCF
∂p

∂t
+ ∇ · u = f, x ∈ Ω × J,

μK−1u + βρ(p)|u|u + ∇ p = 0, x ∈ Ω × J,

u · n = g, x ∈ ∂Ω × J,

p(x, 0) = p0, x ∈ Ω,

(4)

where Ω is a porous media domain and the time interval J = (0, T ]. The notation | · |
represents the Euclidean norm, i.e., |u|2 = u · u. For slightly compressible fluid, the density
ρ depends on the pressure p, i.e., ρ = ρ(p). For simplicity we assume that the permeability
tensor function K = k̄ I , where k̄ is a positive constant and I is the unit matrix. The function
g ∈ L2(∂Ω) is the flux through the boundary.

Considerable research has been done to study the incompressible Darcy–Forchheimer
equation theoretically and numerically, such as [9] by Girault and Wheeler in 2008, [4]
by Chaudhary and Cardenas et al. in 2011, [17,19,22,23] by Rui et al. in 2012 and 2015.

123



1788 J Sci Comput (2018) 74:1786–1815

Recently, slightly compressible Darcy–Forchheimer model starts to receive a great deal of
attention. In [1,2], the authors analyzed the mathematical framework of the well produc-
tivity index for fast Forchheimer (non-Darcy) flows in porous media. In [12], the structural
stability was established with respect to either the boundary data or the coefficients of the
Forchheimer polynomials. In [13], the authors focused on qualitative properties of the solu-
tions of generalized Forchheimer equations for slightly compressible fluids in porous media,
subject to the flux condition on the boundary. In [18], the mixed finite element method was
used to approximate the solution of the nonlinear system that describes the non-Darcy flow of
a single-phase fluid in a porous media, and the optimal order error estimates were established
for both pressure and momentum. In [14], the expanded mixed finite element method was
used to solve slightly compressible Darcy–Forchheimer model with the initial boundary con-
dition, and priori error estimates were given for the resulting degenerate parabolic equation
for the pressure.

In this paper, we study the block-centered finite difference method [25–27], which is
considered as the lowest order Raviart–Thomas mixed element method with proper quadra-
ture formulation. The application of the finite difference enables us to approximate both the
velocity and pressure with second-order accuracy. Moreover, the block-centered finite differ-
ence method transfers the saddle point system of the mixed element method into symmetric
positive definite system.

The main difficulty of solving model (4) is to treat the strongly nonlinear term including p
and |u|. To solve the nonlinear equations resulting from the block-centered finite difference
scheme efficiently, we use two-grid method introduced by Xu [28,29]. The idea is that we
first produce a rough approximation of the solution on the coarse grid and then use it to obtain
a linearized system on a fine grid. In this approach, solving a nonlinear problem on the fine
grid is reduced to solving a linear system on the fine grid and a smaller nonlinear system on
the coarse grid. As a result, the two-grid method has attracted many researchers due to its
wide applicability, as shown in [3,5–7,10,11,16,30].

In [19,22], the method of averaging four subunits was used to construct the discretization
scheme for the nonlinear term only involving u. In [20], this idea was adopted to approximate
the nonlinear term of the model (4), eleven nodes would be needed on one partition unit,
where six nodes are used for approximation of the pressure p and five nodes are used for
approximation of the norm function |u|. In this paper, we only use two nodes, which is the
fewest as possible, to construct the discretization scheme for the pressure p. To approximate
the norm function |u|, we still use five nodes. It is proved that our scheme also preserves the
monotonicity of the nonlinear termon the coarse grid.Moreover, our schemegreatly decreases
the coupling degree of numerical scheme and hence greatly reduces the computational cost.
On the fine grid, a linear system is constructed based on differentiable properties of the
nonlinear term. However, one part of the original nonlinear term, namely the norm function
|u|, does not have the continuous derivatives. To deal with this difficulty, we add a very small
positive parameter ε to obtain a modified nonlinear term which is twice differentiable with
bounded derivatives up to the second order. The modified norm function is only used for the
partial derivative term with respect to u. Other parts still use the original nonlinear term to
improve the accuracy of approximation scheme. We prove that the block-centered difference
scheme preserves the monotonicity of the nonlinear operators on both coarse grid and fine
grid. By using the monotonous property of nonlinear operators, we can get the optimal order
error estimates for the approximation scheme of slightly compressible Darcy–Forchheimer
model (4). The block-centered finite difference scheme is also be proved to be unconditionally
convergent. The approach is different from that in [15]. The errors bounds in convergence
estimates provide a principle of determining a proper meshsize H for the coarse grid and

123



J Sci Comput (2018) 74:1786–1815 1789

a proper parameter ε for the fine grid. Numerical experiments show that two-grid block-
centered finite difference method is more efficient than the traditional iterative methods used
in [17,19].

The rest of the paper is organized as follows. In Sect. 2, the two-grid block-centered finite
difference formulation is introduced for slightly compressible Darcy–Forchheimer model.
The error estimates of two-grid algorithmare presented in Sect. 3. In Sect. 4, several numerical
examples are presented to illustrate the algorithm’s accuracy and efficiency. In view of the
number of iterations, the two-grid algorithm is more efficient than the traditional iterative
method, without loss any accuracy. The conclusions and extensions are given in Sect. 5.

Throughout this paper we use C to denote a generic positive constant independent of the
discretization parameters, which may have different values in different appearances.

2 Two-Grid Block-Centered Finite Difference Algorithm

In this sectionwe introduce a two-grid algorithm, based on the block-centeredfinite difference
approximation, for the nonlinear compressible Darcy–Forchheimer model (4).

For simplicity we use the following notations:

a1 = μK−1, a2(p) = βρ(p), α = φCF . (5)

We assume that a1, a2(p), α are continuous functions and

0 < a ≤ a1, α, a2(p) ≤ ā, (6)

for some positive constants a and ā. Besides, the function a2(p) is assumed to be twice
differentiable with respect to p and have bounded derivatives.

Set 0 = t0 < t1 < · · · < t Nt = T and Δtk = tk − tk−1. We assume the two-dimensional
domain Ω is rectangular such that Ω = [bx1 , bx2 ] × [by1 , by2 ].

To construct the two-grid algorithm we have to define a regular coarse partition and a
regular fine partition of Ω simultaneously. First we define the fine partition Ωh = Θx

h × Θ
y
h

as follows:

Θx
h : bx1 = x1/2 < x3/2 < · · · < xnx−1/2 < xnx+1/2 = bx2 ,

Θ
y
h : by1 = y1/2 < y3/2 < · · · < yny−1/2 < yny+1/2 = by2 .

Define

xi = xi−1/2 + xi+1/2

2
, hxi = xi+1/2 − xi−1/2,

y j = y j−1/2 + y j+1/2

2
, hy

j = y j+1/2 − y j−1/2,

hxi+1/2 = hxi+1 + hxi
2

= xi+1 − xi ,

hy
j+1/2 = hy

j+1 + hy
j

2
= y j+1 − y j ,

Ωi, j = (xi−1/2, xi+1/2) × (y j−1/2, y j+1/2),

Ωi+1/2, j = (xi , xi+1) × (y j−1/2, y j+1/2),

Ωi, j+1/2 = (xi−1/2, xi+1/2) × (y j , y j+1),

where i = 1, . . . , nx and j = 1, . . . , ny .
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Denote

[dtθ ]ki, j = θki, j − θk−1
i, j

�tk
,

[dxh θ ]ki+1/2, j = θki+1, j − θki, j

hxi+1/2
, [Dx

h θ ]ki, j = θki+1/2, j − θki−1/2, j

hxi
,

[dy
h θ ]ki, j+1/2 = θki, j+1 − θki, j

hy
j+1/2

, [Dy
h θ ]ki, j = θki, j+1/2 − θki, j−1/2

hy
j

,

where θks,l := θ(xs, yl , tk) for a node-point (xs, yl , tk).
Let the discrete inner products and norms be defined as follows:

(θ, ω)m =
nx∑

i=1

ny∑

j=1

hxi h
y
j θi, jωi, j ,

(θ, ω)x =
nx−1∑

i=1

ny∑

j=1

hxi+1/2h
y
j θi+1/2, jωi+1/2, j ,

(θ, ω)y =
nx∑

i=1

ny−1∑

j=1

hxi h
y
j+1/2θi, j+1/2ωi, j+1/2,

‖θ‖2m = (θ, θ)m, ‖θ‖2x = (θ, θ)x , ‖θ‖2y = (θ, θ)y .

