
Received: 10 July 2018 Revised: 25 October 2018 Accepted: 21 December 2018 Published on: 21 January 2019

DOI: 10.1002/num.22350

R E S E A R C H A R T I C L E

Adaptive operator splitting finite element method
for Allen–Cahn equation

Yunqing Huang1 Wei Yang1 Hao Wang1 Jintao Cui2,3

1Hunan Key Laboratory for Computation and

Simulation in Science and Engineering,

Xiangtan University, Xiangtan, China
2Department of Applied Mathematics, The

Hong Kong Polytechnic University, Hung

Hom, Hong Kong
3Department of Applied Mathematics, The

Hong Kong Polytechnic University Shenzhen

Research Institute, Shenzhen, China

Correspondence
Jintao Cui, Department of Applied

Mathematics, TU829, Block T, The Hong

Kong Polytechnic University, 11 Yuk Choi Rd,

Hung Hom, Hong Kong.

Email: jintao.cui@polyu.edu.hk

Funding information
National Natural Science Foundation of China,

11671340117713671177137191430213916

30205. Natural Science Foundation of Hunan

Province, 2017jj3304. Research Grants

Council, University Grants Committee,

15302518.

In this paper, a new numerical method is proposed and ana-

lyzed for the Allen–Cahn (AC) equation. We divide the AC

equation into linear section and nonlinear section based on the

idea of operator splitting. For the linear part, it is discretized by

using the Crank–Nicolson scheme and solved by finite element

method. The nonlinear part is solved accurately. In addition,

a posteriori error estimator of AC equation is constructed in

adaptive computation based on superconvergent cluster recov-

ery. According to the proposed a posteriori error estimator, we

design an adaptive algorithm for the AC equation. Numerical

examples are also presented to illustrate the effectiveness of

our adaptive procedure.

KEYWORDS

adaptive algorithm, Allen–Cahn equation, finite element

method, operator splitting, SCR

1 INTRODUCTION

In this paper, we adopt Strang operator splitting method for solving the Allen–Cahn (AC) equation⎧⎪⎨⎪⎩
ut − Δu = − 1

𝜀2
f (u) in Ω × T ,

𝜕𝑢

𝜕𝑛
= 0 on 𝜕Ω × T ,

u(x, 0) = u0 in Ω × 0.

(1.1)

Here Ω is a convex polygonal domain, 𝜀 defines the thickness of interfaces separating different phases

and u represents the concentration of one of the two metallic components of the alloy.

Without lose of generality, we consider the bistable nonlinearity

f (u) = F′(u),

Numer Methods Partial Differential Eq. 2019;35:1290–1300. wileyonlinelibrary.com/journal/num © 2019 Wiley Periodicals, Inc. 1290

https://orcid.org/0000-0001-9912-1889

HUANG ET AL. 1291

where F(u) = 1

4
(u2 − 1)2 is a double equal well potential which satisfies the global minimum value

0 at u=±1. The AC equation can also be regarded as the L2-gradient flow of Liapunov energy

functional

E(u) = ∫Ω

{
1

2
|𝛻u|2 + 1

𝜀2
F(u)

}
𝑑𝑥. (1.2)

By differentiating the energy E(u) with respect of t, we obtain an intrinsic property of AC equation as

follows:

𝑑

𝑑𝑡
E(u) = ∫Ω

(
𝛻u ⋅ 𝛻ut +

F′(u)
𝜀2

⋅ ut

)
𝑑𝑥

= ∫Ω

(
−Δu ⋅ ut +

F′(u)
𝜀2

⋅ ut

)
𝑑𝑥

= −∫Ω
u2

t 𝑑𝑥

≤ 0.

In other words, energy is decreasing in time.

In 1979, Allen and Cahn in [8] first applied the AC equation to describe the motion of antiphase

boundaries in crystalline solids. Soon after, the AC equation was brought into play widely, such as

image analysis [6], crystal growth [7], and mean curvature motion [9], and so forth. In [10], a posteriori
error estimate of residual type was developed by Feng and Wu. They proved that the error relied on

𝜀−1 only in some low polynomial order for AC equation.

Adaptive finite element was first proposed by Babus̆ka et al. in 1977 [2]. Then in 1986, they pre-

sented accuracy estimates and adaptive refinements [3]. When the solution is singular, adaptive finite

element can find the region of singular solution and refine the mesh locally so as to improve the accu-

racy of the solution. In this paper, we use time-splitting adaptive finite element method to solve the AC

equation based on the idea of [11, 12]. The basic idea of adaptive algorithm has the following steps.

