The Hong Kong Polytechnic University Department of Applied Mathematics

AMA1007 Calculus and Linear Algebra

Tutorial 7

Mean Value Theorem and Indefinite Integrals

1. Apply Mean-value theorem to prove that if $0<a<b$,

$$
\frac{b-a}{1+b^{2}}<\tan ^{-1} b-\tan ^{-1} a<\frac{b-a}{1+a^{2}},
$$

and hence show that

$$
\frac{\pi}{4}+\frac{3}{25}<\tan ^{-1}\left(\frac{4}{3}\right)<\frac{\pi}{4}+\frac{1}{6} .
$$

2. Show that if $f(x)$ is continuous on [a,b] and $f^{\prime}(x)=0$ for all $x \in(a, b)$, then $f(x)$ is constant on (a, b). (Hint: Use the Mean Value Theorem.)
3. Show that if $f(x)$ is continuous on $[a, b]$ and $f^{\prime}(x)=c$ (c is a constant) for all $x \in(a, b)$, then $f(x)=c x+d$ for some real number d. (Hint: Use the result of 2.)
4. Let $f(x)=(x-a)^{m}(x-b)^{n}$ where $a<b$, and m, n are positive integers. Find a point c between a and b such that $f^{\prime}(c)=0$.
5. Suppose f is a function defined on an open interval I and $f^{\prime \prime}(x) \geq 0$ for all $x \in I$. For any $a, b \in I$ with $a<b$, show that $(1-t) f(a)+t f(b) \geq f[(1-t) a+t b]$ for $0 \leq t \leq 1$.
6. Evaluate
(a) $\int\left(1-\frac{1}{x^{2}}\right) \sqrt{x \sqrt{x}} d x$;
(b) $\int(1-x)(1-2 x)(1-3 x) d x$;
(c) $\int\left(2^{x}+3^{x}\right)^{2} d x$; Check your answer with CoCalc Jupyter.
(d) $\int(2 x-3)^{10} d x$;
(e) $\int \frac{1}{\sqrt{x(1-x)}} d x$;
(f) $\int \frac{d x}{x \ln x \ln (\ln x)}$.
7. Find the following integrals by integration by parts:
(a) $\int x^{2} e^{-x} d x$;
(b) $\int e^{x} \sin x d x$;
(c) $\int(\ln x)^{2} d x$.
-End-