Next, we define a piecewise constant function q̄ on (xi+1/2, y j ) and (xi , y j+1/2) such that
⎧
⎪⎪⎨

⎪⎪⎩

q̄i+1/2, j = 1

2hxi+1/2
(hxi+1qi, j + hxi qi+1, j ), (x, y) ∈ Ωi+1/2, j ,

q̄i, j+1/2 = 1

2hy
j+1/2

(hy
j+1qi, j + hy

j qi, j+1), (x, y) ∈ Ωi, j+1/2.
(7)

For a pair of discrete functions {V x
i+1/2, j } and {V y

i, j+1/2}, we give the definition of the
interpolation operator � as follows:

�V = (Πx V
x ,ΠyV

y),

with

Πx V
x (x, y) = V x

i+1/2, j , (x, y) ∈ Ωi+1/2, j ,

ΠyV
y(x, y) = V y

i, j+1/2, (x, y) ∈ Ωi, j+1/2.

Let R(V x , V y) be the norm function for a vector (V x , V y) such that

R(V x , V y) =
√

(V x )2 + (V y)2. (8)

Then, define the square-root average operators Qx and Qy for V = (V x , V y) as

[QxV]i+1/2, j = 1

Ωi+1/2, j

∫

Ωi+1/2, j

R(Πx V
x ,ΠyV

y)dxdy, (9)

[QyV]i, j+1/2 = 1

Ωi, j+1/2

∫

Ωi, j+1/2

R(Πx V
x ,ΠyV

y)dxdy. (10)
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It follows from direct calculations to (9) and (10) that

([QxV]V x )i+1/2, j

= 1

4hxi+1/2

(

hxi

(
R(V x

i+1/2, j , V
y
i, j+1/2) + R(V x

i+1/2, j , V
y
i, j−1/2)

)

+ hxi+1

(
R(V x

i+1/2, j , V
y
i+1, j−1/2) + R(V x

i+1/2, j , V
y
i+1, j+1/2)

))

V x
i+1/2, j ,

and

([QyV]V y)i, j+1/2

= 1

4hy
j+1/2

(

hy
j

(
R(V x

i+1/2, j , V
y
i, j+1/2) + R(V x

i−1/2, j , V
y
i, j+1/2)

)

+ hy
j+1

(
R(V x

i−1/2, j+1, V
y
i, j+1/2) + R(V x

i+1/2, j+1, V
y
i, j+1/2)

))

V y
i, j+1/2.

Then, we define

Nx (q̄, V)i+1/2, j = (a2(q̄)[QxV]V x )i+1/2, j , (11)

N y(q̄, V)i, j+1/2 = (a2(q̄)[QyV]V y)i, j+1/2. (12)

Let Rε(V x , V y) be the norm function for a vector (V x , V y)with a small positive parameter
ε:

Rε(V
x , V y) =

√
ε2 + (V x )2 + (V y)2. (13)

We define Nx
ε (q̄, V) onΩi+1/2, j by replacing R(·, ·)with Rε(·, ·) in Nx (q̄, V), and define

N y
ε (q̄, V) on Ωi, j+1/2 by replacing R(·, ·) with Rε(·, ·) in N y(q̄, V) as follows.

Nx
ε (q̄, V)i+1/2, j

= a2(q̄i+1/2, j )[Qx
ε V]i+1/2, j V

x
i+1/2, j

= a2(q̄i+1/2, j )

4hxi+1/2

(

hxi

(
Rε(V

x
i+1/2, j , V

y
LT ) + Rε(V

x
i+1/2, j , V

y
LB)

)

+ hxi+1

(
Rε(V

x
i+1/2, j , V

y
RB) + Rε(V

x
i+1/2, j , V

y
RT )

))

V x
i+1/2, j , (14)

and

N y
ε (q̄, V)i, j+1/2

= a2(q̄i, j+1/2)[Qy
ε V]i, j+1/2V

y
i, j+1/2

= a2(q̄i, j+1/2)

4hy
j+1/2

(

hy
j

(
Rε(V

x
LT , V y

i, j+1/2) + Rε(V
x
LB , V y

i, j+1/2)
)

+ hy
j+1

(
Rε(V

x
RB , V y

i, j+1/2) + Rε(V
x
RT , V y

i, j+1/2)
))

V y
i, j+1/2, (15)

where

vxLT = vxi−1/2, j+1, vxLB = vxi−1/2, j , vxRB = vxi+1/2, j , vxRT = vxi+1/2, j+1,

v
y
LT = v

y
i, j+1/2, v

y
LB = v

y
i, j−1/2, v

y
RB = v

y
i+1, j−1/2, v

y
RT = v

y
i+1, j+1/2.
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Fig. 1 Differences of
√

ε2 + (ux )2 + (uy)2 and
√

(ux )2 + (uy)2 for h = 0.1 and ε = h2

When constructing the two-grid algorithmwe use a differentiable function Nx
ε ( p̄, u) (resp.

N y
ε ( p̄, u)) to replace Nx ( p̄, u) (resp. N y( p̄, u)). The reason is that the partial derivatives of

Nx ( p̄, u) and N y( p̄, u)with respect to u do not exist, when the velocity u = (ux , uy) is zero.
The key is to use

√
ε2 + (ux )2 + (uy)2 to replace

√
(ux )2 + (uy)2. When ε is small enough,

Nx
ε ( p̄, u) (resp. N y

ε ( p̄, u)) is close to Nx ( p̄, u) (resp. N y( p̄, u)), and the partial derivative
of Nx

ε ( p̄, u) (resp. N y
ε ( p̄, u)) with respect to u is also very close to that of Nx ( p̄, u) (resp.

N y( p̄, u)), see Figs. 1 and 2 for the negligible differences.
Analogous to Ωh we define a coarse grid ΩH = Θx

H × Θ
y
H . We use Hx , Hy to denote

the meshsizes in x and y directions of the coarse grid, respectively. Similarly we use [dxH θ ],
[Dx

H θ ], [dy
H θ ], [Dy

H θ ], (θ, ω)M , (θ, ω)X , (θ, ω)Y , ‖θ‖M , ‖θ‖X , ‖θ‖Y to denote the finite
difference operators, inner products and norms on the coarse grid, respectively. The norms
and semi-norms of a discrete function on the coarse grid can be defined similarly. We also
use notations Xm and Yn such that

Xm := bx1 +
Nx∑

m=1

Hx
m, Yn := by1 +

Ny∑

n=1

Hy
n .

We define p̂H and ûH = (ûxH , û y
H ) as the bilinear interpolation operator from the coarse

grid ΩH to fine grid Ωh . Take ûH for example:

(i) For each point (x, y) ∈ (xm+1/2, xm+3/2) × (yn, yn+1) with m = 0, . . . , Nx − 1
and n = 1, . . . , Ny − 1, we define ûxH (x, y) as the bilinear interpolation by using
uxm+1/2,n+1,u

x
m+1/2,n , u

x
m+3/2,n and u

x
m+3/2,n+1.
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Fig. 2 Differences of the partial derivative of
√

ε2 + (ux )2 + (uy)2 and
√

(ux )2 + (uy)2 with respect to ux

for h = 0.1 and ε = h2

(ii) For each point (x, y) ∈ (xm+1/2, xm+3/2) × (y1/2, y1) with m = 0, . . . , Nx − 1, we
define ûxH (x, y) as the bilinear extrapolation by using uxm+1/2,2, u

x
m+1/2,1, u

x
m+3/2,1 and

uxm+3/2,2.
(iii) For each point (x, y) ∈ (xm+1/2, xm+3/2) × (yNy, yNy+1/2) with m = 0, . . . , Nx − 1,

we define ûxH (x, y) as the bilinear extrapolation by using uxm+1/2,Ny , u
x
m+1/2,Ny−1,

uxm+3/2,Ny−1 and uxm+3/2,Ny .

Similarly, we can define û y
H (x, y) based on the values of uy

m,n+1/2 for m = 1, . . . , Nx

and n = 0, . . . , Ny , and define p̂H (x, y) based on the values of pm,n form = 1, . . . , Nx and
n = 1, . . . , Ny .

We are now ready to construct the two-grid block-centered finite difference algorithm in
two steps.

