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Abstract In this paper, a new nonparametric nonconforming quadrilateral finite element is
introduced. This element takes the four edgemean values as the degrees of the freedomand the
finite element space is a subspace of P2. Different from the other nonparametric elements, the
basis functions of this new element can be expressed explicitly without solving linear systems
locally, which can be achieved by introducing a new reference quadrilateral. To evaluate the
integration, a class of new quadrature formulae with only three equally weighted points on
quadrilateral are constructed. Hence the stiffness matrix can be calculated by the same way
with the parametric elements. Numerical results are shown to confirm the optimality of the
convergence order for the second order elliptic problems and the Stokes problem.
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1 Introduction

The nonconforming finite element methods successfully provide stable numerical solutions
of many practical fluid flow and solid mechanics problems: see, for instance, [3–5,7,8,19]
for the Stokes and Navier–Stokes problems and [1,2,14,16,17] for elasticity related prob-
lems. The linear nonconforming finite elements for triangles or tetrahedrons were devised
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by Crouzeix and Raviart in [5] to provide stable finite element pairs for the Stokes problem
with optimal convergence properties. Concerning quadrilateral nonconforming elements,
Han [9] introduced a rectangular element with number of local degrees of freedom being
five, Rannacher–Turek [19] presented the rotated Q1 nonconforming element; and Dou-
glas et al. [6] introduced the nonconforming finite element using only four values at the
midpoints of the edges as degrees of freedom. These three elements all obtain optimal
orders of convergence for second-order problems and provide stable finite element pairs
for the Stokes problems on rectangular meshes. However, if they are applied to general
quadrilateral meshes, the optimality in convergence will be lost. Thus for the general
quadrilateral case, an extra term xy should be added [4], in order to recover optimal conver-
gence.

For general quadrilateral meshes, Park and Sheen [18] presented a nonparametric P1-
nonconforming finite element which has the lowest number of degrees of freedom. A similar
element was also introduced byHu and Shi [10]. But without anymodification they cannot be
used to solve fluid and solidmechanics in a stablemanner. There are also other nonparametric
lower-order nonconforming elements, for instance, [11,12,19], which all include P1 plus an
extra higher-order polynomial. However, the construction of the basis functions of these
elements requires solving at least four 4 × 4 matrix systems. Furthermore, the computation
of the local stiffness matrix is done on the standard reference domain [−1, 1]2 and the
bilinear transformation is required. Since the corresponding Jacobian determinate therein
is a linear function, higher-degree quadrature formulae need to be employed on general
quadrilaterals. Nonparametric nonconforming elements of higher order are also considered
in [13,15,21].

In summary, the parametric nonconforming elements will loss convergence order or
require extra bubble functions. Although the nonparametric versions can keep optimal con-
vergence order, the basis functions therein can not be given explicitly and higher-degree
quadrature formulae will be employed if general quadrilateral is considered.

The main purpose of this paper is to develop a new nonparametric nonconforming ele-
ment of lower order which can be regarded as an extension of the rotated Q1 element [19].
The proposed element takes the four edge mean values as the DOFs and the finite ele-
ment space is locally P1 plus Span{l13l24}, where l13 and l24 are two linear polynomials
vanishing at the vertices V1, V3 and V2, V4, respectively. Our element has the same DOFs
with those studied in [11,19], but has different shape function space. For rectangular mesh,
our element is equivalent to that of [19]. But for general quadrilateral mesh, our element
is different from the nonparametric version in [19]. Our strategy is to introduce a new
reference domain Q̃ which is different from that used in [11,12,18,21], and then define
an affine map from the reference element to the physical element. By virtue of the refer-
ence element, the basis functions can be expressed explicitly without solving linear systems
locally.

To compute the stiffnessmatrix and right-hand vector, we derive a family of second-degree
quadrature formulae over the reference quadrilateral which have only three quadrature points
with equal weights. Hence all the integrations can be done over the reference domain, which
is more efficient since the Jacobian determinant is constant and less quadrature points are
used.

