AMA1007 Supplementary Notes: Some common objects in 3D

A plane in 3D in normal form is given by

$$
a x+b y+c z=d
$$

where the coefficients of the x, y and z terms form a vector (a direction vector) $\left[\begin{array}{l}a \\ b \\ \end{array}\right]$ $\left[\begin{array}{l}b \\ c\end{array}\right]$, which gives the normal direction of the plane. Taking any two distinct points on the plane to form a vector (i.e., the direction vector between the two points) would be perpendicular (at right angle) with the normal vector. If $d=0$, then, the plane passes through the origin.

$$
a x+b y+c z=d
$$

Suppose the plane having a normal direction $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ and contains a point (a position vector) $\left[\begin{array}{l}x_{0} \\ y_{0} \\ z_{0}\end{array}\right]$, then, the value of d can be simply found by

$$
a x_{0}+b y_{0}+c z_{0}=d
$$

Example Suppose a plane has normal direction $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$, and suppose the plane contains the point $\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]$, the equation of the plane in normal form is given by

$$
x+2 y-z=(2)+2(-1)-(2)=-2 .
$$

A line in 3D in parametric form is given by

$$
\boldsymbol{r}(t)=\boldsymbol{a}+t \boldsymbol{d}
$$

or

$$
\left[\begin{array}{l}
r_{1}(t) \\
r_{2}(t) \\
r_{3}(t)
\end{array}\right]=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]+t\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right] .
$$

A line is a $1 D$ object, and we need one parameter t. Note that, \boldsymbol{a} is a given fixed point that line passes through, and \boldsymbol{d} is the direction of line is going towards (when t is increasing). We take values of t from $-\infty$ to $+\infty$ and $\boldsymbol{r}(t)$ traces out the line. Note that this respresentation is not unique, any point on the plane can be \boldsymbol{a}, and any non-zero scalar multiple of \boldsymbol{d} is also a direction vector.

Example If two planes in $3 D$ intercept, and the intersection is a line in $3 D$. Suppose the two planes are given by

$$
\begin{aligned}
x+y+z & =1 \\
-x+2 y-z & =-1
\end{aligned}
$$

Solving the two planes using the Gauss-Jordan method:
$\left[\begin{array}{ccc|c}1 & 1 & 1 & 1 \\ -1 & 2 & -1 & \mid \\ -1\end{array}\right] \Longrightarrow\left[\begin{array}{lll|l}1 & 1 & 1 & 1 \\ 0 & 3 & 0 & 0\end{array}\right] \Longrightarrow\left[\begin{array}{lll|l}1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0\end{array}\right] \Longrightarrow$ $\left[\begin{array}{lll|l}1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0\end{array}\right]$ this is in reduced row-echelon form. There are two leading 1s. Column of z has no leading 1 , so we let $z=t$. Thus, from the first row, we can see $x+z=1$, therefore, $x=1-t$. From the second row, we can see $y=0$. Hence, the parametric equation of the line is given by

$$
\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
1-t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] .
$$

A plane in 3D in parametric form is given by

$$
\boldsymbol{r}\left(t_{1}, t_{2}\right)=\boldsymbol{p}+t_{1} \boldsymbol{u}+t_{2} \boldsymbol{v}
$$

or

$$
\left[\begin{array}{l}
r_{1}\left(t_{1}, t_{2}\right) \\
r_{2}\left(t_{1}, t_{2}\right) \\
r_{3}\left(t_{1}, t_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]+t_{1}\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]+t_{2}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] .
$$

A plane is a $2 D$ object in $3 D$ space, and we need two parameters t_{1} and t_{2}. Note that, \boldsymbol{p} is a given fixed point the plane passes through, and \boldsymbol{u} and \boldsymbol{v} are linearly independent vector directions spanning the plane. Again, the representation is not unique.

To convert a plane given in parametric form back to normal form, we can obtain the direction of normal by performing a cross product $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\boldsymbol{u} \times \boldsymbol{v}$, then $d=a p_{1}+b p_{2}+c p_{3}$.

Example Given a plane in parametric form:

$$
\boldsymbol{r}\left(t_{1}, t_{2}\right)=\boldsymbol{p}+t_{1} \boldsymbol{u}+t_{2} \boldsymbol{v}
$$

where $\left[\begin{array}{l}p_{1} \\ p_{2} \\ p_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$, and $\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. The normal direction of the plane is given by $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\boldsymbol{u} \times \boldsymbol{v}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$, then $d=a p_{1}+b p_{2}+c p_{3}=$ $(-1)(1)+(0)(2)+(1)(3)=2$. Therefore, the plane in normal form is given by $-x+z=2$.

To convert a plane given in normal form to parametric form, we can let any two of the three variables x, y, z be the parameters, and then express the remaining variable in terms of the parameters.

Example Suppose a plane given in normal from is $x+y+z=1$. Let $y=t_{1}$, and $z=t_{2}$. Then, $x=1-y-z=1-t_{1}-t_{2}$. Therefore, we have

$$
\left[\begin{array}{l}
x\left(t_{1}, t_{2}\right) \\
y\left(t_{1}, t_{2}\right) \\
z\left(t_{1}, t_{2}\right)
\end{array}\right]=\left[\begin{array}{c}
1-t_{1}-t_{2} \\
t_{1} \\
t_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+t_{1}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+t_{2}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] .
$$