Step 1 On the coarse grid ΩH with meshsizes Hx and Hy , the nonlinear block-centered
finite difference schemes for (Ux

H )km+1/2,n , (U
y
H )km,n+1/2 and (PH )km,n are as follows,

α[dt PH ]km,n + [Dx
HU

x
H ]km,n + [Dy

HU
y
H ]km,n = f km,n, (16)

a1U
x,k
H,m+1/2,n + Nx (P̄H , UH )km+1/2,n = −[dxH PH ]km+1/2,n, (17)

a1U
x,k
H,m,n+1/2 + N y(P̄H , UH )km,n+1/2 = −[dy

H PH ]km,n+1/2,

Ux,k
1/2,n = −g(bx1 , Yn, t

k), Ux,k
Nx+1/2,n = g(bx2 , Yn, t

k), n = 1, . . . , Ny,
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U y,k
m,1/2 = −g(Xm, by1 , t

k), U y,k
m,Ny+1/2 = g(Xm, by2 , t

k), m = 1, . . . , Nx ,

P0
m,n = p0(Xm, Yn, 0), (18)

for m = 1, . . . , Nx − 1 , n = 1, . . . , Ny − 1 and k = 1, . . . , Nt .
Step 2 On the fine grid Ωh with meshsizes hx and hy , the linear block-centered finite

difference approximation for (Ux
h )ki+1/2, j , (U

y
h )ki, j+1/2 and (Ph)ki, j are as follows,

α[dt Ph]ki, j + [Dx
hU

x
h ]ki, j + [Dy

hU
y
h ]ki, j = f ki, j , (19)

a1U
x,k
h,i+1/2, j + Lx

ε (P̄h, Uh)
k
i+1/2, j = −[dxh Ph]ki+1/2, j , (20)

a1U
x,k
h,i, j+1/2 + Ly

ε (P̄h, Uh)
k
i, j+1/2 = −[dy

h Ph]ki, j+1/2,

Ux,k
1/2, j = −g(bx1 , y j , t

k), Ux,k
nx+1/2, j = g(bx2 , y j , t

k), j = 1, . . . , ny,

U y,k
i,1/2 = −g(xi , b

y
1 , t

k), U y,k
i,ny+1/2 = g(xi , b

y
2 , t

k), i = 1, . . . , nx ,

P0
i, j = p0(xi , y j , 0), (21)

for i = 1, . . . , nx − 1, j = 1, . . . , ny − 1, k = 1, . . . , Nt and a small positive parameter ε,
where

Lx
ε (P̄h, Uh)

k
i+1/2, j

= Nx (
¯̂PH , ÛH )ki+1/2, j + ∂Nx

∂p
(

¯̂PH , ÛH )ki+1/2, j (P̄h − ¯̂PH )ki+1/2, j

+ ∂Nx
ε

∂ux
(

¯̂PH , ÛH )ki+1/2, j (U
x
h − Û x

H )ki+1/2, j

+ ∂Nx
ε

∂uy
LT

(
¯̂PH , ÛH )ki+1/2, j (U

y
h − Û y

H )ki, j+1/2

+ ∂Nx
ε

∂uy
LB

(
¯̂PH , ÛH )ki+1/2, j (U

y
h − Û y

H )ki, j−1/2

+ ∂Nx
ε

∂uy
RB

(
¯̂PH , ÛH )ki+1/2, j (U

y
h − Û y

H )ki+1, j−1/2

+ ∂Nx
ε

∂uy
RT

(
¯̂PH , ÛH )ki+1/2, j (U

y
h − Û y

H )ki+1, j+1/2, (22)

and
Ly

ε (P̄h, Uh)
k
i, j+1/2

= N y(
¯̂PH , ÛH )ki, j+1/2 + ∂N y

∂p
(

¯̂PH , ÛH )ki, j+1/2(P̄h − ¯̂PH )ki, j+1/2

+ ∂N y
ε

∂uy
(

¯̂PH , ÛH )ki, j+1/2(U
y
h − Û y

H )ki, j+1/2

+ ∂Nx
ε

∂uxLT
(

¯̂PH , ÛH )ki, j+1/2(U
x
h − Û x

H )ki−1/2, j+1

+ ∂N y
ε

∂uy
LB

(
¯̂PH , ÛH )ki, j+1/2(U

x
h − Û x

H )ki−1/2, j
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+ ∂N y
ε

∂uxRB
(

¯̂PH , ÛH )ki, j+1/2(U
x
h − Û x

H )ki+1/2, j

+ ∂N y
ε

∂uxRT
(

¯̂PH , ÛH )ki, j+1/2(U
x
h − Û x

H )ki+1/2, j+1. (23)

In the Step 1 on coarse grid, the fewest unknowns are used to construct the block-centered
finite difference scheme. We have reduced the degree of coupling of PH and UH as much
as possible. Moreover, it brings the convenience to construct the scheme on the fine grid, in
which the partial derivatives with respect to the unknowns are the essential parts.

This algorithm first produces a rough approximation of the solution and then uses it as
the initial guess on the fine grid. With this method, solving a nonlinear equation on a fine
grid is reduced to solving a nonlinear equation on a coarse grid together with solving a
linear equation on a fine grid. This means that solving a nonlinear problem is not much more
difficult than solving one linear problem, since the cost for solving the nonlinear problem on
the coarse grid is relatively negligible.

3 Error Estimates

In this section, we present the optimal error estimates for the two-grid block-centered finite
difference method for the slightly compressible Darcy–Forchheimer model (4).

According to Lemma 4.1 in [21], we have the following lemma.

Lemma 1 Suppose p is sufficiently smooth, then

∂pi+1/2, j

∂x
= [dxh p]i+1/2, j − 1

8

[
dxh

(
(hx )2

∂2 p

∂x2

)]

i+1/2, j
+ O

(
(hx )2

)
,

∂pi, j+1/2

∂y
= [dy

h p]i, j+1/2 − 1

8

[
dy
h

(
(hy)2

∂2 p

∂y2

)]

i, j+1/2
+ O

(
(hy)2

)
,

where

hx = max
i

{hxi , hxi+1/2}, hy = max
j

{hy
j , h

y
j+1/2}.

The following lemma follows directly from Lemma 1.

Lemma 2 Suppose p is sufficiently smooth, then

a1u
x
i+1/2, j + (a2(p)|u|ux )i+1/2, j

= −[dxh (p − δ)]i+1/2, j + O
(
(hx )2 + (hy)2

)
,

a1u
y
i, j+1/2 + (a2(p)|u|uy)i, j+1/2

= −[dy
h (p − δ)]i, j+1/2 + O

(
(hx )2 + (hy)2

)
,

where

δi, j = 1

8

(
(hx )2

∂2 p

∂x2
+ (hy)2

∂2 p

∂y2

)

i, j
. (24)
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Lemma 3 Suppose p and u are sufficiently smooth, then

a1u
x
i+1/2, j + (a2(p)[Qxu]ux )i+1/2, j

= −[dxh (p − η)]i+1/2, j + O
(
(hx )2 + (hy)2

)
,

a1u
y
i, j+1/2 + (a2(p)[Qyu]uy)i, j+1/2

= −[dy
h (p − η)]i, j+1/2 + O

(
(hx )2 + (hy)2

)
,

where

ηi, j = δi, j + 1

4

(

a(p)
uxuy

|u|
(
(hx )2

∂uy

∂x
+ (hy)2

∂ux

∂y

))

i, j

. (25)

Proof According to Lemma 4.2 in [19] and the Taylor expansion,

a2(pi+1/2, j )

( R(uxi+1/2, j , u
y
i, j+1/2) + R(uxi+1/2, j , u

y
i, j−1/2)

2
− |ui+1/2, j |

)

uxi+1/2, j

= a2(pi, j )
uxi, j u

y
i, j

|ui, j |
∂uy

i, j

∂x

(

−hi
2

)

+ O
(
(hx )2 + (hy)2

)
,

and

a2(pi+1/2, j )

( R(uxi+1/2, j , u
y
i+1, j+1/2) + R(uxi+1/2, j , u

y
i+1, j−1/2)

2
− |ui+1/2, j |

)

uxi+1/2, j

= a2(pi+1, j )
uxi+1, j u

y
i+1, j

|ui+1, j |
∂uy

i+1, j

∂x

(
hi+1

2

)

+ O
(
(hx )2 + (hy)2

)
.

