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Abstract. The symmetric interior penalty (SIP) method on graded meshes and its fast
solution by multigrid methods are studied in this paper. We obtain quasi-optimal error
estimates in both the energy norm and the L2 norm for the SIP method, and prove uniform
convergence of the W -cycle multigrid algorithm for the resulting discrete problem. The
performance of these methods is illustrated by numerical results.

1. Introduction

Interior penalty methods [7, 36, 2, 32] are prototypical discontinuous Galerkin methods [3]
for elliptic boundary value problems. They are useful in handling hanging nodes, problems
with constraints [8, 15], higher order problems [25, 18], and parameter dependent problems
[29, 4, 37]. However, very little attention has been paid to interior penalty methods on
graded meshes, which are needed for overcoming singularities due to nonsmooth boundary
and/or abrupt change of boundary conditions [5, 6, 1].

The goal of this paper is two-fold. First we will investigate discretization errors of interior
penalty methods on graded meshes, and secondly, we will study the convergence of multi-
grid methods for the resulting discrete problem. For simplicity, we will consider the model
problem of finding u ∈ H1

0 (Ω) such that

(1.1)

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx ∀ v ∈ H1
0 (Ω),

where Ω is a bounded polygonal domain in R
2 with reentrant corners and f belongs to the

weighted Sobolev space L2,µ(Ω) (cf. (1.4) below). We will carry out the analysis of the
symmetric interior penalty (SIP) method [36, 2] on graded meshes for (1.1).

The results of this paper can of course be extended to more complicated problems [8,
25, 18] where interior penalty methods have distinct advantages. Our multigrid analysis
complements existing ones for interior penalty methods [26, 20, 35, 19, 23, 16], and it is
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also relevant for other nonconforming methods where graded meshes play a crucial role
[15, 13, 14].

The rest of the paper is organized as follows. The discretization error estimates for the
symmetric interior penalty method on graded meshes are established in Section 2. Descrip-
tions of several multigrid algorithms are given in Section 3, followed by the convergence
analysis of the W -cycle multigrid algorithm in Section 4. Numerical results that corroborate
the theoretical results are reported in Section 5.

In the remaining part of this section we briefly recall the elliptic regularity results for
(1.1). Let ω1, . . . , ωL be the interior angles at the corners c1, . . . , cL of the bounded polygonal
domain Ω. Let the parameters µ1, . . . , µ` be chosen according to

(1.2)











µ` = 1 ω` < π

1

2
< µ` <

π

ω`

ω` > π

and the weight function φµ be defined by

(1.3) φµ(x) =
L

∏

`=1

|x− c`|
1−µ`.

The weighted Sobolev space L2,µ(Ω) is defined by

(1.4) L2,µ(Ω) = {f ∈ L2,loc(Ω) : ‖f‖2
L2,µ(Ω) =

∫

Ω

φ2
µ(x)f 2(x) dx <∞}.

Note that L2(Ω) ⊂ L2,µ(Ω) and

(1.5) ‖f‖L2,µ(Ω) ≤ CΩ‖f‖L2(Ω) ∀ f ∈ L2(Ω),

where CΩ denotes a generic positive constant depending only on Ω.
Sobolev’s inequality implies that

(1.6)

∫

Ω

|fv| dx ≤ CΩ‖f‖L2,µ(Ω)‖v‖H1(Ω) ∀ v ∈ H1(Ω).

Hence the model problem (1.1) has a unique solution u for any f ∈ L2,µ(Ω). Moreover u has
the following properties.

(i) The second order weak derivatives of u belong to L2,µ and they satisfy

(1.7) ‖∂2u/∂xi∂xj‖
2
L2,µ(Ω) =

∫

Ω

φ2
µ(x)(∂2u/∂xi∂xj)

2(x) dx ≤ CΩ‖f‖
2
L2,µ(Ω)

for 1 ≤ i, j ≤ 2.

(ii) Let δ > 0 be small enough so that the neighborhoods Ω`,δ = {x ∈ Ω : |x− c`| < δ}
around the corners c` for 1 ≤ ` ≤ L are disjoint. At a reentrant corner c` where
ω` > π, we have u ∈ H1+µ`(Ω`,δ) and

(1.8) ‖u‖H1+µ`(Ω`,δ) ≤ CΩ‖f‖L2,µ(Ω).
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(iii) u is continuous on Ω̄.

The regularity of u away from the corners follows from the standard elliptic regularity
theory. The elliptic regularity of u near a corner c` can be obtained through the change of
coordinates

(x1, x2) = et(cos θ, sin θ),

where the local Euclidean coordinates (x1, x2) centered at c` are chosen so that the two edges
emanating from c` are represented by θ = 0 and θ = ω`.

Let û(t, θ) = ψ(x)u(x), where ψ is a smooth cut-off function that equals 1 near 0. Then
U(t, θ) = e−µ`tû(t, θ) ∈ H2(S), where S is the infinite strip R × (0, ω`), and

(1.9) ‖U‖H1+µ` (S) ≤ Cω`
‖U‖H2(S) ≤ CΩ‖f‖L2,µ(Ω).

