AMA1007 Supplementary Notes: Cylindrical Shell Method to find the volume of rotation

Consider the graph $y=f(x)$ for $0 \leq x \leq b$, where f is continuous and $f \geq 0$. For illustration purposes, let us further impose on f, that f is a one-to-one function. If the graph is rotated about the y-axis, then, there are two solids generated, namely, the Inner Solid and the Outer Solid.

When rotate a piece of graph about the y axis, two solids generated

For the Inner Solid, we can find its volume directly using the usual integral (Riemann sum of delta volume of disks), if f is one-to-one, $f(0)=\alpha$, and $f(b)=\beta$.

$$
V=\int_{\alpha}^{\beta} \pi(x)^{2} d y=\int_{\alpha}^{\beta} \pi\left(f^{-1}(y)\right)^{2} d y
$$

For the Outer Solid, we can also find its volume directly using a method called the Cylindrical Shell method (which is the Riemann sum of delta volume of shells of cylinders):

$$
V=\int_{0}^{b} 2 \pi x f(x) d x
$$

Volume of the Shell cylinder is given by 2 pi $x f(x) d x$

In general, the volume of the "Outer Solid" generated by rotating $y=f(x)$ for $0 \leq a \leq x \leq b$ about the y-axis is given by

$$
V=\int_{a}^{b} 2 \pi x f(x) d x
$$

Note that the Cylindrical Shell method can be applied to f of which it is not even a one-to-one function:

Example

Consider $y=\sqrt{x+1}$ for $0 \leq x \leq 1$. The volume of the "Outer Solid" generated by rotating the graph about the y-axis is given by

$$
V_{1}=\int_{0}^{1} 2 \pi x \sqrt{x+1} d x=\frac{8}{15} \pi(\sqrt{2}+1)
$$

Of course we can also check the volume of the "Inner Solid" directly by the disks method. Since $y=\sqrt{x+1}$, then, $y^{2}=x+1$, or $x=y^{2}-1$. Thus, $x^{2}=\left(y^{2}-1\right)^{2}$. When $x=0, y=1$. And when $x=1, y=\sqrt{2}$. Thus, the volume of the "Inner Solid" is given by

$$
V_{2}=\int_{1}^{\sqrt{2}} \pi x^{2} d y=\int_{1}^{\sqrt{2}} \pi\left(y^{2}-1\right)^{2} d y=\frac{1}{15} \pi(7 \sqrt{2}-8)
$$

We can check with the volume of the upright Cylinder made-up by these two solids: a cylinder with height $\sqrt{2}$, and cross-section a circle with radius 1 , the volume is given by $\sqrt{2} \pi$. And of course, $V_{1}+V_{2}=\sqrt{2} \pi$.