An outline of this paper is as follows. We devote Sect. 2 to the construction of our quadri-
lateral nonconforming element. To compute the integrations efficiently, we develop a family
of quadrature formulae over the reference domains in Sect. 3. Some numerical examples are
given in Sect. 4. Finally, in Sect. 5, we conclude our results.
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Fig. 1 An affine map from a reference quadrilateral Q̃ to a quadrilateral Q

2 Quadrilateral Nonconforming Element

Let Q be a convex quadrilateral shown as in Fig. 1, where V1, V2, V3, V4 denote the vertices
with counterclockwise indices, E j designates the edge between Vj to Vj+1 modulo 4, and
Mj is the midpoint of E j , j = 1, . . . , 4. Let l j (x, y) denote the linear polynomial which
vanishes on the edge E j for j = 1, . . . , 4. Let l13 and l24 be the linear polynomials satisfying

l13(V1) = l13(V3) = l24(V2) = l24(V4) = 0, l13(V4) = l24(V1) = 1.

We define our nonconforming element (Q,P(Q),ΦQ) by

(1) Q is a convex quadrilateral,
(2) P(Q) = Span{1, x, y, l13l24},
(2) ΦQ is the degree of freedom vector with components

1

|Ei |
∫
Ei

v(x, y)ds, i = 1, 2, 3, 4,∀v ∈ C0(Q).

We will show that ΦQ is P(Q)-unisolvent. To do this, let l13(V2) = h1, l24(V3) = h2.
Note that Q is convex if and only if h1 < 0 and h2 < 0. Thus if we take Q̃ as a reference
quadrilateral with four vertices

Ṽ1 = (0, 1), Ṽ2 = (h1, 0), Ṽ3 = (0, h2), Ṽ4 = (1, 0),

then there exists a unique affine transformation FQ̃,Q : Q̃ −→ Q such that FQ̃,Q(Ṽi ) =
Vi , i = 1, 2, 3, 4. Note the inverse of FQ̃,Q can be written as: (ξ, η) = F−1

Q̃,Q
(x, y) =

(l13(x, y), l24(x, y)) where (x, y) ∈ Q and (ξ, η) ∈ Q̃. Since FQ̃,Q is an affine trans-

formation, we can show the unisolvency on Q̃. Furthermore let l̃13 = l13 ◦ FQ̃,Q and

l̃24 = l24 ◦ FQ̃,Q , then l̃13(ξ, η) = ξ, l̃24(ξ, η) = η. Similarly, we denote the four edges

of Q̃ by Ẽ j , j = 1, 2, 3, 4. Set

P̃ =
{
ũ : Q̃ −→ R

∣∣ũ ◦ F−1
Q̃,Q

∈ P(Q)
}

.

Obviously P̃ = {1, ξ, η, ξη}.
Theorem 1 The set { 1

|Ẽ j |
∫
Ẽ j

f (ξ, η)ds̃, j = 1, 2, 3, 4} is P̃-unisolvent.
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Proof By a simple calculation, we have

1

|Ẽ4|
∫
Ẽ4

ξ iη jds̃ = i ! j !
(i + j + 1)! ,

1

|Ẽ1|
∫
Ẽ1

ξ iη jds̃ = i ! j !
(i + j + 1)!h

i
1,

1

|Ẽ2|
∫
Ẽ2

ξ iη jds̃ = i ! j !
(i + j + 1)!h

i
1h

j
2,

1

|Ẽ3|
∫
Ẽ3

ξ iη jds̃ = i ! j !
(i + j + 1)!h

j
2.