The estimates (1.7) and (1.8) follow from (1.9) and a change of coordinates. The continuity
of u away from the reentrant corners follows from the usual Sobolev inequality, while the
continuity of u at a reentrant corner c` follows from the Sobolev inequality on S and a change
of coordinates.

Details can be found in [30, 22, 31].

2. Analysis of the SIP Method on Graded Meshes

On a convex polygonal domain Ω, the solution u of (1.1) belongs to H2(Ω) when f ∈
L2,µ(Ω) and the convergence of the SIP method using piecewise P1 polynomials and quasi-
uniform meshes is quasi-optimal [2, 32, 17]. This is no longer the case when Ω is nonconvex
because u 6∈ H2(Ω) in general [27, 22, 31].

To compensate for the lack of H2 regularity in the presence of reentrant corners, we use a
triangulation Th of Ω with the following property:

(2.1) C1hT ≤ Φµ(T )h ≤ C2hT ∀T ∈ Th,

where hT = diamT , h = maxT∈Th
hT is the mesh parameter, and Φµ(T ) is defined by

(2.2) Φµ(T ) =
L

∏

`=1

|c` − cT |
1−µ` .

Here the grading parameters µ1, . . . , µL are chosen according to (1.2) and cT is the center of
T . From here on we use C (with or without subscript) to denote a generic positive constant
independent of the mesh parameter that can take different values at different occurrences,
and we will denote the relation (2.1) by hT ≈ Φµ(T )h.

The construction of graded meshes that satisfy (2.1) can be found for example in [1, 11].
(See also the description at the beginning of Section 3 below.) Note that,

(2.3) hT ≈ h1/µ` if the corner c` is a vertex of T ∈ Th,

and for a given set of grading parameters µ1, . . . , µL, the triangulation Th satisfies the mini-
mum angle condition.
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Let Vh be the space of discontinuous P1 finite element functions defined by

Vh = {v ∈ L2(Ω) : vT = v
∣

∣

T
∈ P1(T ) ∀ T ∈ Th},

and denote by Eh the set of edges of Th.
For f ∈ L2,µ(Ω), the symmetric interior penalty (SIP) method [36, 2] for (1.1) is:

Find uh ∈ Vh such that

(2.4) ah(uh, v) =

∫

Ω

fv dx ∀ v ∈ Vh,

where

ah(w, v) =
∑

T∈Th

∫

T

∇w · ∇v dx−
∑

e∈Eh

∫

e

(

{{∇w}} · [[v]] + {{∇v}} · [[w]]
)

ds(2.5)

+ η
∑

e∈Eh

1

|e|

∫

e

[[w]] · [[v]] ds.

Here η > 0 is a penalty parameter, |e| denotes the length of the edge e, and the mean {{∇v}}
and jump [[v]] are defined as follows.

Let e ∈ Eh be an interior edge shared by two triangles T± ∈ Th, v± = v
∣

∣

T±
, and n± be the

unit normals of e pointing towards the outside of T±. We define, on e,

{{∇v}} =
∇v+ + ∇v−

2
and [[v]] = v+n+ + v−n−.

Let e ∈ Eh be a boundary edge. Then e ⊂ ∂T for a T ∈ Th. We define on e

{{∇v}} = ∇vT and [[v]] = vTn,

where vT = v
∣

∣

T
and n is the unit normal of e pointing towards the outside of Ω.

Remark 2.1. Note that the right-hand side of (2.4) is well-defined because φ−1
µ ∈ L2(Ω) and

Vh ⊂ L∞(Ω).

It is well-known that the SIP method is consistent in the sense that

(2.6) ah(u, v) =

∫

Ω

fv dx ∀ v ∈ Vh,

where u is the solution of (1.1). From the Cauchy-Schwarz inequality we can see that the
variational form ah(·, ·) is bounded, namely,

(2.7) ah(w, v) ≤ ‖w‖h‖v‖h ∀ v, w ∈ Hs(Ω) + Vh

for any s > 3/2, where

(2.8) ‖v‖2
h =

∑

T∈Th

|v|2H1(T ) + η−1
∑

e∈Eh

|e| ‖{{∇v}}‖2
L2(e)

+ 2η
∑

e∈Eh

|e|−1‖[[v]]‖2
L2(e)

.
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The SIP method is also coercive on Vh if η ≥ η∗ > 0, where η∗ is a constant depending only
on the minimum angle of Th. Consequently, we have the quasi-optimal error estimate

(2.9) ‖u− uh‖h ≤ C inf
v∈Vh

‖u− v‖h,

where the constant C depends only on the minimum angle of Th and the lower bound η∗ for
the penalty parameter.

Note that under the condition η ≥ η∗ we have

(2.10) ‖v‖2
h ≈ ah(v, v) ∀ v ∈ Vh,

and ah(·, ·) is an inner product on Vh.
Details concerning (2.6)–(2.10) can be found for example in [17].
To turn the abstract error estimate (2.9) into a concrete estimate, we need an interpolation

operator. Let Πh : C(Ω̄) −→ Vh be the nodal interpolation operator for the conforming P1

finite element, i.e., Πhu ∈ Vh ∩ H1(Ω) agrees with u at the vertices of the triangles of Th.
The following lemma provides an interpolation error estimate for Πh.

