Geometric Progression in matrix form

Recall that the sum of the geometric progression is given by
$1+x+x^{2}+x^{3}+\ldots+x^{n}=\frac{1-x^{n+1}}{1-x}=(1-x)^{-1}\left(1-x^{n+1}\right) \quad$ for $(1-x) \neq 0$.
This can be easily verified by multiplying both sides with $1-x$.
Now, consider the matrix version of the sum:

$$
\boldsymbol{I}+\boldsymbol{A}+\boldsymbol{A}^{2}+\boldsymbol{A}^{3}+\cdots+\boldsymbol{A}^{n}=(\boldsymbol{I}-\boldsymbol{A})^{-1}\left(\boldsymbol{I}-\boldsymbol{A}^{n+1}\right)
$$

where $\boldsymbol{I}-\boldsymbol{A}$ is invertible.
We multiply the left hand side from the left with $(\boldsymbol{I}-\boldsymbol{A})$, we have

$$
\begin{aligned}
(\boldsymbol{I}-\boldsymbol{A})\left(\boldsymbol{I}+\boldsymbol{A}+\boldsymbol{A}^{2}+\boldsymbol{A}^{3}+\cdots+\boldsymbol{A}^{n}\right)= & \boldsymbol{I}+\boldsymbol{A}+\boldsymbol{A}^{2}+\boldsymbol{A}^{3}+\cdots+\boldsymbol{A}^{n} \\
& -\boldsymbol{A}-\boldsymbol{A}^{2}-\boldsymbol{A}^{3}-\cdots-\boldsymbol{A}^{n}-\boldsymbol{A}^{n+1} \\
= & \boldsymbol{I}-\boldsymbol{A}^{n+1} .
\end{aligned}
$$

We multiply the right hand side from the left with $(\boldsymbol{I}-\boldsymbol{A})$, we have

$$
\begin{aligned}
(\boldsymbol{I}-\boldsymbol{A})(\boldsymbol{I}-\boldsymbol{A})^{-1}\left(\boldsymbol{I}-\boldsymbol{A}^{n+1}\right) & =\boldsymbol{I}\left(\boldsymbol{I}-\boldsymbol{A}^{n+1}\right) \\
& =\left(\boldsymbol{I}-\boldsymbol{A}^{n+1}\right) .
\end{aligned}
$$

Thus, LHS = RHS .
Suppose \boldsymbol{A}^{n+1} is given, then, we can compute the sum very easily by

$$
\boldsymbol{I}+\boldsymbol{A}+\boldsymbol{A}^{2}+\boldsymbol{A}^{3}+\cdots+\boldsymbol{A}^{n}=(\boldsymbol{I}-\boldsymbol{A})^{-1}\left(\boldsymbol{I}-\boldsymbol{A}^{n+1}\right) .
$$

Example

Consider $\boldsymbol{A}=\left[\begin{array}{ccc}\frac{1}{4} & 2 & \frac{1}{5} \\ 0 & \frac{1}{2} & 2 \\ 0 & 0 & \frac{1}{2}\end{array}\right]$, and suppose given that $\boldsymbol{A}^{8}=\left[\begin{array}{ccc}\frac{1}{65536} & \frac{255}{8129} & \frac{12355}{16384} \\ 0 & \frac{1}{256} & \frac{1}{8} \\ 0 & 0 & \frac{1}{256}\end{array}\right]$.
So $\boldsymbol{I}-\boldsymbol{A}^{8}=\left[\begin{array}{rrr}\frac{65535}{6536} & -\frac{255}{8192} & -\frac{12355}{16384} \\ 0 & \frac{255}{256} & -\frac{1}{8} \\ 0 & 0 & \frac{255}{256}\end{array}\right]$.
Moreover, we can compute $(\boldsymbol{I}-\boldsymbol{A})^{-1}=\left[\begin{array}{rrr}\frac{4}{3} & \frac{16}{3} & \frac{328}{15} \\ 0 & 2 & 8 \\ 0 & 0 & 2\end{array}\right]$. Thus,

$$
\begin{aligned}
\boldsymbol{I}+\boldsymbol{A}+\boldsymbol{A}^{2}+\boldsymbol{A}^{3}+\cdots+\boldsymbol{A}^{7} & =(\boldsymbol{I}-\boldsymbol{A})^{-1}\left(\boldsymbol{I}-\boldsymbol{A}^{8}\right) \\
& =\left[\begin{array}{rrr}
\frac{21845}{16384} & \frac{10795}{2048} & \frac{82367}{4096} \\
0 & \frac{255}{128} & \frac{24}{32} \\
0 & 0 & \frac{255}{128}
\end{array}\right] .
\end{aligned}
$$

Suppose further that, $\left|\lambda_{i}\right|<1$ for every eigenvalue λ_{i} of a matrix \boldsymbol{A}, then $\lim _{n \rightarrow \infty} \boldsymbol{A}^{n}=\boldsymbol{O}$.
$\stackrel{n \rightarrow \infty}{W}$ can then use this result to find the sum

$$
\sum_{n=1}^{\infty} A^{n}=\boldsymbol{I}+\boldsymbol{A}+\boldsymbol{A}^{2}+\boldsymbol{A}^{3}+\ldots=(\boldsymbol{I}-\boldsymbol{A})^{-1}
$$

In the above example, characteristic polynomial of \boldsymbol{A} is given by $\lambda^{3}-\frac{5}{4} \lambda^{2}+\frac{1}{2} \lambda-\frac{1}{16}=\left(\lambda-\frac{1}{4}\right)\left(\lambda-\frac{1}{2}\right)^{2}$.

Therefore, we have $\left|\lambda_{i}\right|<1$ for $i=1,2,3$.
Thus $\sum_{n=1}^{\infty} \boldsymbol{A}^{n}=\boldsymbol{I}+\boldsymbol{A}+\boldsymbol{A}^{2}+\boldsymbol{A}^{3}+\cdots=(\boldsymbol{I}-\boldsymbol{A})^{-1}=\left[\begin{array}{rrr}\frac{4}{3} & \frac{16}{3} & \frac{328}{15} \\ 0 & 2 & 8 \\ 0 & 0 & 2\end{array}\right]$.