Starting from an initial shape regular mesh, we apply the successive mesh refinement algorithm (in

form of loops) consisting of Solve → Estimate → Mark → Refine to generate a sequence of meshes.

The proposed numerical scheme can be applied in the solve step to obtain a numerical approximation

on each level of meshes. Next we derive a reliable and efficient a posteriori error estimator in the esti-
mate step. Then the error estimator is employed to mark the elements on which the error indicators are

large. Finally we design rules to refine the marked elements such that the resulting mesh is still shape

regular.

The basic conditions for the adaptive algorithm to work well are reliability and efficiency of the

a posteriori error estimator, and the adjusted discrete space can capture enough high frequency infor-

mation. The a posteriori error estimator is the basis for adjusting the discrete space, and adjustment

of discrete space is the important part of adaptive method. Traditional operator-splitting methods

include sequential operator-splitting [4], symmetrically weighted sequential operator-splitting [4],

Strang-Marchuk (or Strang) operator-splitting [5], iterative operator-splitting method [4] and so forth.

In this paper, we mainly use Strang operator-splitting to solve AC equation.

This article is organized as follows. In Section 2, we give some notations and preliminaries. Section

3 is devoted to deriving the discrete scheme of heat equation and constructing a posteriori error estima-

tor for gradient reconstruction by superconvergent cluster recovery (SCR). Based on the a posteriori
error estimator introduced in Section 3, we propose an adaptive algorithm in Section 4. Finally, in

Section 5, several numerical experiments are presented to show the validity of the proposed a posteriori
error estimator and adaptive algorithm.

1292 HUANG ET AL.

2 PRELIMINARIES AND FINITE ELEMENT FORMATS

In order to get our discretization, we will use the following notations. Let Ω⊆R2 be a bounded region,

defining Lp(Ω) space such as

Lp(Ω) = {f {x}|f {x} is measurable in Ω and ‖f‖Lp < ∞}.

And we use the notations

‖f‖0,p,Ω =
(
∫Ω

|f (x)|p𝑑𝑥) 1

p

, 1 ≤ p < ∞,

‖f‖0,p,Ω = ess sup
x∈Ω

∣ f (x) ∣, p = ∞. (2.1)

Next, when k ∈ N, p≥ 1, the Sobolev space defined as follows

Wm,p(Ω) = {𝜐 | D𝛼u ∈ Lp(Ω), |𝛼| ≤ m}. (2.2)

Then we have the standard norm of Sobolev space such as

‖u‖m,p,Ω =

(∑
∣𝛼∣≤m

‖D𝛼u‖p
0,p,Ω

) 1

p

, 1 ≤ p < +∞,

‖u‖m,∞,Ω = max
∣𝛼∣≤m

ess sup
x∈Ω

∣ D𝛼u(x) ∣, p = ∞, (2.3)

and the Sobolev seminorm associated with Wm,p(Ω) is

|u|m,p,Ω =

(∑
∣𝛼∣=m

‖D𝛼u‖p
0,p,Ω

) 1

p

, 1 ≤ p < +∞,

|u|m,∞,Ω = max
∣𝛼∣=m

ess sup
x∈Ω

∣ D𝛼u(x) ∣, p = ∞. (2.4)

We describe the operator-splitting method for the general development equation as

𝜕u
𝜕t

= g(u) = 𝐴𝑢 + 𝐵𝑢, t ∈ (0,T], u(0) = u0, (2.5)

where g(u) is a nonlinear operator, the choice of the operator A and B is arbitrary.

For the general development equation (2.5), the operator splitting format can be described by the

following algorithm:

Algorithm 1

Step 1: solve
𝑑v
𝑑t

= Av with initial value v(tn) = u(tn), tn ≤ t ≤ tn+1∕2

Step 2: solve
𝑑w
𝑑t

= Bw with initial value w(tn) = v(tn+1∕2), tn ≤ t ≤ tn+1

Step 3: solve
𝑑u
𝑑t

= Au with initial value u(tn+1∕2) = w(tn+1), tn+1∕2 ≤ t ≤ tn+1

Step 4: update u(tn) = u(tn+1), and go to Step 1.