Lemma 2.2. Let f ∈ L2,µ(Ω) and u ∈ H1
0 (Ω) satisfy (1.1). Then

(2.11) ‖u− Πhu‖h ≤ Ch‖f‖L2,µ(Ω).

Proof. It follows from (2.8) and the definition of the mean of the gradient that

‖u− Πhu‖
2
h =

∑

T∈Th

|u− Πhu|
2
H1(T ) + η−1

∑

e∈Eh

|e| ‖{{∇(u− Πhu)}}‖
2
L2(e)

(2.12)

≤ C
∑

T∈Th

(

|u− Πhu|
2
H1(T ) + |∂T | ‖∇(u− Πhu)‖

2
L2(∂T )

)

.

Let Th,` be the collection of triangles in Th that touch a corner c` of Ω. We can divide the
triangles in Th into two disjoint families T ′

h and T ′′
h where

T ′
h =

⋃

ω`>π

Th,` and T ′′
h = Th \ T

′
h.

For the triangles away from the reentrant corners, we derive from (1.3), (1.7), (2.1), (2.2),
a standard interpolation error estimate [21, 17], and the trace theorem with scaling that

∑

T∈T ′′
h

(

|u− Πhu|
2
H1(T ) + |∂T | ‖∇(u− Πhu)‖

2
L2(T )

)

≤ C
∑

T∈T ′′
h

h2
T |u|

2
H2(T )

≤ C
∑

T∈T ′′
h

h2[Φµ(T )]2
2

∑

i,j=1

‖∂2u/∂xi∂xj‖
2
L2(T )(2.13)

≤ Ch2
2

∑

i,j=1

∑

T∈T ′′
h

‖φ2
µ(∂

2u/∂xi∂xj)‖
2
L2(T ) ≤ Ch2‖f‖2

L2,µ(Ω).
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For the triangles touching a reentrant corner, we can apply an interpolation error estimate
for fractional order Sobolev spaces [24] together with (1.8), (2.3) and the trace theorem with
scaling to obtain

∑

T∈T ′
h

(

|u− Πhu|
2
H1(T ) + |∂T | ‖∇(u− Πhu)‖

2
L2(∂T )

)

≤ C
∑

ω`>π

∑

T∈Th,`

h2µ`

T |u|2H1+µ`(T )(2.14)

≤ Ch2
∑

ω`>π

|u|2H1+µ`(Ω`,δ) ≤ Ch2‖f‖2
L2,µ(Ω).

(Without loss of generality we may assume h < δ.)
The estimate (2.11) follows from (2.12)–(2.14). �

Theorem 2.3. Let f ∈ L2,µ(Ω), u be the solution of (1.1), and uh be the solution of the SIP

method associated with a triangulation Th that satisfies (2.1). We have the following error

estimate:

(2.15) ‖u− uh‖L2(Ω) + h‖u− uh‖h ≤ Ch2‖f‖L2,µ(Ω).

Proof. The estimate
‖u− uh‖h ≤ Ch‖f‖L2,µ(Ω)

follows immediately from (2.9) and (2.11).
In view of (2.4) and (2.6), we have the following Galerkin orthogonality:

(2.16) ah(u− uh, v) = 0 ∀ v ∈ Vh.

The L2 error estimate can then be established using a standard duality argument.
Let ζ ∈ H1

0 (Ω) satisfy

(2.17)

∫

Ω

∇v · ∇ζ dx =

∫

Ω

v(u− uh) dx ∀ v ∈ H1
0 (Ω).

It follows from elliptic regularity, (1.5) and Lemma 2.2 (applied to ζ) that

(2.18) ‖ζ − Πhζ‖h ≤ Ch‖u− uh‖L2(Ω).

Note that we can rewrite (2.17) as

ah(v, ζ) =

∫

Ω

v(u− uh) dx ∀ v ∈ H1
0 (Ω),

and that the consistency of the SIP method implies

ah(v, ζ) =

∫

Ω

v(u− uh) dx ∀ v ∈ Vh.

Hence we have, by (2.7), (2.16) and (2.18),

‖u− uh‖
2
L2(Ω) =

∫

Ω

u(u− uh) dx−

∫

Ω

uh(u− uh) dx

= ah(u, ζ)− ah(uh, ζ)

= ah(u− uh, ζ − Πhζ)
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≤ ‖u− uh‖h‖ζ − Πhζ‖h ≤ Ch‖u− uh‖h‖u− uh‖L2(Ω),

which implies

‖u− uh‖L2(Ω) ≤ Ch‖u− uh‖h ≤ Ch2‖f‖L2,µ(Ω).

�

3. Multigrid Methods

Let T0 be an initial triangulation of Ω with the property that any triangle in T0 can have
at most one vertex that is a reentrant corner. The triangulations Tk (k ≥ 1) are then created
recursively as follows. Given Tk, we divide each triangle T ∈ Tk into four triangles according
to the following rules to obtain Tk+1.

• If none of the reentrant corners is a vertex of T , then we divide T uniformly by
connecting the midpoints of the edges of T .