Therefore,

(a2(p)[Qxu]ux )i+1/2, j − (a2(p)|u|ux )i+1/2, j

= 1

4hi+1/2

(

(hxi+1)
2a2(pi+1, j )

uxi+1, j u
y
i+1, j

|ui+1, j |
∂uy

i+1, j

∂x

− (hxi )
2a2(pi, j )

uxi, j u
y
i, j

|ui, j |
∂uy

i, j

∂x

)

+ O
(
(hx )2 + (hy)2

)

= 1

4

[
dxh

(
(hx )2a2(p)

uxuy

|u|
∂uy

∂x

)]

i+1/2, j
+ O

(
(hx )2 + (hy)2

)
. (26)

By Lemma 2, (26) and (25), we have

a1u
x
i+1/2, j + (a2(p)[Qxu]ux )i+1/2, j

= (a2(p)[Qxu]ux )i+1/2, j − (a2(p)|u|ux )i+1/2, j

+ a1u
x
i+1/2, j + (a2(p)|u|ux )i+1/2, j

= 1

4

[
dxh

(
(hx )2a2(p)

uxuy

|u|
∂uy

∂x

)]

i+1/2, j
− [dxh (p − δ)]i+1/2, j

+ O
(
(hx )2 + (hy)2

)

= −[dxh (p − η)]i+1/2, j − 1

4

[
dxh

(
(hy)2a2(p)

uxuy

|u|
∂ux

∂y

)]

i+1/2, j
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+ O
(
(hx )2 + (hy)2

)

= −[dxh (p − η)]i+1/2, j + O
(
(hx )2 + (hy)2

)
. (27)

Similarly,

a1u
y
i, j+1/2 + (a2(p)[Qyu]uy)i, j+1/2

= −[dy
h (p − η)]i, j+1/2 − 1

4

[
dy
h

(
(hx )2a2(p)

uxuy

|u|
∂uy

∂x

)]

i, j+1/2

+ O
(
(hx )2 + (hy)2

)

= −[dy
h (p − η)]i, j+1/2 + O

(
(hx )2 + (hy)2

)
. (28)

From the definitions of p̄i+1/2, j and p̄i, j+1/2 in (7), we have

p̄i+1/2, j − pi+1/2, j = O
(
(hx )2

)
, (29)

p̄i, j+1/2 − pi, j+1/2 = O
(
(hy)2

)
. (30)

Thus, we get the following lemma by using Lemma 3, the Taylor expansion of a2(p) and
(29) and (30).

Lemma 4 Suppose p and u are sufficiently smooth, then

a1uxi+1/2, j + Nx ( p̄, u)i+1/2, j = −[dxh (p − η)]i+1/2, j + O
(
(hx )2 + (hy)2

)
,

a1u
y
i, j+1/2 + N y( p̄, u)i, j+1/2 = −[dy

h (p − η)]i, j+1/2 + O
(
(hx )2 + (hy)2

)
.

From Lemma 4.4 in [19], Lemma 4.2 in [17] and (6), we can derive the following lemma.

Lemma 5 For any functions V = (V x , V y) and W = (Wx ,W y) we have

(a2(q̄)|V|V x − a2(q̄)|W|Wx , V x − Wx )x

+ (a2(q̄)|V|V y − a2(q̄)|W|W y, V y − W y)y

≥ a(||V x − Wx ||2x + ||V y − W y ||2y). (31)

By referring to Lemma 4.6 in [19], Lemma 6 is given as follows.

Lemma 6 Let {Wx
i+1/2, j }, {W y

i, j+1/2}, {V x
i+1/2, j }, {V y

i, j+1/2}, ϕx
i, j , and ϕ

y
i, j be discrete func-

tions with V x
1/2, j = V y

i,1/2 = V x
nx+1/2, j = V y

i,ny+1/2 = 0 and satisfy

{ [ψ xW x ]i+1/2, j = −[dxh ϕx ]i+1/2, j ,

[ψ yW y]i, j+1/2 = −[dy
h ϕy]i, j+1/2,

where ψ x and ψ y are generic discrete functions. Then we have

(ψ xW x , V x )x = (ϕx , Dx
h V

x )m, (ψ yW y, V y)y = (ϕy, Dy
h V

y)m .

Theorem 1 Let U x,k
H , U y,k

H , Pk
H be obtained by step 1 of two-grid finite difference algorithm.

Suppose the solutions u = (ux , uy) and p are sufficiently smooth, then there exists a positive
constant C independent of H and Δt such that
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Nt∑

k=1

Δtk(‖(ux −Ux
H )k‖2X + ‖(uy −U y

H )k‖2Y )1/2 ≤ C(Δt + H2),

‖(p − PH )Nt ‖M ≤ C(Δt + H2).

where

H = max
m,n

{Hx
m, Hx

m+1/2, H
y
n , Hy

n+1/2}, Δt = max
k

{Δtk}.

Proof Denote

(E p)km,n = (PH − p)km,n,

(Ex )km+1/2,n = (Ux
H − ux )km+1/2,n,

(Ey)km,n+1/2 = (U y
H − uy)km,n+1/2.

By (4), the definitions of operators Dx
H and Dy

H , we have

α[dt p]km,n + [Dx
H (ux )]km,n + [Dy

H (uy)]km,n

= f km,n + α[dt p]km,n − α
∂pkm,n

∂t
+ [Dx

H (ux )]km,n − ∂ux,km,n

∂x

+[Dy
H (uy)]km,n − ∂uy,k

m,n

∂y

= f km,n + O(Δt + H2). (32)

From the first equation (16) in step 1 and (32),

α[dt (E p)]km,n + [Dx
H (Ex )]km,n + [Dy

H (Ey)]km,n

= α
∂pkm,n

∂t
− α[dt p]km,n + ∂ux,km,n

∂x
− [Dx

H (ux )]km,n

+ ∂uy,k
m,n

∂y
− [Dy

H (uy)]km,n

= O(Δt + H2). (33)

According to the definition of η in (25),

α[dtη]km,n = α

8

(
(Hx )2[dt ( ∂

2 p

∂x2
)]km,n + (Hy)2[dt ( ∂

2 p

∂y2
)]km,n

)

+ α

4

(
(Hx )2[dt (a2(p)u

xuy

|u|
∂uy

∂x
)]km,n

+ (Hy)2[dt (a2(p)u
xuy

|u|
∂ux

∂y
)]km,n

)

= O
(
(Hx )2 + (Hy)2

)

= O(H2). (34)

Combing (33) and (34), we get

α[dt (E p + η)]km,n + [Dx
H (Ex )]km,n + [Dy

H (Ey)]km,n = O(Δt + H2). (35)
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By multiplying both sides of (35) by (E p +η)km,nH
x
mH y

n and summing upm and n, we have

α(dt (E
p + η)k, (E p + η)k)M + (Dx

H (Ex,k), (E p + η)k)M

+ (Dy
H (Ey,k), (E p + η)k)M

= (O(Δt + H2), (E p + η)k)M . (36)

It follows from Lemma 6 and (36) that

α(dt (E
p + η)k, (E p + η)k)M − (Ex,k, dxH (E p + η)k)X

− (Ey,k, dy
H (E p + η)k)Y

= (O(Δt + H2), (E p + η)k)M . (37)

From (4) and the step 1 of two-grid algorithm (17) and (18), we obtain

a1E
x,k
m+1/2,n + Nx (P̄H , UH )km+1/2,n − (a2(p)|u|ux )km+1/2,n

= ∂pm+1/2,n

∂x
− [dxH PH ]km+1/2,n, (38)

a1E
y,k
m,n+1/2 + N y(P̄H , UH )km,n+1/2 − (a2(p)|u|uy)km,n+1/2

= ∂pm,n+1/2

∂y
− [dy

H PH ]km,n+1/2. (39)

Using Lemmas 2, 3, and 4 to (38) and (39), we get

a1E
x,k
m+1/2,n + Nx (P̄H , UH )km+1/2,n − Nx ( p̄, u)km+1/2,n

= −[dxH (E p + η)]km+1/2,n + O(H2), (40)

a1E
y,k
m,n+1/2 + N y(P̄H , UH )km,n+1/2 − N y( p̄, u)km,n+1/2

= −[dy
H (E p + η)]km,n+1/2 + O(H2). (41)

Multiplying (40) and (41) by Ex,k
m+1/2,nH

x
m+1/2H

y
n and Ey,k

m,n+1/2H
x
mH y

n+1/2, respectively,
and summing up m from 1 to Nx − 1 and n from 1 to Ny − 1, we arrive at

a1(E
x,k, Ex,k)X + (Nx (P̄H , UH )k − Nx ( p̄, u)k, Ex,k)X

= − (dxH (E p + η)k, Ex,k)X + (O(H2), Ex,k)X , (42)

a1(E
y,k, Ey,k)Y + (N y(P̄H , UH )k − N y( p̄, u)k, Ey,k)Y

= − (dy
H (E p + η)k, Ey,k)Y + (O(H2), Ey,k)Y . (43)

From (37), (42) and (43),

α

2
dt‖(E p + η)k‖2M + α�tk

2
‖dt (E p + η)k‖2M + a1(‖Ex,k‖2X + ‖Ex,k‖2Y )

+ (Nx (P̄H , UH )k − Nx (P̄H , u)k, Ex,k)X

+ (N y(P̄H , UH )k − N y(P̄H , u)k, Ey,k)Y

= (Nx ( p̄, u)k − Nx (P̄H , u)k, Ex,k)X + (N y( p̄, u)k − N y(P̄H , u)k, Ey,k)Y

+ (O(Δt + H2), (E p + η)k)M + (O(H2), Ex,k)X + (O(H2), Ey,k)Y . (44)
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By Lemma 5 and the assumption (6) of a2(p), we have

(Nx (P̄H , UH )k − Nx (P̄H , u)k, Ex,k)X

+ (N y(P̄H , UH )k − N y(P̄H , u)k, Ey,k)Y

≥ a(||Ux
H − ux ||2x + ||U y

H − uy ||2y)
≥ 0. (45)

