AMA1007 Supplementary Notes: Find the linear map matrix in 2-D

Consider a 2×2 linear map $\boldsymbol{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ that maps a point (location) $\boldsymbol{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$ on the $x-y$ plane to another point (image) on the $x-y$ plane $\boldsymbol{v}=\left[\begin{array}{ll}v_{1} \\ v_{2}\end{array}\right], \quad$ i.e. $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{v}$, or

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

Suppose we do not know the 2×2 linear map matrix \boldsymbol{A}, but we know the images of the two locations $\boldsymbol{u}_{\boldsymbol{1}}$ and $\boldsymbol{u}_{\boldsymbol{2}}$, i.e.

$$
\begin{aligned}
& \boldsymbol{A} \boldsymbol{u}_{1}=\boldsymbol{v}_{1} \\
& \boldsymbol{A} \boldsymbol{u}_{2}=\boldsymbol{v}_{2}
\end{aligned}
$$

where the locations $\boldsymbol{u}_{\boldsymbol{1}}$ and $\boldsymbol{u}_{\boldsymbol{2}}$ would satisfy a certain condition we will describe below, then, it is possible to find \boldsymbol{A}.

In particular, if we pick $\boldsymbol{u}_{\boldsymbol{1}}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\boldsymbol{u}_{\mathbf{2}}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, then

$$
\begin{aligned}
& \boldsymbol{A} \boldsymbol{u}_{\mathbf{1}}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
a \\
c
\end{array}\right]=\boldsymbol{v}_{\mathbf{1}} \\
& \boldsymbol{A} \boldsymbol{u}_{\mathbf{2}}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
b \\
d
\end{array}\right]=\boldsymbol{v}_{\mathbf{2}}
\end{aligned}
$$

Therefore, the columns of \boldsymbol{A} are just $\boldsymbol{v}_{\mathbf{1}}$ and $\boldsymbol{v}_{\mathbf{2}}$ in this ideal choice of $\boldsymbol{u}_{\mathbf{1}}$ and $\boldsymbol{u}_{\mathbf{2}}$.
Suppose $\boldsymbol{u}_{\boldsymbol{1}}$ and $\boldsymbol{u}_{\boldsymbol{2}}$ are in other "no-so-ideal" general positions, that satisfy a certain condition, we can still find \boldsymbol{A}, but with a bit of more work.

Let $\boldsymbol{u}_{\mathbf{1}}=\left[\begin{array}{l}u_{11} \\ u_{12}\end{array}\right], \boldsymbol{u}_{\mathbf{2}}=\left[\begin{array}{l}u_{21} \\ u_{22}\end{array}\right], \quad$ and $\quad \boldsymbol{v}_{\mathbf{1}}=\left[\begin{array}{l}v_{11} \\ v_{12}\end{array}\right], \boldsymbol{v}_{\mathbf{2}}=\left[\begin{array}{l}v_{21} \\ v_{22}\end{array}\right]$.

$$
\begin{aligned}
& \boldsymbol{A} \boldsymbol{u}_{\mathbf{1}}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
u_{11} \\
u_{12}
\end{array}\right]=\left[\begin{array}{l}
v_{11} \\
v_{12}
\end{array}\right] \\
& \boldsymbol{A} \boldsymbol{u}_{\mathbf{2}}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
u_{21} \\
u_{22}
\end{array}\right]=\left[\begin{array}{l}
v_{21} \\
v_{22}
\end{array}\right] .
\end{aligned}
$$

That means,

$$
\begin{aligned}
u_{11} a+u_{12} b & \\
u_{11} c+u_{12} d & \\
& =v_{11} \\
u_{21} a+u_{22} b & =v_{21} \\
& u_{21} c+u_{22} d
\end{aligned}=v_{22} .
$$

or

$$
\left[\begin{array}{cccc}
u_{11} & u_{12} & 0 & 0 \\
0 & 0 & u_{11} & u_{12} \\
u_{21} & u_{22} & 0 & 0 \\
0 & 0 & u_{21} & u_{22}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
v_{11} \\
v_{12} \\
v_{21} \\
v_{22}
\end{array}\right] .
$$

Therefore, if

$$
\begin{aligned}
\left.\operatorname{det}\left(\begin{array}{cccc}
u_{11} & u_{12} & 0 & 0 \\
0 & 0 & u_{11} & u_{12} \\
u_{21} & u_{22} & 0 & 0 \\
0 & 0 & u_{21} & u_{22}
\end{array}\right]\right) & =-\operatorname{det}\left(\left[\begin{array}{cccc}
u_{11} & u_{12} & 0 & 0 \\
u_{21} & u_{22} & 0 & 0 \\
0 & 0 & u_{11} & u_{12} \\
0 & 0 & u_{21} & u_{22}
\end{array}\right]\right) \\
& =-\left(\operatorname{det}\left(\left[\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22}
\end{array}\right]\right)\right)^{2} \neq 0
\end{aligned}
$$

then, we have a unique solution for $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$.

Example

Find the 2×2 linear map \boldsymbol{A} such that $\boldsymbol{A} \boldsymbol{u}_{\boldsymbol{1}}=\boldsymbol{v}_{\mathbf{1}}$, and $\boldsymbol{A} \boldsymbol{u}_{\mathbf{2}}=\boldsymbol{v}_{\mathbf{2}}$, where $\boldsymbol{u}_{\boldsymbol{1}}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \boldsymbol{u}_{\mathbf{2}}=\left[\begin{array}{l}2 \\ 3\end{array}\right], \quad$ and $\quad \boldsymbol{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \boldsymbol{v}_{\mathbf{2}}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$.
We check that $\operatorname{det}\left(\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 2 & 3 & 0 & 0 \\ 0 & 0 & 2 & 3\end{array}\right]\right)=-\left(\operatorname{det}\left(\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]\right)\right)^{2}=-1 \neq 0$, thus it
is possible to find \boldsymbol{A}. Using the technique presented above, we solve the system

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
2 & 3 & 0 & 0 \\
0 & 0 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

and obtain $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 0\end{array}\right]$. Therefore, the linear map is given by $\boldsymbol{A}=\left[\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right]$.