• If a reentrant corner c` is a vertex of T and the other two vertices of T are denoted by
p1 and p2, then we divide T by connecting the points m, g1 and g2 (cf. Figure 3.1).
Here m is the midpoint of the edge p1p2 and g1 (resp. g2) is the point on the edge
c`p1 (resp. c`p2) such that

|c` − gi|

|c` − pi|
= 2−(1/µ`) for i = 1, 2,

where µ` is the grading factor chosen according to (1.2).

PSfrag replacements

c`

p1

p2

m

g1

g2

Figure 3.1. Refinement of a triangle at a reentrant corner

The triangulations T0, T1 and T2 for an L-shaped domain are depicted in Figure 3.2, where
the grading factor at the reentrant corner is taken to be 2/3.

It is easy to check that the nested triangulations Tk satisfy (2.1). We will denote maxT∈Tk
hT

by hk. The mesh parameters on two consecutive levels are equivalent, i.e., there exists a pos-
itive constant C independent of k such that

(3.1) hk ≤ hk−1 ≤ Chk for k ≥ 1.

Remark 3.1. The refinement procedure is identical with the one in [11].



8 S.C. BRENNER, J. CUI, AND L.-Y. SUNG

Figure 3.2. The triangulations T0, T1 and T2 for an L-shaped domain

Let Vk be the discontinuous P1 finite element space associated with Tk. The k-th level SIP
method for (1.1) is:
Find uk ∈ Vk such that

(3.2) ak(uk, v) =

∫

Ω

fv dx ∀ v ∈ Vk,

where

ak(w, v) =
∑

T∈Tk

∫

T

∇w · ∇v dx−
∑

e∈Ek

∫

e

(

{{∇w}} · [[v]] + {{∇v}} · [[w]]
)

ds(3.3)

+ η
∑

e∈Ek

1

|e|

∫

e

[[w]] · [[v]] ds,

and Ek is the set of the edges of Tk.
The analog of ‖ · ‖h is denoted by ‖ · ‖k, i.e.,

‖v‖2
k =

∑

T∈Tk

|v|2H1(T ) + η−1
∑

e∈Ek

|e| ‖{{∇v}}‖2
L2(e)

+ 2η
∑

e∈Ek

|e|−1‖[[v]]‖2
L2(e)

.

Note that (2.10) becomes

(3.4) ‖v‖2
k ≈ ak(v, v) ∀ v ∈ Vk,

and (2.11) is translated into

(3.5) ‖u− Πku‖k ≤ Chk‖f‖L2,µ(Ω),

where Πk : C(Ω̄) −→ Vk is the nodal interpolation operator for the Lagrange P1 element,
i.e., Πku ∈ Vk ∩H

1
0 (Ω) agrees with u at the vertices of the triangles of Tk. Furthermore, the

norms ‖ · ‖k and ‖ · ‖k−1 are equivalent for functions that are piecewise smooth on Tk−1, i.e.,

(3.6) ‖w‖k ≈ ‖w‖k−1 ∀w ∈ Hs(Ω) + Vk−1,

where s > 3/2.
We can rewrite (3.2) as

(3.7) Akuk = fk
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where Ak : Vk −→ V ′
k and fk ∈ V ′

k are defined by

〈Akw, v〉 = ak(w, v) ∀ v, w ∈ Vk,(3.8)

〈fk, v〉 =

∫

Ω

fv dx ∀ v ∈ Vk.

Here 〈·, ·〉 is the canonical bilinear form on V ′
k ×Vk. Equations of the form (3.7) can be solved

by multigrid algorithms [28, 33, 10, 34, 17].
There are two key ingredients in the design of a multigrid algorithm. We need intergrid

transfer operators to move functions between grids and a good smoother to damp out the
highly oscillatory part of the error. Since the finite element spaces are nested, we can take the
coarse-to-fine intergrid transfer operator Ik

k−1 : Vk−1 −→ Vk to be the natural injection and

define the fine-to-coarse intergrid transfer operator Ik−1
k : V ′

k −→ V ′
k−1 to be the transpose

of Ik
k−1 with respect to the canonical bilinear forms, i.e.,

(3.9) 〈Ik−1
k α, v〉 = 〈α, Ik

k−1v〉 ∀α ∈ V ′
k, v ∈ Vk−1.

In order to define the smoother, we first introduce an operator Bk : Vk −→ V ′
k defined by

(3.10) 〈Bkw, v〉 =
∑

T∈Tk

∑

m∈MT

w(m)v(m) ∀ v, w ∈ Vk,

where MT is the set of the midpoints of the three edges of T . It is easy to see from (3.3),
(3.8), and (3.10) that we can choose a (constant) damping factor λ so that the spectral
radius ρ(λB−1

k Ak) satisfies

(3.11) ρ(λB−1
k Ak) < 1 for k ≥ 0.

Given any g ∈ V ′
k, we will use a preconditioned Richardson relaxation scheme for the

equation

(3.12) Akz = g

as the smoother, namely,

(3.13) znew = zold + λB−1
k (g − Akzold).

Remark 3.2. The dual space of L2,µ(Ω) is the space L2,−µ(Ω) consisting of measurable func-
tions % such that

(3.14) ‖%‖2
L2,−µ(Ω) =

∫

Ω

φ−2
µ (x)%2(x) dx <∞.