Denote 1, ξ, η, ξη by φ̃ j , j = 1, 2, 3, 4, respectively and also define A = (ai j )4×4 by
ai j = 1

|Ẽi |
∫
Ẽi

φ̃ jds̃. Then

A =

⎡
⎢⎢⎢⎢⎢⎣

1 1
2h1

1
2

1
6h1

1 1
2h1

1
2h2

1
6h1h2

1 1
2

1
2h2

1
6h2

1 1
2

1
2

1
6

⎤
⎥⎥⎥⎥⎥⎦

with det(A) = 1
24 (1 − h1)2(1 − h2)2 �= 0, since h1 < 0 and h2 < 0. ��

Furthermore, we can explicitly present the expression of the basis functions as follows:

ψ̃1(ξ, η) = CQ̃ (−h2 + 2h2ξ + 2η − 6ξη) ,

ψ̃2(ξ, η) = CQ̃ (1 − 2ξ − 2η + 6ξη) ,

ψ̃3(ξ, η) = CQ̃ (−h1 + 2ξ + 2h1η − 6ξη) ,

ψ̃4(ξ, η) = CQ̃ (h1h2 − 2h2ξ − 2h1η + 6ξη) ,

where

CQ̃ = 1

(1 − h1)(1 − h2)
= 1

2 · area(Q̃)
.

Now turn to consider the physical quadrilateral Q. The basis functions are given by

ψ1(x, y) = CQ̃ (−h2 + 2h2l13 + 2l24 − 6l13l24) ,

ψ2(x, y) = CQ̃ (1 − 2l13 − 2l24 + 6l13l24) ,

ψ3(x, y) = CQ̃ (−h1 + 2l13 + 2h1l24 − 6l13l24) ,

ψ4(x, y) = CQ̃ (h1h2 − 2h2l13 − 2h1l24 + 6l13l24) .

Let Ω ∈ R
2 be a simply connected polygonal domain. Let (Th)h>0 be a family of shape

regular quadrilateral triangulation of Ω with h = maxQ∈Th diam(Q). Denote by Eh, E ih and
Eb
h the sets of edges, inner edges and boundary edges, respectively.
Now we can define the global nonparametric nonconforming element spaces as follows

NCh = {vh ∈ L2(Ω) : vh |Q ∈ P(Q) for all Q ∈ Th, (1, [vh]E )E = 0, for all E ∈ E ih},
NCh,0 = {vh ∈ NCh : (1, vh)E = 0, for all E ∈ Eb

h },
where (·, ·)E is the standard inner product over L2(E), and [·]E stands for the jump of a
function across the side E .

According to the definition of our element space, it has the orthogonal property. So it
can be used to solve second-order elliptic problems and get the optimal convergence order.

123



328 J Sci Comput (2018) 74:324–335

Furthermore, the new element can be used as a stable family of mixed finite element for
the velocity fields, combined with piecewise constant element for pressure, in solving the
Navier–Stokes equations.

Now let us turn to the computational aspect. Usually, the computation of quadrilateral
element is done on the standard reference domain [−1, 1]2 and the bilinear transformation
is required. Since the corresponding Jacobian determinant is a linear function, if general
quadrilateral is considered, higher-degree quadrature formulae need to be employed. In com-
parison, for the new element developed above, all the computation can be done efficiently
on our reference element Q̃. We will elaborate the ideas below in detail.

Let l13(x, y) = a1x + b1y + c1 and l24(x, y) = a2x + b2y + c2. Then the derivatives of
the basis function can be obtained as follows:

∂ψi

∂x
= ∂ψ̃i

∂ξ
· ∂ξ

∂x
+ ∂ψ̃i

∂η
· ∂η

∂x
= a1

∂ψ̃i

∂ξ
+ a2

∂ψ̃i

∂η

∂ψi

∂y
= ∂ψ̃i

∂ξ
· ∂ξ

∂y
+ ∂ψ̃i

∂η
· ∂η

∂y
= b1

∂ψ̃i

∂ξ
+ b2

∂ψ̃i

∂η

The Jacobian matrix can be simply calculated by

J = ∂(x, y)

∂(ξ, η)
=

[
a1 a2
b1 b2

]−1

.

