The Hong Kong Polytechnic University

Department of Applied Mathematics

AMA1007 Calculus and Linear Algebra

Tutorial 3

Differentiability

- 1. Prove, from the first principle, that if $f(x) = \frac{1}{x^2}$, then $f'(a) = \frac{-2}{a^3}$, for $a \neq 0$.
- 2. Prove the following statements:
 - (a) Suppose that f is differentiable and periodic, with period a, f 'is also periodic.
 - (b) If f is even, then f 'is odd.
 - (c) If f is odd, then f 'is even.
- 3. Suppose that f(a) = g(a) = h(a), $f(x) \le g(x) \le h(x)$ for all x, and f'(a) = h'(a). Prove that g is also differentiable at a such that f'(a) = g'(a) = h'(a).

4. Suppose that f is differentiable at x. Prove that $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$.

5. Find f'(x) for the following functions:

(a)
$$f(x) = \sin((x+1)^2(x+2));$$

(b) $f(x) = (\cos x)^{31^2};$
(c) $f(x) = \sin(\sin(\sin(\sin x)))).$ Check your answer with CoCalc Jupyter.

6. Find the derivatives of the following functions:

(a)
$$y = -2x^5 + \sqrt{3}x^3 + 2\pi x^2 - 12$$
;
(b) $y = \frac{x^5 - x + 2}{x^3 + 7}$;
(c) $y = \sqrt{2x + 7}$;
(d) $y = x \sin x$;
(e) $y = \sin^3(5x + 4)$.

7. Consider the following statements:

- I. If f(x) is continuous, f(x) is also differentiable.
- II. $f(x) = \sqrt[3]{x}$ is differentiable at x = 0.
- III. f(x) = |x-2| is not differentiable at x = 2.

IV.
$$\lim_{h \to 0} \frac{\left(f(a+h)\right)^2 - \left(f(a)\right)^2}{h} \text{ does not exist.}$$

V.
$$f(x) = \frac{3x+3}{x^2-3x-4}$$
 is differentiable everywhere.

Which of the following statements is true? Briefly explain.

- (a) Only one of the above statements is correct.
- (b) Only two of the above statements are correct.
- (c) Only three of the above statements are correct.
- (d) Only four of the above statements are correct.
- (e) All of the above statements are correct.

-End-