Applying the Cauchy–Schwarz inequality and the assumption for α, a1 in (6), we have

1

2
dt‖(E p + η)k‖2M + �tk

2
‖dt (E p + η)k‖2M + ‖Ex,k‖2X + ‖Ey,k‖2Y

≤ C(Δt2 + H4 + ‖(E p + η)k‖2M + ‖E p,k‖2M )

+ 1

2
‖Ex,k‖2X + 1

2
‖Ey,k‖2Y

≤ C(Δt2 + H4 + ‖(E p + η)k‖2M + ‖ηk‖2M )

+ 1

2
‖Ex,k‖2X + 1

2
‖Ey,k‖2Y . (46)

Multiplying (46) by 2�tk and summing up k from 1 to Nt , we have

‖(E p + η)Nt ‖2M +
Nt∑

k=1

(�tk)2‖dt (E p + η)k‖2M

+
Nt∑

k=1

�tk
(
‖Ex,k‖2X + ‖Ex,k‖2Y

)

≤ C

(

Δt2 + H4 +
Nt∑

k=1

�tk
(
‖(E p + η)k‖2M + ‖ηk‖2M

)

+‖(E p + η)0‖2M
)

≤ C
(
Δt2 + H4 +

Nt∑

k=1

�tk‖(E p + η)k‖2M
)
. (47)

Using Gronwall lemma, we get

‖(PH − p + η)Nt ‖2M +
Nt∑

k=1

�tk(‖(Ux
H − ux )k‖2X + ‖(U y

H − uy)k‖2Y )

≤ C(Δt2 + H4). (48)

Combing the definition of η in (25) and triangle inequality, the theorem holds. 	

In order to deduce the error estimates for Step 2 of the two-grid algorithm, we give the

following useful lemmas.

Lemma 7 Suppose {V x
i−1/2, j } and {V y

i, j−1/2} are discrete functions with
V x
1/2, j = V x

nx+1/2, j = 0, j = 1, . . . , ny,

V y
i,1/2 = V y

i,ny+1/2 = 0, i = 1, . . . , nx .
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For the discrete norms ‖ · ‖x and ‖ · ‖y , we have the following inverse estimates.

‖(V x )2‖2x ≤ Ch−2‖V x‖4x ,
‖(V y)2‖2y ≤ Ch−2‖V y‖4y,

where

h = max
i, j

{hxi , hxi+1/2, h
y
j , h

y
j+1/2}.

We refer to Lemma 3.3 in [22] for the proof of Lemma 7.

Lemma 8 Assume V = (V x , V y) is bounded by a positive constant C which is independent
of any mesh grid parameters, we have

|Nx (q̄, V)i+1/2, j − Nx
ε (q̄, V)i+1/2, j | ≤ Cε,

|N y(q̄, V)i, j+1/2 − N y
ε (q̄, V)i, j+1/2| ≤ Cε,

with i = 1, . . . , nx and j = 1, . . . , ny.

Proof Since

|Rε(V
x , V y) − R(V x , V y)|

=
∣
∣
∣
∣
∣

ε2
√

ε2 + (V x )2 + (V y)2 + √
(V x )2 + (V y)2

∣
∣
∣
∣
∣

≤ ε, (49)

by combing (6), (49) and the boundedness of V, we deduce

|Nx (q̄, V)i+1/2, j − Nx
ε (q̄, V)i+1/2, j |

= |a2(q̄i+1/2, j )V
x
i+1/2, j ([QxV]i+1/2, j − [Qx

ε V]i+1/2, j )|
≤ Cε. (50)

Similarly,

|N y(q̄, V)i, j+1/2 − N y
ε (q̄, V)i, j+1/2|

= |a2(q̄i, j+1/2)V
y
i, j+1/2([QyV]i, j+1/2 − [Qy

ε V]i, j+1/2)|
≤ Cε. (51)

Remark 1 By taking ε = O(h2), we obtain

|Nx (q̄, V)i+1/2, j − Nx
ε (q̄, V)i+1/2, j | ≤ Ch2, (52)

|N y(q̄, V)i, j+1/2 − N y
ε (q̄, V)i, j+1/2| ≤ Ch2. (53)

By referring to Lemma 3.8 in [22], we get Lemma 9 as follows.

Lemma 9 Suppose v is bounded, the modified nonlinear terms N x
ε (q̄, v) and N y

ε (q̄, v) are
twice differentiable and have uniformly bounded second-order derivatives with respect to v.

Lemma 10 Suppose V = (V x , V y) and W = (Wx ,W y) are bounded, {V x
i+1/2, j } and

{V y
i, j+1/2} are discrete functions with

V x
1/2, j = V x

nx+1/2, j = 0, j = 1, . . . , ny,

V y
i,1/2 = V y

i,ny+1/2 = 0, i = 1, . . . , nx .
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Then, we have

a(‖V x − Wx‖2x + ‖V y − W y‖2y)
≤ (Lx

ε (q̄, V) − Lx
ε (q̄, W), V x − Wx )x

+ (Ly
ε (q̄, V) − Ly

ε (q̄, W), V y − W y)y . (54)

Proof It follows from the definition of Lx
ε (·, ·) that

Lx
ε (q̄, V)ki+1/2, j

= Nx (
¯̂PH , ÛH )ki+1/2, j + ∂Nx

∂p
(

¯̂PH , ÛH )ki+1/2, j (q̄ − ¯̂PH )ki+1/2, j

+ ∂Nx
ε

∂ux
(

¯̂PH , ÛH )ki+1/2, j (V
x − Û x

H )ki+1/2, j

+ ∂Nx
ε

∂uy
LT

(
¯̂PH , ÛH )ki+1/2, j (V

y − Û y
H )ki, j+1/2

+ ∂Nx
ε

∂uy
LB

(
¯̂PH , ÛH )ki+1/2, j (V

y − Û y
H )ki, j−1/2

+ ∂Nx
ε

∂uy
RB

(
¯̂PH , ÛH )ki+1/2, j (V

y − Û y
H )ki+1, j−1/2

+ ∂Nx
ε

∂uy
RT

(
¯̂PH , ÛH )ki+1/2, j (V

y − Û y
H )ki+1, j+1/2, (55)

and

Lx
ε (q̄, W)ki+1/2, j

= Nx (
¯̂PH , ÛH )ki+1/2, j + ∂Nx

∂p
(

¯̂PH , ÛH )ki+1/2, j (q̄ − ¯̂PH )ki+1/2, j

+ ∂Nx
ε

∂ux
(

¯̂PH , ÛH )ki+1/2, j (W
x − Û x

H )ki+1/2, j

+ ∂Nx
ε

∂uy
LT

(
¯̂PH , ÛH )ki+1/2, j (W

y − Û y
H )ki, j+1/2

+ ∂Nx
ε

∂uy
LB

(
¯̂PH , ÛH )ki+1/2, j (W

y − Û y
H )ki, j−1/2

+ ∂Nx
ε

∂uy
RB

(
¯̂PH , ÛH )ki+1/2, j (W

y − Û y
H )ki+1, j−1/2

+ ∂Nx
ε

∂uy
RT

(
¯̂PH , ÛH )ki+1/2, j (W

y − Û y
H )ki+1, j+1/2. (56)

Subtracting (56) from (55), we have

Lx
ε (q̄, V)ki+1/2, j − Lx

ε (q̄, W)ki+1/2, j

= ∂Nx
ε

∂ux
(

¯̂PH , ÛH )ki+1/2, j (V
x − Wx )ki+1/2, j

+ ∂Nx
ε

∂uy
LT

(
¯̂PH , ÛH )ki+1/2, j (V

y − W y)ki, j+1/2
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+ ∂Nx
ε

∂uy
LB

(
¯̂PH , ÛH )ki+1/2, j (V

y − W y)ki, j−1/2

+ ∂Nx
ε

∂uy
RB

(
¯̂PH , ÛH )ki+1/2, j (V

y − W y)ki+1, j−1/2

+ ∂Nx
ε

∂uy
RT

(
¯̂PH , ÛH )ki+1/2, j (V

y − W y)ki+1, j+1/2. (57)

Similarly,

Ly
ε (q̄, V)ki, j+1/2 − Ly

ε (q̄, W)ki, j+1/2

= ∂N y
ε

∂uy
(

¯̂PH , ÛH )ki, j+1/2(V
y − W y)ki, j+1/2

+ ∂N y
ε

∂uxLT
(

¯̂PH , ÛH )ki, j+1/2(V
x − Wx )ki−1/2, j+1

+ ∂N y
ε

∂uxLB
(

¯̂PH , ÛH )ki−1/2, j (V
x − Wx )ki−1/2, j

+ ∂N y
ε

∂uxRB
(

¯̂PH , ÛH )ki+1/2, j (V
x − Wx )ki+1/2, j

+ ∂Nx
ε

∂uxRT
(

¯̂PH , ÛH )ki, j+1/2(V
x − Wx )ki+1/2, j+1. (58)

The estimate (54) can then be obtained by applying Lemma 3.2 in [22] to (57) and (58).