The weighted norm ‖·‖L2,−µ(Ω) is connected to the operator Bk in (3.13) through the relation

(3.15) 〈Bkv, v〉 =
∑

T∈Tk

∑

m∈MT

[v(m)]2 ≈ h−2
k ‖v‖2

L2,−µ(Ω) ∀ v ∈ Vk,

which follows from (1.3), (2.1) and (2.2).

We are now ready to describe multigrid algorithms for (3.12).
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Algorithm 3.3. Let g ∈ V ′
k and z0 ∈ Vk be an initial guess. The multigrid V -cycle algorithm

for (3.12) with m1 (resp. m2) pre-smoothing (resp. post-smoothing) steps produces an
approximate solution MGV (k, g, z0, m1, m2). For k = 0, MGV (k, g, z0, m1, m2) = A−1

0 g. For
k ≥ 1, MGV (k, g, z0, m1, m2) is computed recursively as follows.

Pre-smoothing

Apply m1 steps of (3.13) starting with z0 to obtain zm1
.

Coarse Grid Correction

Let rk−1 = Ik−1
k (g − Akzm1

) ∈ V ′
k−1 be the coarse grid residual. Apply the (k − 1)-st level

algorithm to the coarse grid residual equation

Ak−1ek−1 = rk−1

with initial guess 0 to obtain the correction q = MGV (k − 1, rk−1, 0, m1, m2) and define

zm1+1 = zm1
+ Ik

k−1q.

Post-smoothing

Apply m2 steps of (3.13) starting with zm1+1 to obtain zm1+m2+1.

Final Output

MGV (k, g, z0, m1, m2) = zm1+m2+1

Algorithm 3.4. Let g ∈ V ′
k and z0 ∈ Vk be an initial guess. The W -cycle algorithm computes

an approximate solution MGW (k, g, z0, m1, m2) of (3.12). It differs from algorithm 3.3 in the
coarse grid correction step, where the coarse grid algorithm is applied twice. More precisely,
the correction q ∈ Vk−1 is computed by

q′ = MGW (k − 1, rk−1, 0, m1, m2),

q = MGW (k − 1, rk−1, q
′, m1, m2).

Algorithm 3.5. Let g ∈ V ′
k and z0 ∈ Vk be an initial guess. The F -cycle algorithm computes

an approximate solution MGF (k, g, z0, m1, m2) of (3.12). It differs from algorithm 3.3 and
algorithm 3.4 in the coarse grid correction step, where the coarse grid algorithm is applied
once followed by a V -cycle algorithm. More precisely, the correction q ∈ Vk−1 is computed
by

q′ = MGF (k − 1, rk−1, 0, m1, m2),

q = MGV (k − 1, rk−1, q
′, m1, m2).

4. Convergence Analysis of the W -cycle Multigrid Algorithm

We will analyze the W -cycle multigrid algorithm in this section and provide numerical
results for W -cycle, F -cycle and V -cycle algorithms in Section 5. The convergence analysis
of the V -cycle and F -cycle algorithm, which relies on the additive multigrid theory [12], will
be carried out elsewhere.
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Let Ek : Vk −→ Vk be the error propagation operator for the k-th level W -cycle algorithm.
We have the following well-known recursive relation [28, 17]:

(4.1) Ek = Rm2

k (Idk − Ik
k−1P

k−1
k + Ik

k−1E
2
k−1P

k−1
k )Rm1

k ,

where Idk is the identity operator on Vk, the operator Rk : Vk −→ Vk which measures the
effect of one smoothing step is defined by

(4.2) Rk = Idk − λB−1
k Ak,

and the operator P k−1
k : Vk −→ Vk−1 is the transpose of Ik

k−1 with respect to the variational
forms, i.e.,

(4.3) ak−1(P
k−1
k w, v) = ak(w, I

k
k−1v) ∀ v ∈ Vk−1, w ∈ Vk.

Note that, for z ∈ Vk−1 ∩H
1
0 (Ω), we have

ak−1(P
k−1
k Ik

k−1z, v) = ak(I
k
k−1z, I

k
k−1v) = ak−1(z, v) ∀ v ∈ Vk−1

which implies

P k−1
k Ik

k−1z = z ∀ z ∈ Vk−1 ∩H
1
0 (Ω).

It follows that

ak(I
k
k−1z, (Idk − Ik

k−1P
k−1
k )v) = ak(I

k
k−1z, v) − ak(P

k−1
k Ik

k−1z, P
k−1
k v)(4.4)

= ak(z, P
k−1
k v) − ak(z, P

k−1
k v) = 0 ∀ z ∈ Vk−1 ∩H

1
0 (Ω), v ∈ Vk.

The key to the convergence analysis of the W -cycle algorithm is a good estimate for the
operator Rm2

k (Idk − Ik
k−1P

k−1
k )Rm1

k , which is the error-propagation operator for the two-grid
algorithm.

We will follow the approach of [9, 38] in the analysis below. Let the mesh-dependent
norms |||v|||j,k for j = 0, 1, 2 and k ≥ 1 be defined by

(4.5) |||v|||j,k =
√

〈Bk(B
−1
k Ak)jv, v〉 ∀ v ∈ Vk, k ≥ 1.