According to Strang operator-splitting format, the AC equation has the following two algorithms:

HUANG ET AL. 1293

Algorithm 2

Step 1: solve
𝜕ū
𝜕t

= − 1

𝜀2
f (ū), ū(tm) = u(tm), tm ≤ t ≤ tm+1∕2

Step 2: solve
𝜕ũ
𝜕t

= Δũ, ũ(tm) = ū(tm+1∕2), tm ≤ t ≤ tm+1

Step 3: solve
𝜕ū
𝜕t

= − 1

𝜀2
f (ū), ū(tm+1∕2) = ũ(tm+1), tm+1∕2 ≤ t ≤ tm+1

Step 4: update u(tm) = u(tm+1), and go to Step 1.

Algorithm 3

Step 1: solve
𝜕ū
𝜕t

= Δū, ū(tm) = u(tm), tm ≤ t ≤ tm+1∕2

Step 2: solve
𝜕ũ
𝜕t

= − 1

𝜀2
f (ũ), ũ(tm) = ū(tm+1∕2), tm ≤ t ≤ tm+1

Step 3: solve
𝜕ū
𝜕t

= Δū, ū(tm+1∕2) = ũ(tm+1), tm+1∕2 ≤ t ≤ tm+1

Step 4: update u(tm) = u(tm+1), and go to Step 1.

Here we remark operator A ∶ 𝜕u
𝜕t

= − 1

𝜀2
f (u) and B ∶ 𝜕ũ

𝜕t
= Δũ.

For A, the exact solution is

um+𝛼 = um√
u2

m + (1 − u2
m)e−

2

𝜀2
𝛼

, (2.6)

where 𝛼 is the length of time interval. For B, we use finite element method to solve it, see the next

subsection.

Next, we will give the derivation of exact solution of the nonlinear part

𝑑𝑢

𝑑𝑡
= −f (u), (2.7)

where f (u) = 1

𝜀2
u(u2 − 1).

First, by multiplying 2 at both sides of (2.7) and then separation of variables, we have

∫Ω

(
2

u
− 1

u + 1
− 1

u − 1

)
𝑑𝑢 = ∫

𝛽

𝛼

2

𝜀2
𝑑𝜏, (2.8)

then by integration we can obtain

ln

(
u2

u2 − 1

)
= 2

𝜀2
(𝛽 − 𝛼) + C. (2.9)

Noting when 𝛽 = 𝛼, and u(x, 𝛼)= u0, so we can easily get

C = ln

(
u2

0

u2
0 − 1

)
. (2.10)

Hence, the solution of u can be written in the form as following

u = u0√
u2

0 + (1 − u2
0)e−2(𝛽−𝛼)∕𝜀2

. (2.11)

1294 HUANG ET AL.

We know the nonlinear part A can be solved accurately and the linear part B is solved numerically,

the results achieved by Algorithm 2 will be better than Algorithm 3. The reasons are as follows. Firstly,

by using classic Newton iterative method as a standard to compare two algorithms, and we conclude

that Algorithm 2 can achieve the same effect as Newton iterative method. Secondly, Algorithm 2 solves

only one nonlinear equation, while Algorithm 3 solves two nonlinear equations. From the perspective

of calculations and errors, Algorithm 2 is better. Hence, we apply Algorithm 2 to solve AC equation

in our paper.

We consider the two-dimensional Heat equation as follows⎧⎪⎨⎪⎩
ut = Δu in ΩT ≔ Ω × (0,T], (a)
𝜕u
𝜕n

= 0 on 𝜕ΩT ≔ 𝜕Ω × (0,T], (b)
u0 = 𝜓 in Ω × {T = 0}. (c)

(2.12)

Let

H1(Ω) = {v|v ∈ L2(Ω), 𝛻v ∈ L2(Ω)}. (2.13)

Now, we introduce bilinear form and inner product separately,

a(u, v) = ∫Ω
𝛻u ⋅ 𝛻𝑣𝑑𝑥, (2.14)

(ut, v) = ∫Ω
ut ⋅ 𝑣𝑑𝑥. (2.15)

The weak form of (2.12) reads: find u such that for every fixed time t, u ∈ H1(Ω) and

(ut, v) + a(u, v) = 0, ∀v ∈ H1(Ω). (2.16)

Next, let 𝜏 be a triangle and let P1(𝜏) be the space of linear functions on 𝜏, defined by

P1(𝜏) = {v ∶ v = c0 + c1x + c2y, (xy) ∈ 𝜏, c0, c1, c2 ∈ R}. (2.17)

Let the mesh Th = {𝜏}, we define

Vh = {vh ∈ C0(Ω), v|𝜏 ∈ P1(𝜏),∀𝜏 ∈ Th}. (2.18)

Here, C0(Ω) denotes the space of all continuous functions on Ω.