We see that J is a constant matrix and its determinant

|J | = 1/(a1b2 − a2b1)

is simply the ratio of the area of the element Q to that of the element Q̃.
Thus the components of the stiffness matrix can be expressed by

∫
Q

(
∂ψi

∂x

∂ψ j

∂x
+ ∂ψi

∂y

∂ψ j

∂y

)
dxdy

=
∫
Q̃

(
a1

∂ψ̃i

∂ξ
+ a2

∂ψ̃i

∂η

) (
a1

∂ψ̃ j

∂ξ
+ a2

∂ψ̃ j

∂η

)
|J |dξdη

+
∫
Q̃

(
b1

∂ψ̃i

∂ξ
+ b2

∂ψ̃i

∂η

) (
b1

∂ψ̃ j

∂ξ
+ b2

∂ψ̃ j

∂η

)
|J |dξdη, 1 ≤ i, j ≤ 4.

For our element, ψi (ξ, η) is a polynomial of degree two, and hence the integration above
can be computed exactly by using Eq. (1) or quadrature formula of degree two of the next
section. In next section, we will derive the quadrature formula over Q̃, which only involves
three equally weighted quadrature points. It also provides an efficient way to compute the
load vector.

Remark 1 If the stiffness matrix is computed by mapping from a reference element Q̂ =
[−1, 1]2 onto the given element Q, the use of a 2 × 2 Gauss rule is at least necessary. In
fact, let (x, y) = F(ξ, η) = (F1(ξ, η), F2(ξ, η)) denote the bilinear mapping from Q̂ to Q
and | Ĵ (ξ, η)| denote the Jacobian determinant. Note that the determinant | Ĵ (ξ, η)| is always
a linear function of the coordinates. The component of the stiffness matrix can be computed
via
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∫
Q

(
∂ψi

∂x

∂ψ j

∂x
+ ∂ψi

∂y

∂ψ j

∂y

)
dxdy

=
∫
Q̂

(
∂ψi

∂x
(F1(ξ, η), F2(ξ, η))

∂ψ j

∂x
(F1(ξ, η), F2(ξ, η))

+∂ψi

∂y
(F1(ξ, η), F2(ξ, η))

∂ψ j

∂y
(F1(ξ, η), F2(ξ, η))

)
| Ĵ (ξ, η)|dξdη.

Since ∂ψi
∂x (x, y) is a linear polynomial with respect to x and y and Fi (ξ, η) is a bilinear

polynomial with respect to ξ and η, ∂ψi
∂x (F1(ξ, η), F2(ξ, η)) must be a bilinear polynomial

with respect to ξ and η. Hence the integrand is a bicubic polynomial and at least a 2 × 2
Gauss rule is used. Furthermore, one must evaluate the value of | Ĵ (ξ, η)| at every quadrature
point since it is not a constant for a given Q.

3 The Construction of Quadrature Formulae on the Quadrilateral

In this section, we will consider the construction of quadrature formulae on the quadrilateral.
Let Q̃ be a quadrilateral with vertices Ṽ1 = (0, 1), Ṽ2 = (h1, 0), Ṽ3 = (0, h2), Ṽ4 =

(1, 0). We divide Q̃ into four triangles and denote them by T̃1, T̃2, T̃3 and T̃4 (see Fig. 2).
Then

∫
Q̃

ξ iη jdξdη =
∫
T̃1

ξ iη jdξdη +
∫
T̃2

ξ iη jdξdη +
∫
T̃3

ξ iη jdξdη +
∫
T̃4

ξ iη jdξdη.

Ṽ4

Ṽ1

Ṽ2

Ṽ3

ξ

η

T̃1T̃2

T̃3 T̃4

Õ

Fig. 2 Reference quadrilateral
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According to the result from [20], we have
∫
T̃1

ξ iη jdξdη = i ! j !
(2 + i + j)! .

For the integration on T̃2, let ξ = h1t and η = s, then
∫
T̃2

ξ iη jdξdη = −
∫
T̃1

(h1t)
i s j (h1)dsdt = − i ! j !