In particular, we have, in view of (3.4) and (3.14),

|||v|||20,k = 〈Bkv, v〉 ≈ h−2
k ‖v‖2

L2,−µ(Ω) ∀ v ∈ Vk,(4.6)

|||v|||21,k = 〈Akv, v〉 = ak(v, v) ∀ v ∈ Vk.(4.7)

Also the Cauchy-Schwarz inequality implies that

(4.8) |||v|||2,k = max
w∈Vk\{0}

〈Akv, w〉

|||w|||0,k
∀ v ∈ Vk.

The smoothing properties in the following lemma are simple consequences of (3.11), (4.2)
and (4.5). Their proofs are standard [28, 17].
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Lemma 4.1. There exists a positive constant C independent of k such that

|||Rkv|||1,k ≤ |||v|||1,k ∀ v ∈ Vk, k ≥ 1,(4.9)

|||Rm
k v|||1,k ≤ C(1 +m)−1/2|||v|||0,k ∀ v ∈ Vk, k ≥ 1,(4.10)

|||Rm
k v|||2,k ≤ C(1 +m)−1/2|||v|||1,k ∀ v ∈ Vk, k ≥ 1.(4.11)

The following lemma gives a preliminary approximation property.

Lemma 4.2. There exists a positive constant C independent of k such that

(4.12) |||(Idk − Ik
k−1P

k−1
k )v|||0,k ≤ C|||(Idk − Ik

k−1P
k−1
k )v|||1,k ∀ v ∈ Vk, k ≥ 1.

Proof. We will prove (4.12) by a duality argument.
Let v ∈ Vk be arbitrary and

χ = φ−2
µ (Idk − Ik

k−1P
k−1
k )v.

According to (1.4) and (3.14), we have

(4.13) ‖χ‖L2,µ(Ω) = ‖(Idk − Ik
k−1P

k−1
k )v‖L2,−µ(Ω).

Let ξ ∈ H1
0 (Ω) satisfy

∫

Ω

∇ξ · ∇v dx =

∫

Ω

χv dx ∀ v ∈ H1
0 (Ω).

It follows from the consistency of the SIP method that

(4.14) ak(ξ, v) =

∫

Ω

χv dx ∀ v ∈ Vk.

Furthermore, we have, by (3.1), (3.5) (applied to ξ), (3.6) and (4.13),

‖ξ − Ik
k−1Πk−1ξ‖k ≤ C‖ξ − Πk−1ξ‖k−1(4.15)

≤ Chk−1‖χ‖L2,µ(Ω) ≤ Chk‖(Idk − Ik
k−1P

k−1
k )v‖L2,−µ(Ω).

Combining (2.7), (3.4), (3.14), (3.15), (4.4), (4.6), (4.14) and (4.15), we find

|||(Idk − Ik
k−1P

k−1
k )v|||20,k = 〈Bk(Idk − Ik

k−1P
k−1
k )v, (Idk − Ik

k−1P
k−1
k )v〉

≈ h−2
k ‖(Idk − Ik

k−1P
k−1
k )v‖2

L2,−µ(Ω)

= h−2
k

∫

Ω

φ−2
µ [(Idk − Ik

k−1P
k−1
k )v]2dx

= h−2
k

∫

Ω

χ(Idk − Ik
k−1P

k−1
k )v dx

= h−2
k ak(ξ, (Idk − Ik

k−1P
k−1
k )v)(4.16)

= h−2
k ak(ξ − Ik

k−1Πk−1ξ, (Idk − Ik
k−1P

k−1
k )v)

≤ Ch−2
k ‖ξ − Ik

k−1Πk−1ξ‖k‖(Idk − Ik
k−1P

k−1
k )v‖k

≈ Ch−1
k ‖(Idk − Ik

k−1P
k−1
k )v‖L2,−µ(Ω)|||(Idk − Ik

k−1P
k−1
k )v|||1,k
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≈ C|||(Idk − Ik
k−1P

k−1
k )v|||0,k|||(Idk − Ik

k−1P
k−1
k )v|||1,k,

which implies (4.12). �

The approximation property for the convergence analysis is provided by the next lemma.

Lemma 4.3. There exists a positive constant C independent of k such that

(4.17) |||(Idk − Ik
k−1P

k−1
k )v|||0,k ≤ C|||v|||2,k ∀ v ∈ Vk, k ≥ 1.

Proof. Since ak(·, ·) is an inner product on Vk, we have by (4.7) and duality,

|||(Idk − Ik
k−1P

k−1
k )v|||1,k = sup

w∈Vk\{0}

ak((Idk − Ik
k−1P

k−1
k )v, w)

|||w|||1,k

.(4.18)

Using (4.3), (4.8) and (4.12), the numerator on the right-hand side of (4.18) can be estimated
as follows:

ak((Idk − Ik
k−1P

k−1
k )v, w) = ak(v, (Idk − Ik

k−1P
k−1
k )w)

≤ |||v|||2,k|||(Idk − Ik
k−1P

k−1
k )w|||0,k ≤ C|||v|||2,k|||w|||1,k,

which together with (4.18) implies

(4.19) |||(Idk − Ik
k−1P

k−1
k )v|||1,k ≤ C|||v|||2,k ∀ v ∈ Vk, k ≥ 1.