Theorem 2 Let U x,k
h , U y,k

h , Pk
h be the approximation solutions obtained by step 2 of two-

grid finite difference algorithm. Suppose the solutions u = (ux , uy) and p are sufficiently
smooth, then there exists a positive constant C independent of h and Δt such that

n∑

k=1

Δtk(‖(ux −Ux
h )k‖2x + ‖(uy −U y

h )k‖2y)1/2 ≤ C(Δt + ε + h2 + H3),

‖(p − Ph)
k‖m ≤ C(Δt + ε + h2 + H3).

Proof Let

(ep)ki, j = (Ph − p)ki, j ,

(ex )ki+1/2, j = (Ux
h − ux )ki+1/2, j ,

(ey)ki, j+1/2 = (U y
h − uy)ki, j+1/2.

From the step 2 of two-grid algorithm (19)–(21), Lemmas 1, 2, 3, and 4,

a1e
x,k
i+1/2, j + Lx

ε (P̄h, Uh)
k
i+1/2, j − Nx ( p̄, u)ki+1/2, j

= −[dxh (ep + η)]ki+1/2, j + O(h2), (59)

a1e
y,k
i, j+1/2 + Ly

ε (P̄h, Uh)
k
i, j+1/2 − N y( p̄, u)ki, j+1/2

= −[dy
h (ep + η)]ki, j+1/2 + O(h2), (60)

α[dt (ep + η)]ki, j + [Dx
h (ex )]ki, j + [Dy

h (ey)]ki, j
= O(Δt + h2). (61)
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Multiplying (59), (60), (61) by ex,ki+1/2, j h
x
i+1/2h

y
j , e

y,k
i, j+1/2h

x
i h

y
j+1/2, (e

p + η)ki, j h
x
i h

y
j and

summing over i and j , we get

α

2
dt‖(ep + η)k‖2m + α�tk

2
‖dt (ep + η)k‖2m + a1(‖ex,k‖2x + ‖ey,k‖2y)

+ (Lx
ε (P̄h, Uh)

k − Lx
ε (P̄h, u)k, ex,k)x + (Ly

ε (P̄h, Uh)
k − Ly

ε (P̄h, u)k, ey,k)y

≤ |(Lx
ε ( p̄, u)k − Lx

ε (P̄h, u)k, ex,k)x + (Ly
ε ( p̄, u)k − Ly

ε (P̄h, u)k, ey,k)y |
+ |(Nx

ε ( p̄, u)k − Lx
ε ( p̄, u)k, ex,k)x + (N y

ε ( p̄, u)k − Ly
ε ( p̄, u)k, ey,k)y |

+ |(Nx ( p̄, u)k − Nx
ε ( p̄, u)k, ex,k)x + (N y( p̄, u)k − N y

ε ( p̄, u)k, ey,k)y |
+ a1

8
(‖ex,k‖2x + ‖ey,k‖2y) + ‖(ep + η)k‖2m + O(Δt2 + h4). (62)

Combining the definitions of Lx
ε (·, ·) and Ly

ε (·, ·) with Cauchy-Schwarz inequality, we
have

|(Lx
ε ( p̄, u)k − Lx

ε (P̄h, u)k, ex,k)x + (Ly
ε ( p̄, u)k − Ly

ε (P̄h, u)k, ey,k)y |
≤ C(‖(ep + η)k‖2m + ‖ηk‖2m) + a1

8
(‖ex,k‖2x + ‖ey,k‖2y). (63)

From Theorem 1 and inverse inequality we know that PH , Ux
H and U y

H are bounded.
Applying Taylor expansion to Nx

ε ( p̄, u) and N y
ε ( p̄, u) and according to Lemmas 8 and 9,

we obtain

|(Nx
ε ( p̄, u)k − Lx

ε ( p̄, u)k, ex,k)x + (N y
ε ( p̄, u)k − Ly

ε ( p̄, u)k, ey,k)y |
≤ |(Nx

ε (
¯̂PH , ÛH )k − Nx (

¯̂PH , ÛH )k, ex,k)x |
+ |(N y

ε (
¯̂PH , ÛH )k − N y(

¯̂PH , ÛH )k, ey,k)y |
+ |

(
∂Nx

ε

∂p
(

¯̂PH , ÛH )k( p̄k − ¯̂Pk
H ) − ∂Nx

∂p
(

¯̂PH , ÛH )k( p̄k − ¯̂Pk
H ), ex,k

)

x
|

+ |
(

∂N y
ε

∂p
(

¯̂PH , ÛH )k( p̄k − ¯̂Pk
H ) − ∂N y

∂p
(

¯̂PH , ÛH )k( p̄k − ¯̂Pk
H ), ey,k

)

y
|

+C(|(( p̄k − ¯̂Pk
H )2, ex,k)x | + |((ux,k − Û x,k

H )2, ex,k)x |
+ |((uy,k − Û y,k

H )2, ex,k)x | + |(( p̄k − ¯̂Pk
H )2, ey,k)y |

+ |((uy,k − Û y,k
H )2, ey,k)y | + |((ux,k − Û x,k

H )2, ey,k)y |)
≤ C(ε2 + ‖(E p,k)2‖2M + ‖(Ex,k)2‖2X + ‖(Ey,k)2‖2Y )

+ a1
8

(‖ex,k‖2x + ‖ey,k‖2y). (64)

Lemma 9 together with Cauchy–Schwarz inequality yield that

|(Nx ( p̄, u)k − Nx
ε ( p̄, u)k, ex,k)x + (N y( p̄, u)k − N y

ε ( p̄, u)k, ey,k)y |
≤ Cε2 + a1

8
(‖ex,k‖2x + ‖ey,k‖2y). (65)
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Using Lemma 10 and (6), we get

(Lx
ε (P̄h, Uh)

k − Lx
ε (P̄h, u)k, ex,k)x

+ (Ly
ε (P̄h, Uh)

k − Ly
ε (P̄h, u)k, ey,k)y

≥ a(||Ux
h − ux ||2x + ||U y

h − uy ||2y)
≥ 0. (66)

Therefore,

α

2
dt‖(ep + η)k‖2m + α�tk

2
‖dt (ep + η)k‖2m + a1(‖ex,k‖2x + ‖ey,k‖2y)

≤ C(ε2 + Δt2 + h4 + ‖(ep + η)k‖2m + ‖ηk‖2m + ‖(E p,k)2‖2M
+‖(Ex,k)2‖2X + ‖(Ey,k)2‖2Y ) + a1

2
‖ex,k‖2x + a1

2
‖ey,k‖2y . (67)

By the assumption of α, a1 in (6),

1

2
dt‖(ep + η)k‖2m + �tk

2
‖dt (ep + η)k‖2m + 1

2
(‖ex,k‖2x + ‖ey,k‖2y)

≤ C(ε2 + Δt2 + h4 + ‖(ep + η)k‖2m
+‖(E p,k)2‖2M + ‖(Ex,k)2‖2X + ‖(Ey,k)2‖2Y ). (68)

Multiplying (68) by 2�tk and summing up k from 1 to Nt , we have the following result
from Lemma 7 and Theorem 1

‖(ep + η)Nt ‖2m +
Nt∑

k=1

(�tk)2‖dt (ep + η)k‖2m

+
Nt∑

k=1

�tk(‖ex,k‖2x + ‖ey,k‖2y)

≤ C

(

ε2 + Δt2 + h4 + ‖(ep + η)0‖2m +
Nt∑

k=1

�tk‖(ep + η)k‖2m

+
Nt∑

k=1

(
Δtk‖(E p,k)2‖2M + Δtk‖(Ex,k)2‖2X + Δtk‖(Ey,k)2‖2Y

))

≤ C
(
ε2 + Δt2 + h4 + H6 +

Nt∑

k=1

�tk‖(ep + η)k‖2m
)
. (69)

Using Gronwall lemma, we have

‖(Ph − p + η)Nt ‖2m +
Nt∑

k=1

�tk(‖(Ux
h − ux )k‖2x + ‖(U y

h − uy)k‖2y)

≤ C(ε2 + Δt2 + h4 + H6). (70)

Combing the definition of η in (25) and triangle inequality, the theorem establishes. 	

In the proofs of Theorems 1 and 2, it can be seen that there is no time step restriction

for the optimal error estimates. The key reason is that we employed the monotonicity of
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the nonlinear operators on the coarse grid and the fine grid as shown in Lemmas 5 and 10,
respectively.