(2 + i + j)!h
i+1
1 .

And similarly,
∫
T̃3

ξ iη jdξdη = i ! j !
(2 + i + j)!h

i+1
1 h j+1

2 ,

∫
T̃4

ξ iη jdξdη = − i ! j !
(2 + i + j)!h

j+1
2 .

Collecting above results, we have
∫
Q̃

ξ iη jdξdη = i ! j !
(2 + i + j)!

(
1 − hi+1

1 − h j+1
2 + hi+1

1 h j+1
2

)

= i ! j !
(2 + i + j)! (1 − hi+1

1 )(1 − h j+1
2 ). (1)

By applying Gram–Schmidt orthogonal process, we can get the orthogonal polynomial
of degree one as follows:

w1(ξ, η) = ξ − 1

3
(1 + h1), w2(ξ, η) = η − 1

3
(1 + h2).

Thus the quadrature formula of degree one can be expressed as follows:
∫
Q̃

f (ξ, η)dξdη = SQ̃ f

(
1

3
(1 + h1),

1

3
(1 + h2)

)
, ∀ f (ξ, η) ∈ P1,

where SQ̃ = (1 − h1)(1 − h2)/2 is the area of Q̃.
Now let us turn to the construction of the quadrature formulae of degree two. The basic

idea can be found in [20, pp. 79–88]. For convenience, let

L( f ) = 1

SQ̃

∫
Q̃

f (ξ, η)dξdη, ∀ f ∈ L2(Q̃).

Obviously L(1) = 1.
First of all, take the orthonormal polynomials of degree one as follows:

p1 = C−1/2
1 · w1,

p2 = C−1/2
2 · (

(1 + h1)(1 + h2)w1 + 2(1 − h1 + h21)w2
)

= C−1/2
2 · (

(1 + h1)(1 + h2)ξ + 2(1 − h1 + h21)η − (1 + h21)(1 + h2)
)
,

where C1 and C2 are normalized constants such that

L
((
pi (ξ, η)p j (ξ, η)

)) = δi j , i, j = 1, 2.
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By detailed computation, we get

C1 = (1 − h1 + h21)/18,

C2 = 3C1
(
(1 + h21)(1 + h22) − 2(1 + h1h2)(h1 + h2)

)
.

It is well known that there must exist a numerical integration formula of degree two with
three equally weighted points with respect toL, i.e., the weight for the points is 1/3. Suppose
we have a second-degree formula

L( f ) = 1

3

(
f (u(1)) + f (u(2)) + f (u(3))

)
, ∀ f ∈ P2, (2)

where u(k), k = 1, 2, 3 are the quadrature points. To enforce polynomial exactness of degree
2, it suffices to require (2) to be exact for 1, p1, p2, p21, p1 p2, p

2
2. By the orthogonality of

pi (ξ, η), we have

L(p1) = L(p2) = 0, L(p1 p2) = 0, and L(p21) = L(p22) = 1.

Then the above conditions require, respectively

pi (u
(1)) + pi (u

(2)) + pi (u
(3)) = 0, i = 1, 2,

pi (u
(1))p j (u

(1)) + pi (u
(2))p j (u

(2)) + pi (u
(3))p j (u

(3)) = 3δi j , i, j = 1, 2.
(3)

Let T : (ξ, η) 
→ (s, t) be a linear transform from R
2 to R

2 where s = p1(ξ, η) and
t = p2(ξ, η). Let v(k) = (vk1, vk2) = T (u(k)), k = 1, 2, 3, then (3) can be rewritten as

v11 + v21 + v31 = 0, v12 + v22 + v32 = 0,

v1iv1 j + v2iv2 j + v3iv3 j = 3δi j , i, j = 1, 2.
(4)

By defining a matrix

A =
⎡
⎣v11 v21 v31

v12 v22 v32
1 1 1

⎤
⎦

we can rewrite (4) as

AAT = 3I

where I is the identity matrix. Hence

AT A = 3I

is equivalent to the following equations

vi1v j1 + vi2v j2 + 1 = 3δi j , i, j = 1, 2, 3.