The estimate (4.17) follows from (4.12) and (4.19). �

Combining (4.10), (4.11) and (4.17), we immediately have the following theorem on the
two-grid algorithm.

Theorem 4.4. There exists a positive constant CTG independent of k such that

(4.20) |||Rm2

k (Idk−I
k
k−1P

k−1
k )Rm1

k v|||1,k ≤ CTG[(1+m1)(1+m2)]
−1/2|||v|||1,k ∀ v ∈ Vk, k ≥ 1.

Proof.

|||Rm2

k (Idk − Ik
k−1P

k−1
k )Rm1

k v|||1,k ≤ C(1 +m2)
−1/2|||(Idk − Ik

k−1P
k−1
k )Rm1

k v|||0,k

≤ C(1 +m2)
−1/2|||Rm1

k v|||2,k

≤ C(1 +m2)
−1/2(1 +m1)

−1/2|||v|||1,k

�

To go from the two-grid estimate (4.20) to an estimate for the W -cycle multigrid algorithm,
we need the following lemma on the stability of Ik

k−1 and P k−1
k .

Lemma 4.5. There exists a positive constant CCF independent of k such that

|||Ik
k−1v|||1,k ≤ CCF |||v|||1,k−1 ∀ v ∈ Vk−1,(4.21)

|||P k−1
k v|||1,k−1 ≤ CCF |||v|||1,k ∀ v ∈ Vk.(4.22)
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Proof. The estimate (4.21) follows from (3.4), (3.6) and (4.7):

|||Ik
k−1v|||

2
1,k = ak(I

k
k−1v, I

k
k−1v)

≤ C‖Ik
k−1v‖

2
k ≤ C‖v‖2

k−1 ≤ Cak−1(v, v) = C2
CF |||v|||

2
1,k−1.

The estimate (4.22) then follows from (4.3) (4.7), (4.21) and duality.

|||P k−1
k v|||1,k−1 = max

w∈Vk−1\{0}

ak−1(P
k−1
k v, w)

|||w|||1,k−1

= max
w∈Vk−1\{0}

ak(v, I
k
k−1w)

|||w|||1,k−1
≤ CCF |||v|||1,k.

�

Theorem 4.6. Given any C∗ > CTG, there exists a positive integer m∗ independent of k
such that

(4.23) |||Ekv|||1,k ≤ C∗[(1 +m1)(1 +m2)]
−1/2|||v|||1,k ∀ v ∈ Vk, k ≥ 0,

provided m1 +m2 ≥ m∗.

Proof. We will prove (4.23) by mathematical induction. The case k = 0 holds for any m∗

since A0z = g is solved exactly.
Assume k ≥ 1 and (4.23) is valid for k − 1. Let v ∈ Vk be arbitrary. In view of (4.1), we

have
Ekv = Rm2

k (Idk − Ik
k−1P

k−1
k )Rm1

k v +Rm2

k (Ik
k−1E

2
k−1P

k−1
k )Rm1

k v.

We obtain, from (4.20),

|||Rm2

k (Idk − Ik
k−1P

k−1
k )Rm1

k v|||1,k ≤ CTG[(1 +m1)(1 +m2)]
−1/2|||v|||1,k,

and from (4.9), (4.21), (4.22) and the induction hypothesis,

|||Rm2

k Ik
k−1E

2
k−1P

k−1
k Rm1

k v|||1,k ≤ C2
CFC

2
∗ [(1 +m1)(1 +m2)]

−1|||v|||1,k.

It follows that

|||Ekv|||1,k ≤ (CTG[(1 +m1)(1 +m2)]
−1/2 + C2

CFC
2
∗ [(1 +m1)(1 +m2)]

−1)|||v|||1,k.(4.24)

If we choose m∗ > 0 so that

m−1/2
∗ ≤

C∗ − CTG

C2
CFC

2
∗

,

then for m1 +m2 ≥ m∗ we have

CTG[(1 +m1)(1 +m2)]
−1/2 + C2

CFC
2
∗ [(1 +m1)(1 +m2)]

−1

≤ (CTG + C2
CFC

2
∗ [(1 +m1)(1 +m2)]

−1/2)[(1 +m1)(1 +m2)]
−1/2

≤ (CTG + C2
CFC

2
∗m

−1/2
∗ )[(1 +m1)(1 +m2)]

−1/2

≤ C∗[(1 +m1)(1 +m2)]
−1/2,

which together with (4.24) implies that (4.23) is also valid for k. �
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It follows from Theorem 4.6 that the W -cycle multigrid is a contraction with contraction
number independent of grid levels provided the number of smoothing steps are sufficiently
large. Furthermore, the contraction number decreases at the rate of 1/m for the symmetric
W -cycle algorithm where m1 = m2 = m. Numerical results show that this is also the case
for the V -cycle and F -cycle algorithms.