We make the space discrete ansatz

uh =
N∑

j=1

𝜉j(t)𝜑j, (2.19)

where {𝜑j}N
j=0 is a basis for Vh associated with the nodes and such that

𝜑j(xi, yi) =

{
1, if i = j
0, if i ≠ j

, i, j = 0, 1,… ,N. (2.20)

Substituting (2.19) into (2.16), and taking vh =𝜑i, i= 1, …, N, we obtain a system of N ordinary

differential equations
N∑

j=1

(𝜑j, 𝜑i)𝜉′j +
N∑

j=1

a(𝜑j, 𝜑i)𝜉j = 0. (2.21)

In matrix form, we get

𝑀𝜉′ + 𝐴𝜉 = 0, (2.22)

where M is the mass matrix and A is the stiffness matrix.

HUANG ET AL. 1295

For the time part, we use Crank–Nicolson (CN) scheme

M 𝜉l − 𝜉l−1

kl
+ A𝜉l + 𝜉l−1

2
= 0, (2.23)

we obtain
𝜉l = (2M + klA)−1(2M − klA)𝜉l−1. (2.24)

The scheme of (2.23) can be also written as

1

kl
(𝜉l − 𝜉l−1, vh) +

1

2
a(𝜉l + 𝜉l−1, vh) = 0. (2.25)

Theorem 1 The scheme of (2.25) is stable with respect to initial values.

Proof. Taking vh = 𝜉l − 𝜉l−1, we can obtain

1

kl
‖𝜉l − 𝜉l−1‖2 + 1

2
a(𝜉l + 𝜉l−1, 𝜉l − 𝜉l−1) = 0. (2.26)

Due to the symmetry of a(⋅, ⋅), we can get

a(𝜉l + 𝜉l−1, 𝜉l − 𝜉l−1) = a(𝜉l, 𝜉l) − a(𝜉l−1, 𝜉l−1) = |𝜉l|21 − |𝜉l−1|21. (2.27)

From (2.26), (2.27), we obtain|𝜉n|1 ≤ |𝜉n−1|1 ≤ · · · ≤ |𝜉0|1. (2.28)

Finally, by Poincaré inequality, we complete the proof.
▪

3 A POSTERIORI ERROR ESTIMATION AND ADAPTIVE ALGORITHM

3.1 A posteriori error estimation based SCR

A new gradient recovery technique based on SCR is proposed in [11]. It can be used as a posteriori
error estimator, which is relatively simple to implement, cheap in terms of storage, and computational

cost for adaptive algorithms. Below we briefly describe the SCR method.

For an interior vertex z = z0 = (x0, y0) ∈ h, we want to recover the gradients on it. Select

some points zi = (xi, yi), 1≤ i≤ n (at least 4) so that they locate around z as symmetrically as possible.

Generally, choosing the mesh nodes performs well.

The SCR operator at z is defined by

(Ghuh)(z) = 𝛻pz(z),

where pz(x, y) is a linear polynomial satisfying pz(x, y) = arg minp∈P1

∑n
i=0 |(uh − p)(zi)|2. Without loss

of generality, let h=max {| xi − x0| , | yi − y0| :1≤ i≤ n}. To avoid the computational instability resulting

from small h, we introduce coordinate transformation

F ∶ (x, y) → (𝜉, 𝜂) = (x, y) − (x0, y0)
h

.

Then we can rewrite the fitting polynomial as

pz(x, y) = PTa = P̂T â,

with

PT = (1, x, y), P̂T = (1, 𝜉, 𝜂),

aT = (a1, a2, a3), âT = (â1, â2, â3) = (a1 + a2x0 + a3y0, ℎ𝑎2, ℎ𝑎3).

1296 HUANG ET AL.

Algorithm 4

Given time error tolerance Γt0 and Γt1, and space error tolerance Γs, and the discrete solution un on

the mesh n, the time step size kn and the time tn.

Step 1: Taken n+1 ∶= n.

kn+1 ∶= kn.

tn+1 ∶= tn + kn+1.