Therefore the points v(k) lie on a sphere of radius r = √
2 with centroid at the origin. It is

also straightforward to show that they are equidistant, i.e.,

d2
(
v(k), v( j)

)
= v2k1 + v2k2 + v2j1 + v2j2 − 2

(
vk1v j1 + vk2v j2

) = 6.

Therefore v(k) are the vertices of a regular triangle. One can see that the nodes of quadrature
formula with equal weights are u(k) = T−1(v(k))(k = 1, 2, 3), where T−1 is the inverse
mapping of T . Let

v(k) = √
2 (cos θk, sin θk) , θk = θ + 2(k − 1)π/3, k = 1, 2, 3,
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where θ is a free parameter, then the quadrature points over Q̃ can be written as u(k) =
(ξk, ηk), k = 1, 2, 3 with

ξk = √
2C1 cos θk + 1

3
(1 + h1),

ηk =
√
2C2 sin θk − √

2C1 (1 + h1)(1 + h2) cos θk

2
(
1 − h1 + h21

) + 1

3
(1 + h2) .

(5)

4 Numerical Examples

In this section, two types of quadrilateral meshes are employed: uniformly trapezoid meshes
as shown in Fig. 3 and the randomly perturbed quadrilateral meshes depicted in Fig. 4.

4.1 The Elliptic Problem

Consider a second-order elliptic problem:
{

−�u = f, in Ω,

u = 0, on ∂Ω,

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3 a A partition of the square into four trapezoids. b A mesh composed of translated dilates of this
partition

Fig. 4 A nonuniform randomly
perturbed quadrilateral
triangulation

123



J Sci Comput (2018) 74:324–335 333

Table 1 Computational results on the uniformly trapezoid meshes for the elliptic problem

h 1/4 1/8 1/16 1/32 1/64 1/128

2 × 2 Gauss formula |u − uh |1 1.37E-0 8.66E-1 4.66E-1 2.42E-1 1.24E-1 6.24E-2

Ratio 0.66 0.89 0.94 0.97 0.99

‖u − uh‖0 7.38E-2 2.55E-2 7.68E-3 2.18E-3 5.83E-4 1.51E-4

Ratio 1.53 1.73 1.82 1.90 1.95

Our formula |u − uh |1 1.65E-0 8.86E-1 4.68E-1 2.43E-1 1.24E-1 6.24E-2

Ratio 0.90 0.92 0.95 0.97 0.99

‖u − uh‖0 5.96E-2 2.19E-2 6.62E-3 1.87E-3 5.00E-4 1.30E-4

Ratio 1.44 1.73 1.83 1.90 1.95

Table 2 Computational results on the randomly perturbed meshes for the elliptic problem

h 1/4 1/8 1/16 1/32 1/64 1/128

2 × 2 Gauss formula |u − uh |1 1.28E-0 6.67E-1 3.63E-1 1.88E-1 9.58E-2 4.85E-2

Ratio 0.94 0.88 0.95 0.98 0.98

‖u − uh‖0 5.07E-2 1.24E-2 3.76E-3 9.85E-4 2.56E-4 6.58E-5

Ratio 2.04 1.72 1.93 1.94 1.96

Our formula |u − uh |1 1.39E-0 6.92E-1 3.75E-1 1.89E-1 9.65E-2 4.85E-2

Ratio 1.01 0.89 0.99 0.97 0.99

‖u − uh‖0 3.91E-2 1.02E-2 3.00E-3 8.00E-4 2.13E-4 5.35E-5

Ratio 1.94 1.74 1.92 1.91 1.99

where Ω = (0, 1)2. The source term f is generated from the exact solution

u(x, y) = sin(2πx) sin(2πy)
(
x3 − y4 + x2y3

)
.