5. Numerical Results

In this section we report results of several numerical experiments for the model problem
(1.1) on the L-shaped domain (−1, 1)2 \ [0, 1]2. The triangulations T0, T1, . . . , are created by
the refinement procedure described at the beginning of Section 3, where T0 has six elements
and the grading parameter at the reentrant corner is taken to be 2/3 (cf. Figure 3.2). The
mesh parameter of Tk is hk = 2−k.

In the first set of experiments we take the exact solution to be

u(x, y) = (1 − x2)(1 − y2)r2/3 sin
(2

3

(

θ −
π

2

)

)

,

where (r, θ) are the polar coordinates at the origin. We computed the solution uk of (3.2)
with η = 10, 100 and 1000. The energy errors ak(Πku− uk,Πku− uk)

1/2 and the L2 errors
‖Πku − uk‖L2(Ω) for η = 10 and 0 ≤ k ≤ 7 are presented in Table 5.1. The predicted
convergence rates in (2.15) are clearly visible.

Energy Error L2 Error

k = 0 1.16 E+0 3.09 E−1

k = 1 6.17 E−1 6.36 E−2

k = 2 2.90 E−1 1.16 E−2

k = 3 1.37 E−1 2.41 E−3

k = 4 6.63 E−2 5.76 E−4

k = 5 3.29 E−2 1.52 E−4
k = 6 1.65 E−2 4.24 E−5

k = 7 8.33 E−3 1.19 E−5

Table 5.1. Energy errors and L2 errors for the L-shaped domain (η = 10)

We also plotted the energy error versus the mesh size in the log-log scale in Figure 5.1 for
η = 10, 100 and 1000. The energy error decreases as η increases, which indicates that the
constant C in (2.15) can indeed be chosen to be independent of η, as long as it is sufficiently
large.

In the second set of experiments we computed the contraction numbers of the W -cycle,
F -cycle and V -cycle algorithms on the graded meshes T1, . . . , T7. We used η = 10 as the
penalty parameter, λ = 1/40 as the damping factor in (3.13), and m pre-smoothing and m
post-smoothing steps. The results are presented in Tables 5.2–5.3. It is observed that the
W -cycle algorithm is a contraction for m ≥ 1, the F -cycle algorithm is a contraction for
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Figure 5.1. Comparison of Energy Errors for η = 10, 100 and 1000

m ≥ 4, and the V -cycle algorithm is a contraction for m ≥ 8. Furthermore, when m ≥ 4,
the W -cycle and the F -cycle have similar contraction numbers.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
m = 1 0.85 0.89 0.88 0.89 0.90 0.90 0.90

m = 2 0.74 0.80 0.83 0.83 0.83 0.84 0.84

m = 3 0.64 0.73 0.74 0.78 0.78 0.78 0.78

m = 4 0.57 0.67 0.72 0.73 0.75 0.75 0.75

m = 5 0.51 0.63 0.69 0.71 0.71 0.72 0.73

m = 6 0.45 0.59 0.66 0.69 0.70 0.71 0.71

m = 7 0.41 0.56 0.64 0.67 0.68 0.69 0.69

m = 8 0.38 0.53 0.62 0.65 0.66 0.68 0.68

m = 9 0.35 0.51 0.60 0.64 0.66 0.66 0.66

m = 10 0.32 0.49 0.59 0.62 0.65 0.65 0.66

Table 5.2. Contraction numbers of the W -cycle algorithm on the L-shaped
domain (η = 10)

Finally, the asymptotic behavior of the contraction number with respect to the number
of smoothing steps for k = 6 is depicted in Figure 5.2. The log-log graphs confirm that the
contraction number decreases at the rate of m−1, as predicted by Theorems 4.4 and 4.6.
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
m = 4 0.57 0.67 0.72 0.73 0.75 0.75 0.75

m = 5 0.51 0.63 0.69 0.71 0.71 0.73 0.73

m = 6 0.45 0.59 0.66 0.69 0.70 0.71 0.71

m = 7 0.41 0.56 0.64 0.67 0.68 0.69 0.69

m = 8 0.38 0.53 0.62 0.65 0.66 0.68 0.68

m = 9 0.35 0.51 0.60 0.64 0.66 0.66 0.66

m = 10 0.32 0.49 0.59 0.62 0.65 0.65 0.66

m = 11 0.30 0.47 0.57 0.61 0.64 0.64 0.64

m = 12 0.28 0.45 0.56 0.60 0.62 0.63 0.63

Table 5.3. Contraction numbers of the F -cycle algorithm on the L-shaped
domain with (η = 10)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
m = 8 0.38 0.55 0.65 0.69 0.72 0.73 0.74

m = 9 0.35 0.53 0.64 0.68 0.71 0.71 0.72

m = 10 0.32 0.51 0.62 0.67 0.69 0.71 0.71

m = 11 0.30 0.49 0.60 0.64 0.67 0.69 0.70

m = 12 0.28 0.47 0.59 0.62 0.66 0.69 0.69

m = 13 0.27 0.46 0.57 0.61 0.65 0.68 0.68

m = 14 0.25 0.44 0.56 0.61 0.64 0.66 0.67

Table 5.4. Contraction numbers of the V -cycle algorithm on the L-shaped
domain (η = 10)
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