Solve un+1 using Algorithm2 on the current mesh n+1, then calculate the time error esti-

mators 𝜂t.

Step 2: While 𝜂t >Γt0

kn+1 ∶= 𝛿1kn.

tn+1 ∶= tn + kn+1.

Solve un+1 using Algorithm2 on the current mesh n+1, then calculate the time error

estimators 𝜂t and the space error estimator 𝜂s.

End While.

Step 3: Do
Mark the elements for refinement and coarsening, then adapt mesh n+1.

Solve un+1 using Algorithm2 on the current mesh n+1, the calculate the time error

estimators 𝜂t and the space error estimator 𝜂s.

While 𝜂t >Γt0

kn+1 ∶= 𝛿1kn.

tn+1 ∶= tn + kn+1.

Solve un+1 using Algorithm2 on the current mesh n+1, then calculate the time

error estimators 𝜂t and the space error estimator 𝜂s.

End While.

While 𝜂s >Γs.

Step 4: If 𝜂t <= Γt1

kn+1 ∶= 𝛿2kn.

tn+1 ∶= tn + kn+1.

Else
Go to Step 1.

End If.

The coefficient vector â can be solved by the following linear system

ATAâ = ATu,

where

A =
⎛⎜⎜⎜⎝
1 𝜉0 𝜂0

1 𝜉1 𝜂1

⋮ ⋮ ⋮
1 𝜉n 𝜂n

⎞⎟⎟⎟⎠ , and u =
⎛⎜⎜⎜⎝
u(z0)
u(z1)
⋮

u(zn)

⎞⎟⎟⎟⎠ .
By the linear system, we obtain the recovered gradient

Ghu(z) = 𝛻pz =
(

a2

a3

)
= 1

h

(
â2

â3

)
.

HUANG ET AL. 1297

FIGURE 1 Snapshots of the computed solutions and adaptive meshes of Example 1. Here we take 𝜀 = 1∕16, Γt0 = 0.12,

Γt1 = 0.04, Γs = 0.12, 𝛿1 = 1√
2
, 𝛿2 =

√
2, the initial time step is Δt= 10−4. We can see the initially connected interface

splits into two curves; then the two component of the interface develop circular shapes and eventually the diameters of the two

particles decrease to zero until they collapse [Color figure can be viewed at wileyonlinelibrary.com]

4 ADAPTIVE ALGORITHM

Based on SCR recovery technique, we let space error indicator be 𝜂s, defined by

𝜂s =
‖𝛻un − Ghun‖0,Ω‖𝛻un‖0,Ω

, (3.1)

and the time error indicator 𝜂t defined as

𝜂t =
‖𝛻un+1 − 𝛻un‖0,Ω‖𝛻un‖0,Ω

. (3.2)

And based on maximum tagging strategy, we construct the following adaptive operator splitting

algorithm.

http://wileyonlinelibrary.com

1298 HUANG ET AL.

FIGURE 2 We display snapshots of the computed solutions and meshes of Example 2. Here we take 𝜀 = 0.05, Γt0 = 0.12,

Γt1 = 0.03, Γs = 0.12, 𝛿1 = 1√
2
, 𝛿2 =

√
2, the initial time step is Δt= 10−4. A dumbbell shape with unequal bells are

observed at the beginning; it then gradually becomes a similar ellipse and eventually disappears [Color figure can be viewed at

wileyonlinelibrary.com]

5 NUMERICAL RESULTS

In this section, we present several numerical experiments to verify the adaptive algorithm based

on SCR a posteriori error estimator. These experiments indicate that the algorithm is reliable and effi-

cient for solving the AC equation. For all experiments given in this section, the initial grid is taken to

be the linear criss-cross. We implemented the schemes by using the MATLAB© (MathWorks, 1 Apple

Hill Drive Natick, MA, USA) software package iFEM [1].

