AMA1007 Supplementary Notes: To find the area of the surface by rotation

Consider the graph of $y=f(x)$ for $a \leq x \leq b$ where f is differentiable on (a, b). Recall that the arc-length is given by

$$
\int d s=\int_{a}^{b} \sqrt{1+\left(\frac{d}{d x} f(x)\right)^{2}} d x
$$

The Area of the Surface of Rotation about x-axis (the area of the surface generated by rotating $f(x)$ about the x-axis) is given by

$$
\begin{aligned}
S & =\int_{x=a}^{x=b} 2 \pi y d s \\
& =\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(\frac{d}{d x} f(x)\right)^{2}} d x
\end{aligned}
$$

Suppose f^{-1} exists, i.e., we have $x=f^{-1}(y)$. Then, the Area of the Surface of Rotation about y-axis (the area of the surface generated by rotating $f(x)$ about the x-axis) is given by

$$
\begin{aligned}
S & =\int_{x=a}^{x=b} 2 \pi x d s \\
& =\int_{a}^{b} 2 \pi x \sqrt{1+\left(\frac{d}{d x} f(x)\right)^{2}} d x
\end{aligned}
$$

Example Consider the graph of $y=\sqrt{x+1}$ where $0 \leq x \leq 1$. The area of the surface generated by rotation of the graph about the x-axis is given by

$$
S=\int_{x=0}^{x=1} 2 \pi f(x) d s
$$

Finding $d s$, we have

$$
d s=\sqrt{1+\left(\frac{d}{d x} f(x)\right)^{2}}=\sqrt{1+\left(\frac{1}{2 \sqrt{x+1}}\right)^{2}}=\frac{1}{2} \sqrt{\frac{4 x+5}{x+1}}
$$

Thus,

$$
S=\int_{0}^{1} 2 \pi \sqrt{x+1} \cdot \frac{1}{2} \sqrt{\frac{4 x+5}{x+1}} d x=\int_{0}^{1} \pi \sqrt{4 x+5} d x=\frac{1}{6} \pi(27-5 \sqrt{5}) \approx 8.2831
$$

The area of the surface generated by rotation of the graph about the y-axis is given by

$$
S=\int_{x=0}^{x=1} 2 \pi x d s
$$

Thus,

$$
\begin{aligned}
S & =\int_{0}^{1} 2 \pi x \cdot \frac{1}{2} \sqrt{\frac{4 x+5}{x+1}} d x=\int_{0}^{1} \pi x \sqrt{\frac{4 x+5}{x+1}} d x \\
& =\frac{1}{64} \pi(28 \sqrt{5}+12 \sqrt{2}+17 \log (4 \sqrt{5}+9)-17 \log (12 \sqrt{2}+17)) \\
& \approx 3.37380 .
\end{aligned}
$$