4 Numerical Experiments

In this section we present some numerical experiments to illustrate the convergence property
and efficiency of two-grid block-centered finite difference (tg-BCFD) method.

We consider the following slightly compressible Darcy–Forchheimer model with time
interval J = (0, 1]. ⎧

⎪⎨

⎪⎩

∂p

∂t
+ ∇ · u = f, x ∈ Ω × J,

u + p2|u|u + ∇ p = q, x ∈ Ω × J,
u · n = g, x ∈ ∂Ω × J.

(71)

For simplicity, the domains of Examples 1, 2, 3, and 4 are all chosen to be an unit square,
i.e., Ω = [0, 1] × [0, 1].

We first carry out the following two examples to verify the convergence rate of the tg-
BCFD method.

Example 1 The analytical solutions of Darcy–Forchheimer model (71) with homogeneous
Neumann boundary condition are given by

{
u(x, y, t) = (−y, x)T ,

p(x, y, t) = tsin(πx)sin(πy),
(72)

and functions f and q are computed correspondingly.

Example 2 The analytical solutions of Darcy–Forchheimer model (71) with inhomogeneous
Neumann boundary condition are given by

{
u(x, y, t) = (e1−t sin(πx)cos(πy), e1−tcos(πx)sin(πy))T ,

p(x, y, t) = arctan(x + y − t + 1),
(73)

and functions f , q and g are computed correspondingly.

In order to show the efficiency of tg-BCFD algorithm, we compare the numerical results
of the algorithm with traditional block-centered finite difference (BCFD) method defined by
(19)–(23) in [20] as follows for Pk

i, j , U
x,k
i+1/2, j , and U

y,k
i, j+1/2.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
P(n),k
i, j − Pk

i, j

Δtk
+ [Dx

hU
x(n)]ki, j + [Dy

hU
y(n)]ki, j = f ki, j ,

a1(Ux,(n))ki+1/2, j + a2(Ih P(n−1))ki+1/2, j [QxU(n−1)]ki+1/2, j (U
x,(n))ki+1/2, j

= −[dxh P(n)]ki+1/2, j ,

a1(Ux,(n))ki, j+1/2 + a2(Ih P(n−1))ki, j+1/2[QyU(n−1)]ki, j+1/2(U
y,(n))ki, j+1/2

= −[dy
h P

(n)]ki, j+1/2.

(74)
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Table 1 Results of Example 1 by tg-BCFD method when t = 1 (on the last time level)

H h ‖p − Ph‖0,2 ‖u − Uh‖0,2 ‖p − Ph‖0,∞ ‖u − Uh‖0,∞ Iterations

1/4 1/8 1.268e−02 4.878e−03 6.140e−02 7.231e−03 5

1/9 1/27 1.018e−03 4.311e−04 5.445e−03 6.910e−04 5

1/16 1/64 1.802e−04 7.699e−05 9.833e−04 1.248e−04 5

1/25 1/125 4.719e−05 2.021e−05 2.593e−04 3.392e−05 5

Rate 2.035 1.996 1.988 1.953

where the piecewise constant function Ihq on Ωi, j such that

Ihq =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Īhqi+ 1
4 , j+ 1

4
, (x, y) ∈ (xi , xi+ 1

2
) × (y j , y j+ 1

2
),

Īhqi+ 1
4 , j− 1

4
, (x, y) ∈ (xi , xi+ 1

2
) × (y j− 1

2
, y j ),

Īhqi− 1
4 , j+ 1

4
, (x, y) ∈ (xi− 1

2
, xi ) × (y j , y j+ 1

2
),

Īhqi− 1
4 , j− 1

4
, (x, y) ∈ (xi− 1

2
, xi ) × (y j− 1

2
, y j ),

with
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Īhqi+ 1
4 , j± 1

4
= 1

4hx
i+ 1

2

(
hxi+1qi, j + hxi qi+1, j

) + 1

4hy
j± 1

2

(
hy
j±1qi, j + hy

j qi, j±1

)
,

Īhqi− 1
4 , j± 1

4
= 1

4hx
i− 1

2

(
hxi−1qi, j + hxi qi−1, j

) + 1

4hy
j± 1

2

(
hy
j±1qi, j + hy

j qi, j±1

)
.

For the coarse grid ΩH , we take uniform grids with mesh size H = {1
4
,
1

9
,
1

16
,
1

25
}.

According to Theorem 2, we use h = H3/2 as the mesh size of the fine grid Ωh . We take
Δt = O(h2) and ε = 10−4. When executing tg-BCFD algorithm and the traditional BCFD
method (74), we choose eps = 10−9 as the criterion of terminating iterations on the fine grid.
As for the tg-BCFDmethod, we choose eps = 10−3 as the criterion of terminating iterations
on the coarse grid ΩH , because the correction capability of fine grid space is strong enough.
The priori errors of tg-BCFDmethod in discrete L2 norms and L∞ norms, convergence rates
and the numbers of iterations are listed in Tables 1, 3 and plotted in Fig. 3. Those of BCFD
method (74) are shown in Tables 2 and 4.

It can be observed from Tables 1, 3 and Fig. 3 that the tg-BCFD method have second-
order accuracy in discrete L2 norms. These results are consistent with the error estimates
in Theorem 2. In the last column of each table, the numbers of iterations on fine grid space
are reported when t = 1. The computational cost on coarse grid of the tg-BCFD method
is relatively negligible due to it’s weak iteration terminating condition and small number of
node-points. The numbers of iterations for the tg-BCFDmethod are shown to be significantly
less than those produced by the BCFD method (74) only on the last time level. In order to
obtain the convergence rate, we choose Δt = h2, which means the numerical experiments
need large number of time levels (up to O(106) on the finest spatial grids). Seen fromTables 1,
2, 3, and 4, it is obvious that tg-BCFD method needs much less iterations compared with
BCFD method.

Moreover, the results by using tg-BCFD method is without loss any accuracy comparing
with the errors obtained by BCFD method (74). On the fine grid of tg-BCFD method, the
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Fig. 3 Log–log plots of errors. Left Top errors of p in discrete L2 norm; Left Bottom errors of p in discrete
L∞ norm; Right Top errors of u in discrete L2 norm; Right Bottom errors of u in discrete L∞ norm

resulting equations are linear and easy to be solved directly, but we still execute the iterative
method just for obtaining the same errors as those by the BCFDmethod (74). It is shown that
the resulting solution obtained by the tg-BCFD method still achieves asymptotically optimal
accuracy.

In Examples 1 and 2, the errors in L∞ norms are almost second-order accurate by using
tg-BCFD method, though it has not been proved theoretically. Based on the experimental
data, we can improve the results of Lemma 7 by using L∞-norm technique instead of inverse
estimate method. Furthermore, the result of Theorem 2 can be rewritten as O(Δt + ε + h2 +
H4). It will be our future work to obtain the error estimates in L∞ norms.
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Table 2 Results of Example 1 by BCFD method when t = 1 (on the last time level)

h ‖p − P‖0,2 ‖u − U‖0,2 ‖p − P‖0,∞ ‖u − U‖0,∞ Iterations

1/8 1.2682e−02 4.8778e−03 6.1397e−02 7.2310e−03 67

1/27 1.0182e−03 4.3107e−04 5.4448e−03 6.9100e−04 76

1/64 1.8018e−04 7.6992e−05 9.8327e−04 1.2476e−04 86

1/125 4.7186e−05 2.0210e−05 2.5933e−04 3.3920e−05 87

Rate 2.0347 1.9957 1.9884 1.9529

Table 3 Results of Example 2 by tg-BCFD method when t = 1 (on the last time level)

H h ‖p − Ph‖0,2 ‖u − Uh‖0,2 ‖p − Ph‖0,∞ ‖u − Uh‖0,∞ Iterations

1/4 1/8 5.3690e−03 6.6868e−03 1.3210e−02 1.6081e−02 7

1/9 1/27 4.5828e−04 5.9626e−04 1.1349e−03 1.5618e−03 5

1/16 1/64 8.1414e−05 1.0616e−04 2.0252e−04 2.8577e−04 5

1/25 1/125 2.1336e−05 2.7830e−05 5.3173e−05 7.8476e−05 5

Rate 2.0109 1.9943 2.0062 1.9384

Table 4 Results of Example 2 by BCFD method when t = 1 (on the last time level)

h ‖p − P‖0,2 ‖u − U‖0,2 ‖p − P‖0,∞ ‖u − U‖0,∞ I terations

1/8 7.2938e−03 9.4811e−03 1.2528e−02 2.0260e−02 96

1/27 6.0658e−04 8.4372e−04 1.0491e−03 2.4687e−03 108

1/64 1.0759e−04 1.5026e−04 1.8883e−04 5.0428e−04 110

1/125 2.8187e−05 3.9392e−05 4.9755e−05 1.3827e−04 110

Rate 2.0210 1.9949 2.0106 1.8107

Table 5 Errors of Example 1 by tg-BCFD method when ε = 1

10

H h ‖p − Ph‖0,2 ‖u − Uh‖0,2 ‖p − Ph‖0,∞ ‖u − Uh‖0,∞
1/4 1/8 1.4396e−02 4.9159e−03 6.9799e−02 8.2724e−03

1/9 1/27 2.5531e−03 9.2335e−04 1.3230e−02 2.7149e−03

1/16 1/64 1.7372e−03 8.8079e−04 8.7351e−03 2.9088e−03

1/25 1/125 1.6117e−03 8.8616e−04 8.0143e−03 2.9592e−03

Next, we use Example 1 to show the influence of ε on the errors. The re−esults when
t = 1 are obtained by different values of ε listed in Tables 5, 6, 7, 8, and 9 and Fig. 4.

