The Hong Kong Polytechnic University Department of Applied Mathematics

AMA1007 Calculus and Linear Algebra

Tutorial 11

Infinite Series

1. Let $I_{n}=\int_{0}^{\pi} x^{n} \cos x d x$ and $J_{n}=\int_{0}^{\pi} x^{n} \sin x d x$, where n is a non-negative integer. Using integration by parts, express I_{n} in terms of J_{n-1} and J_{n} in terms of I_{n-1} for $n \geq 1$. Hence, compute $\int_{0}^{\pi} x^{3} \cos x d x$.
2. If $\sum_{i=1}^{\infty} a_{n}$ converges and $a_{n}>0$ for all n, can anything be said about $\sum_{i=1}^{\infty} \frac{1}{a_{n}}$. Give your reason to the answer.
3. (Logarithmic p-series)
(a) Show that $\int_{2}^{\infty} \frac{d x}{x(\ln x)^{p}}$ (p is a positive constant) converges if and only if $p>1$
(b) What implication does the fact in part (a) have for the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}$? Give your reason to the answer.
4. (a) If $\sum_{i=1}^{\infty} a_{n}$ is a convergent series of non-negative numbers, can anything be said about the convergence of $\sum_{i=1}^{\infty} \frac{a_{n}}{n}$. Explain briefly.
(b) Prove that if $\sum_{i=1}^{\infty} a_{n}$ is a convergent series of non-negative terms, then $\sum_{i=1}^{\infty} a_{n}^{2}$ converges.
5. Show that the Ratio test fails to provide information about convergence of p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$.
6. The series $\tan x=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\frac{17 x^{7}}{315}+\frac{62 x^{9}}{2835}+\ldots$ converges to $\tan x$ for $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.
(a) Find the first five terms of the series for $\ln |\sec x|$. For what values of x should be the series converge? Check the series you obtained with CoCalc Jupyter.
(b) Find the first five terms of the series for $\sec ^{2} x$. For what values of x should the series converge?
(c) Check your result in (b) by squaring the series

$$
\sec x=1+\frac{x^{2}}{2}+\frac{5 x^{4}}{24}+\frac{61 x^{6}}{720}+\frac{277 x^{8}}{8064}+\ldots
$$

7. (Taylor and Maclaurin Expansions)
(a) State the similarity and difference between Taylor and Maclaurin Expansions, if any.
[Hint: compare the explicit formula of the two equations]
(b) Find the Maclaurin series for the following functions:
(i) $e^{a x}$
(ii) $\frac{1}{2} \ln \left|\frac{1+x}{1-x}\right|$
(c) Expand the following functions into Taylor series about $x=a$:
(i) $x^{-1} ; a=-1$;
(ii) $\sin \pi x ; x=\frac{1}{2}$.
8. Determine the interval of convergence of the following series
(a) $\sum \frac{x^{n}}{n^{s}}, s>0$;
(b) $\sum \frac{n!x^{n}}{n^{n}}$;
(c) $\sum n x^{n}$;
(d) $\sum \frac{(-1)^{n-1}}{n}(x+1)^{n}$;
(e) $\sum \frac{n^{2}}{2^{n}}(x+2)^{n}$.
