AMA1007 Supplementary Notes: Hill Cipher

Consider the following mapping from characters (including some special characters) to numbers from 0 to 28 :

A	B	C	D	E	F	G	H	I	J
0	1	2	3	4	5	6	7	8	9

K	L	M	N	O	P	Q	R	S	T
10	11	12	13	14	15	16	17	18	19

U	V	W	X	Y	Z	\cdot	$?$	-
20	21	22	23	24	25	26	27	28

Consider a message we would like to encrypt: "LINEAR_ALGEBRA?".
According to the above assignment of characters to numbers, the message can be converted to:
$" 11,8,13,4,0,17,28,0,11,6,4,1,17,0,27 "$.
Then, we get any invertible 3×3 matrix, say, $\boldsymbol{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$. This invertible matrix is called the Hill-3-cipher matrix. We can use this to convert the message 3 characters at a time.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
11 \\
8 \\
13
\end{array}\right]=\left[\begin{array}{l}
66 \\
21 \\
19
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
4 \\
0 \\
17
\end{array}\right]=\left[\begin{array}{c}
55 \\
17 \\
4
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
28 \\
0 \\
11
\end{array}\right]=\left[\begin{array}{l}
61 \\
11 \\
28
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
6 \\
4 \\
1
\end{array}\right]=\left[\begin{array}{c}
17 \\
5 \\
10
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
17 \\
0 \\
27
\end{array}\right]=\left[\begin{array}{c}
98 \\
27 \\
17
\end{array}\right]}
\end{aligned}
$$

Thus, the above message is now:
$" 66,21,19,55,17,4,61,11,28,17,5,10,98,27,17 "$.
Then, we take the values modulo 29 (that is to say, when the number exceeds 28 , we divide it by 29 and get the remainder; that is the same as, to add or subtract integer multiple of 29 to the number to make it within the range from 0 to 28.). Thus, the encrypted message is:
$" 8,21,19,26,17,4,3,11,28,17,5,10,11,27,17 "$.
Mapping the numbers back to characters, we have: "IVT. REDL_RFKL?R".
The message is then transmitted to the other party.
To recover the original message, the receiver would need to multiply the message with $\boldsymbol{A}^{-1}=\left[\begin{array}{ccc}1 / 2 & -3 / 2 & 1 / 2 \\ -1 / 2 & 3 / 2 & 1 / 2 \\ 1 / 2 & -1 / 2 & -1 / 2\end{array}\right]$. For example, the first three characters, multiply with \boldsymbol{A}^{-1} :

$$
\left[\begin{array}{ccc}
1 / 2 & -3 / 2 & 1 / 2 \\
-1 / 2 & 3 / 2 & 1 / 2 \\
1 / 2 & -1 / 2 & -1 / 2
\end{array}\right]\left[\begin{array}{c}
8 \\
21 \\
19
\end{array}\right]=\left[\begin{array}{c}
-18 \\
37 \\
-16
\end{array}\right] .
$$

Since the result is out of the range from 0 to 28 , we apply Modular arithmetic again (that is to say, add or subtract integer multiple of 29 to the number to make it inside the range from 0 to 28). Thus

$$
\begin{aligned}
-18+29 & =11 \\
37-29 & =8 \\
-16+29 & =13
\end{aligned}
$$

Thus, we recover the first three characters "LIN".

