The Hong Kong Polytechnic University

Department of Applied Mathematics

AMA1007 Calculus and Linear Algebra

Tutorial 6

Differentials and L'Hopital's Rule

1. Let y = f(x) be a differentiable function. Show that

$$\lim_{\Delta x \to 0} \frac{\Delta y}{dy} = 1$$

where Δy is the increment in y and dy is the differential of y.

2. Find the differentials of the following functions:

(a)
$$y = \frac{5}{\sqrt{x}}$$
;
(b) $y = (5 - 2x + x^5)^4$;
(c) $y = \sin^{-1} x + (\tan^{-1} x)^2$;
(d) $y = 5^{-\frac{1}{x^2}} + \frac{2}{x^2} - 5x^2$.

- 3. Given the function $y = x^3 + 2x$, find Δy and dy at x = 2 for
 - (a) $\Delta x = 1$;
 - (b) $\Delta x = 0.1$;
 - (c) $\Delta x = 0.01$.
- 4. Approximate the following formulae by differentials for small |x|.

(a)
$$\sqrt{1+x}$$
;
(b) e^x ;
(c) $\ln(1+x)$
(d) $\sin x$

- 5. In a given circle, arc AB subtend a central angle α . Consider the chord AB and the tangent lines to the circle at A and B. Letting S_1 be the area between the chord and the arc, and S_2 the area between the tangents and the arc, find $\lim_{\alpha \to 0} \frac{S_1}{S_2}$.
- 6. Find the following values by the concepts of differential (linear approximation):
 - (a) $\sin 28^{\circ}$
 - (b) ⁵√33
- 7. Evaluate the following limits by L'Hopital's Rule
 - (a) $\lim_{x \to 0} \frac{1 \cos nx}{e^x x 1};$ (b) $\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right);$ (c) $\lim_{x \to 0+} x^x;$ (d) $\lim \frac{\ln x}{e^x - 1}$

(d)
$$\lim_{x \to 0+} \frac{\ln x}{\ln(\ln(1+x))}$$

- 8. By L'Hopital's Rule, consider the following statements:
 - I. $\lim_{x \to 1} \frac{x^3 + x 2}{x^2 3x + 2} = \lim_{x \to 1} \frac{3x^2 + 1}{2x 3} = \lim_{x \to 1} \frac{6x}{2} = 3$.
 - II. $\lim_{x \to 1} \frac{x^2 + 2}{x 3} = \lim_{x \to 1} \frac{2x}{1} = 2$.
 - III. $\lim_{x \to \infty} \frac{2x + \cos x}{x} = \lim_{x \to \infty} (2 \sin x) \text{ doesn't exist. Thus, } \lim_{x \to \infty} \frac{2x + \cos x}{x} \text{ doesn't exist.}$
 - IV. If f is twice continuously differentiable on \mathbb{R} such that f(0) = 1, f'(0) = 0 and

$$f''(0) = -1$$
, then for $a \in \mathbb{R}$, $\lim_{x \to \infty} \left(f\left(\frac{a}{\sqrt{x}}\right) \right)^x = e^{-\frac{a^2}{2}}$.

V. $\lim_{x\to 0^+} (\sin x)^{\tan x} = 1.$

Which of the following statements is true? Briefly explain.

- (a) Only one of the above statements is correct.
- (b) Only two of the above statements are correct.
- (c) Only three of the above statements are correct.
- (d) Only four of the above statements are correct.
- (e) All of the above statements are correct.

-End-