The entries of the stiffness matrix are computed by the 2 × 2-Gauss rule and our formula,
respectively. Here we take θ = 0 in Eq. (5). Table 1 presents the results on a uniform
trapezoidal meshes. Similarly, Table 2 shows the numerical results on the randomly perturbed
meshes. We observe the optimal convergence rates of O(h) and O(h2) in energy norm and
L2 norm, respectively. In view of errors, there is no big difference in the energy norm between
our formula and 2 × 2-Gauss rule. But the errors obtained by our formula is smaller than
that by 2× 2-Gauss rule in the L2 norm. In view of computational cost, our formula is more
efficient when the proposed element is employed, since the Jacobian determinant is constant
and less quadrature points are used.

4.2 Numerical Examples for the Stokes Problem

In this subsection, we apply our element to approximate each component of the velocity
fields in solving the incompressible Stokes equations in two dimensions, while the piecewise
constant element is employed to approximate the pressure.
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Table 3 The Stokes problem: The apparent L2 and broken energy norm errors and their reduction ratios on
the uniformly trapezoid meshes

h |u − uh |1 Ratio ‖u − uh‖0 Ratio ‖p − ph‖ Ratio

1/2 4.94E-1 – 2.58E-2 – 4.46E-1 –

1/4 2.82E-1 0.81 1.55E-2 0.74 4.14E-1 0.11

1/8 2.17E-1 0.38 8.89E-3 0.80 2.08E-1 0.99

1/16 1.20E-1 0.85 2.77E-3 1.68 9.90E-2 1.07

1/32 6.24E-2 0.95 7.52E-4 1.88 5.05E-2 0.97

1/64 3.16E-2 0.98 1.93E-4 1.96 2.50E-2 1.02

1/128 1.59E-2 0.99 4.88E-5 1.99 1.23E-2 1.02

Table 4 The Stokes problem: The apparent L2 and broken energy norm errors and their reduction ratios on
the randomly perturbed meshes

h |u − uh |1 Ratio ‖u − uh‖0 Ratio ‖p − ph‖ Ratio

1/2 4.06E-1 – 3.49E-2 – 3.70E-1 –

1/4 3.00E-1 0.43 1.83E-2 0.93 3.40E-1 0.13

1/8 1.56E-1 0.95 4.44E-3 2.04 2.14E-1 0.66

1/16 8.25E-2 0.92 1.21E-3 1.87 9.35E-2 1.20

1/32 4.21E-2 0.97 3.09E-4 1.97 4.38E-2 1.09

1/64 2.15E-2 0.97 7.99E-5 1.95 2.12E-2 1.05

1/128 1.08E-2 0.99 2.02E-5 1.99 1.06E-2 1.00

Set Ω = (0, 1)2 and the Stokes equations are given by
⎧⎪⎨
⎪⎩

−�u + ∇ p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω.

The exact solution for u is given by ∇ × ψ , where

ψ(x, y) = e(x+2y)x2(x − 1)2y2(y − 1)2.

The exact solution for p is given by

p(x, y) = sin(2πx) sin(2πy).

Then the body force term f can be generated by−�u+∇ p. Table 3 presents the results on a
uniform trapezoidal meshes. Similarly, Table 4 shows the numerical results on the randomly
perturbed meshes.

5 Conclusion

We developed a new nonparametric nonconforming finite element method that can be used
on general quadrilateral meshes. The new element has at least two advantages compared to
other nonparametric elements in the literature. Firstly, for other nonparametric elements, one
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must solve at least four linear systems to get the basis functions. However the basis functions
of our element can be expressed explicitly. Secondly, the integration can be evaluated like
the parametric element and only linear maps are required, which implies that the Jacobi
determinants are constants. Therefore, we can construct an efficient quadrature formula with
less quadrature points for the computation. Moreover, the shape functions are just second-
degree polynomials and hence quadrature rule with second degree exactness is enough to
achieve optimal convergence rates, whereas for most other other nonconforming elements,
at least 2 × 2-Gauss rule is required.
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