The Hong Kong Polytechnic University

Department of Applied Mathematics

AMA1007 Calculus and Linear Algebra

Tutorial 4

Differentiation techniques

1. Differentiate from (a) to (c) with respect to x.

(a)
$$y = \frac{5x+3}{x-3}e^{-2x}$$
; (b) $y = (\sin x)^{\tan^3 x}$; (c) $y = 5x^3 - 3x^5 + 5e^{\cos x}$.

- 2. Find the first order derivative $\frac{dy}{dx}$ of the following functions: (a) $xy^4 + x^2y = x + 3y$; Check your answer with CoCalc Jupyter. (b) $y \cos x = 1 + \sin(xy)$; (c) $y = \frac{e^{\frac{1}{x}}}{x^2}$; (d) $y\sqrt{1+x^2} = ln(x+\sqrt{1+x^2})$; (e) $y = 3^{x\ln x}$.
- 3. Find h' in terms of f, g, f' and g' for the following functions.

(a)
$$h(x) = \sqrt{\frac{f(x)}{g(x)}}$$
;
(b) $h(x) = f(g(\sin 4x))$


4. If f and g are the functions whose graphs are shown below. Let P(x) = f(x)g(x),

$$Q(x) = \frac{f(x)}{g(x)}$$
, and $C(x) = f(g(x))$.

Find

$$(0) \mathcal{Q}(2)$$

(c) C'(2).

- 5. Find $\frac{dy}{dx}$ of the function $y^2 = x^2 + \sin(xy)$.
- 6. Consider the following statements:

I. If
$$f(x) = \sin^{-1} x$$
, then $f'(x) = \frac{1}{\sqrt{1 - x^2}}$

II. if
$$x = t^3$$
 and $y = 2t^2 - 1$, then $\frac{dy}{dx} = \frac{4}{3\sqrt[3]{x}}$

III. If
$$y = \frac{u^2 - 1}{u^2 + 1}$$
 and $u = \sqrt[3]{x^2 + 2}$, then $\frac{dy}{dx} = \frac{8x}{3\sqrt[3]{x^2 + 2} \left(\left(\sqrt[3]{x^2 + 2} \right)^2 + 1 \right)^2}$.

IV. If f and g are differentiable functions such that f' = -g and g' = -f, then h' cannot be determined where $h = f^2 - g^2$.

V.
$$\frac{d^2 y}{dx^2} = \frac{1}{\frac{d^2 x}{dy^2}}$$
.

Which of the following statements is true? Briefly explain.

- (a) Only one of the above statements is correct.
- (b) Only two of the above statements are correct.
- (c) Only three of the above statements are correct.
- (d) Only four of the above statements are correct.
- (e) All of the above statements are correct.

-End-