Comparing with Table 1, one can see that the value of ε have an important influence on
the errors of the tg-BCFD method. When ε is larger than O(h2), it plays a leading role in
errors of L2 norm and L∞ norm (see Tables 5, 6, 7, and 8). In order to obtain the optimal
error order, we should take ε = O(h2) as shown in the proof of Theorem 2. In all examples,
we choose the same value for parameter ε in order to obtain the convergence rates easily.
Due to the smallest of mesh sizes used in all examples, ε is chosen as O(h2) = 10−4.
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Table 6 Errors of Example 1 by tg-BCFD method when ε = 1

20

H h ‖p − Ph‖0,2 ‖u − Uh‖0,2 ‖p − Ph‖0,∞ ‖u − Uh‖0,∞
1/4 1/8 1.2984e−02 4.8644e−03 6.2937e−02 7.4559e−03

1/9 1/27 1.2794e−03 4.5502e−04 6.9106e−03 8.8209e−04

1/16 1/64 4.4276e−04 2.3016e−04 2.4533e−03 8.4212e−04

1/25 1/125 3.1219e−04 2.2620e−04 1.7297e−03 8.8890e−04

Table 7 Errors of Example 1 by tg-BCFD method when ε = 1

50

H h ‖p − Ph‖0,2 ‖u − Uh‖0,2 ‖p − Ph‖0,∞ ‖u − Uh‖0,∞
1/4 1/8 1.2725e−02 4.8746e−03 6.1619e−02 7.2655e−03

1/9 1/27 1.0550e−03 4.4734e−04 5.6583e−03 7.1925e−04

1/16 1/64 2.1684e−04 8.0697e−05 1.1991e−03 2.2244e−04

1/25 1/125 8.4208e−05 3.9733e−05 4.7600e−04 1.7726e−04

Table 8 Errors of Example 1 by tg-BCFD method when ε = 1

100

H h ‖p − Ph‖0,2 ‖u − Uh‖0,2 ‖p − Ph‖0,∞ ‖u − Uh‖0,∞
1/4 1/8 1.2693e−02 4.8770e−03 6.1452e−02 7.2396e−03

1/9 1/27 1.0272e−03 4.3987e−04 5.4974e−03 6.9743e−04

1/16 1/64 1.8913e−04 7.7222e−05 1.0366e−03 1.3169e−04

1/25 1/125 5.6172e−05 2.4964e−05 3.1291e−04 5.7445e−05

Table 9 Errors of Example 1 by tg-BCFD method when ε = 1

1000

H h ‖p − Ph‖0,2 ‖u − Uh‖0,2 ‖p − Ph‖0,∞ ‖u − Uh‖0,∞
1/4 1/8 1.2682e−02 4.8778e−03 6.1398e−02 7.2311e−03

1/9 1/27 1.0183e−03 4.3106e−04 5.4453e−03 6.9106e−04

1/16 1/64 1.8027e−04 7.6999e−05 9.8381e−04 1.2483e−04

1/25 1/125 4.9275e−05 2.3196e−05 2.7987e−04 3.5712e−05

Finally, we solve the following two practical problems by using tg-BCFD method. The
right-hand side function q , the injection and production flow rates at wells for f and the
boundary conditions of slightly compressible Darcy–Forchheimer model (71) are listed as
follows.

Example 3 Darcy–Forchheimer model (71) with homogeneous Neumann boundary condi-
tion: ⎧

⎨

⎩

q(x, y, t) = 0,
f (x, y, t) = δ(0, 0) + δ(1, 0) + δ(0, 1) + δ(1, 1) − 4δ(0.5, 0.5),
u · n = 0.

(75)
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Fig. 4 Log–log plots of errors in different values of ε. Left Top errors of p in discrete L2 norm; Left Bottom
errors of p in discrete L∞ norm; Right Top errors of u in discrete L2 norm; Right Bottom errors of u in discrete
L∞ norm

Example 4 Darcy–Forchheimer model (71) with inhomogeneous Neumann boundary con-
dition: ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q(x, y, t) = 0,
f (x, y, t) = δ(0, 0) − δ(1, 1),
(u · n)|x=0 = y,
(u · n)|x=1 = −y,
(u · n)|y=0 = −x,
(u · n)|y=1 = x .

(76)
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Fig. 5 Numerical pressure distribution and velocity quiver of Example 3 by tg-BCFD method
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Fig. 6 Numerical pressure distribution and velocity quiver of Example 4 by tg-BCFD method

As shown in Figs. 5 and 6, the numerical pressure and velocity are reasonable and con-
sistent with the physical phenomenon.

Next, we try to solve the Darcy–Forchheimer model (71) by tg-BCFDmethod on irregular
domain such that y ∈ [0, 1] and Γ ≤ x ≤ 0.875 with Γ = 0.56y(y − 1).

Example 5 Darcy–Forchheimer model (71) with homogeneous Neumann boundary condi-
tion: ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q(x, y, t) = 0,
f (x, y, t) = −etδ(0.4375, 0) + 5tδ(0.4375, 1),
(u · n)|Γ = 0,
(u · n)|x=1 = 0,
(u · n)|y=0 = 0,
(u · n)|y=1 = 0.

(77)
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the blue ones are mesh when H = 1/16
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Fig. 8 Numerical pressure distribution of Example 5 by tg-BCFD method. Left t = 0.125; Right t = 1

In order to use the tg-BCFD method on irregular domain, we replace a boundary point
with the grid point inside the computational domain closest to this boundary point. Therefore,
an approximation to curve boundary Γ with these grid points is obtained as boundary points
forming the polygonal boundary. The approximation boundary condition is taken as zero
boundary according to the curve boundary condition. Based on the numerical solutions on
coarse grids, we use the proper second-order interpolation and extrapolation methods to get
the initial iteration values on the fine grids, as in Fig. 7. Thus, a linear system is solved to
obtain the numerical solutions of Darcy–Forchheimer model (71) in irregular domain.

The numerical solutions of pressure and velocity are given as in Figs. 8, 9.
Therefore, tg-BCFD method is useful and efficient for solving the nonlinear Darcy–

Forchheimer model on both regular domain and irregular domain with smooth boundary.
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Fig. 9 Numerical velocity distribution of Example 5 by tg-BCFD method. Left t = 0.125; Right t = 1

5 Conclusions and Extensions

In this paper we apply a two-grid algorithm based on the block-centered finite difference dis-
cretization to solve the nonlinear Darcy–Forchheimer equations. The numerical procedure
involves two steps: first solving a small nonlinear system on the coarse grid and then solving a
linear system on the fine grid.When constructing the nonlinear scheme on coarse grid, we use
the fewest possible nodal-points values of p and u to construct the block-centered finite dif-
ference scheme.When constructing the linear scheme on fine grid, a small positive parameter
ε is used to modify the original non-differentiable term in order to make it differentiable. It is
proved that the modified nonlinear term still preserves the original property of the nonlinear
term. The two-grid block-centered finite difference method is proved to be unconditionally
convergent without any time step restriction by using the monotonicity of the discrete nonlin-
ear operators. According to the theoretical analysis and numerical experiments, it is shown
that solving such a large class of nonlinear equation will not be much more difficult than
solving one single linearized equation, without sacrificing the order of accuracy of the fine
grid solution. Moreover, it is clearly shown that H = O(h2/3) and ε = O(h2) should be cho-
sen to obtain asymptotically optimal approximation results in discrete L2 norms. Numerical
experiments show that the errors in L∞ norms are almost second-order accurate by using the
two-grid block-centered finite difference method. If theoretical results in Lemma 7 could be
improved by using the experimental results in L∞ norms, the error bounds in Theorem 2 can
be re-derived to be O(Δt + ε + h2 + H4), which will be our future work.
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