Example 1 Let Ω:= [−2, 2]2, define m1 = [0, 2], m2 = [0, 0], m3 = [0, −2]. For given

𝜀> 0, let r1 = r3 = 2− 3𝜀/2, r2 = 1 and set dj(x)= |x−mj|− rj for x ∈Ω and j= 1, 2, 3, we

consider the 2D AC equation with the initial condition

u0(x) = − tanh

(
𝑑(x)√

2𝜀

)
, (4.1)

where d(x)≔max {−d1(x), d2(x),−d3(x)}.

http://wileyonlinelibrary.com

HUANG ET AL. 1299

FIGURE 3 Snapshots of the computed solutions and meshes of Example 3. Here we take 𝜀 = 0.01, Γt0 = 0.2, Γt1 = 0.05,

Γs = 0.2, 𝛿1 = 1√
2
, 𝛿2 =

√
2, the initial time step is Δt= 10−4. Once again, it shows that the mesh changes as the numerical

solution changes. The graph gradually split into four parts, such that the top and bottom are symmetrical, as well as the left and

right. They eventually disappear with time evolution [Color figure can be viewed at wileyonlinelibrary.com]

Example 2 We consider as initial condition u0 a function constituted of a dumbbell

shape with unequal bells. For given 𝜀> 0 and (x, y) ∈ Ω:= [−1, 1]2, let

u0(x, y) =

⎧⎪⎪⎨⎪⎪⎩
tanh

(
3

𝜀
((x − 0.5)2 + y2 − (0.39)2)

)
, x > 0.14,

tanh
(

3

𝜀
(y2 − (0.15)2)

)
, −0.3 ≤ x ≤ 0.14,

tanh
(

3

𝜀
((x + 0.5)2 + y2 − (0.25)2)

)
, x < −0.3.

(4.2)

Example 3 For given 𝜀> 0 and (x, y) ∈ Ω:= [−1, 1]2, we consider AC equations with

the following initial condition

u0(x, y) = tanh

(
5

(
x2

0.04
+ y2

0.36
− 1

)(
x2

0.36
+ y2

0.04
− 1

))
, x > 0.14. (4.3)

http://wileyonlinelibrary.com

1300 HUANG ET AL.

The evolution of the computed solutions and meshes for three examples are presented in

Figures 1–3.

ACKNOWLEDGMENTS

This research work was partially supported by NSFC Key Project 91430213 and 91630205, NSFC

Projects 11671340, 11771367 and 11771371, Hunan NSF 2017jj3304, and Hong Kong RGC General

Research Fund (GRF) grant 15302518.

ORCID

Jintao Cui https://orcid.org/0000-0001-9912-1889

REFERENCES

[1] L. Chen, iFEM: An integrated finite element methods package in MATLAB. Technical report, University of

California at Irvine, 2009.

[2] I. Babuvs̆ka, W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal.

vol. 15 (1978) pp. 736–754.

[3] I. Babus̆ka, “Accuracy estimates and adaptive refinements in finite element computations,” in John Wiley & Sons,

Hoboken, NJ, 1986.

[4] I. Farago, J. Geiser, Iterative operator-splitting methods for linear problems, Int. J. Comput. Sci. Eng. vol. 3 (2005)

pp. 255–263.

[5] G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. vol. 5 (1968) pp.

506–517.

[6] M. Benes̆, V. Chalupecký, K. Mikula, Geometrical image segmentation by the Allen–Cahn equation, Appl. Numer.

Math. vol. 51 (2004) pp. 187–205.

[7] X. F. Chen, C. M. Elliott, A. Cardiner, Z. Jing, An efficient algorithm for solving the phase field crystal model,
J. Comput. Phys. vol. 227 (2008) pp. 6241–6248.

[8] S. M. Allen, J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase
domain coarsening, Acta Metall. vol. 27 (1979) pp. 1085–1095.

[9] X. Feng, A. Prohl, Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows,

Numer. Math. vol. 94 (2003) pp. 33–65.

[10] X. Feng, H. Wu, A posteriori error estimates and an adaptive finite element method for the Allen–Cahn equation
and the mean curvature flow, J. Sci. Comput. vol. 24 (2005) pp. 121–146.

[11] Y. Huang, N. Yi, The superconvergent cluster recovery method, J. Sci. Comput. vol. 44 (2010) pp. 301–322.

[12] Y. Li et al., An unconditionally stable hybrid numerical method for solving the Allen–Cahn equation, Comput.

Math. Appl. vol. 60 (2010) pp. 1591–1606.

How to cite this article: Huang Y, Yang W, Wang H, Cui J. Adaptive operator splitting

finite element method for Allen–Cahn equation. Numer Methods Partial Differential Eq.
2019;35:1290–1300. https://doi.org/10.1002/num.22350

https://orcid.org/0000-0001-9912-1889
https://orcid.org/0000-0001-9912-1889

