AMA1007 Supplementary Notes: To find the closest point from an ellipse to a given point

An ellipse in 2-D in standard position (centered at the origin and not tilted) can be expressed in the form of an implicit equation as

$$
\frac{x^{2}}{r_{1}^{2}}+\frac{y^{2}}{r_{2}^{2}}=1
$$

where r_{1} and r_{2} are the major and minor radius. In general, an ellipse not in standard position (and non-degenerate) can be expressed in the form of an implicit equation as

$$
a x^{2}+b x y+c y^{2}+d x+e y+f=1,
$$

where $b^{2}-4 a c<0$.
An ellipse in 2-D not in standard position can also be expressed in parametric form:

$$
\begin{aligned}
x(t) & =r_{1} \cos (\alpha) \cos (t)-r_{2} \sin (\alpha) \sin (t)+c_{x} \\
y(t) & =r_{1} \sin (\alpha) \cos (t)+r_{2} \cos (\alpha) \sin (t)+c_{y}
\end{aligned}
$$

where t is the parameter varying in $[-\pi, \pi]$, the ellipse is centered at $\left(c_{x}, c_{y}\right)$, and titled with an angle α with the x-axis measured in counter-clockwise direction. From the parametric form, the implicit equation can be recovered:

$$
\begin{aligned}
a & =r_{1}^{2} \sin ^{2}(\alpha)+r_{2}^{2} \cos ^{2}(\alpha) \\
b & =2\left(r_{2}^{2}-r_{1}^{2}\right) \sin (\alpha) \cos (\alpha) \\
c & =r_{1}^{2} \cos ^{2}(\alpha)+r_{2}^{2} \sin ^{2}(\alpha) \\
d & =-2 a c_{x}-b c_{y} \\
e & =-b c_{x}-2 c c_{y} \\
f & =a c_{x}^{2}+b c_{x} c_{y}+c c_{y}^{2}-r_{1}^{2} r_{2}^{2}
\end{aligned}
$$

Consider a fixed point P_{1} with coordinate $\left(x_{0}, y_{0}\right)$. To find the closest point on the ellipse to P_{1}, we first formulate the square of the distance from a point on the ellipse to P_{1} in parametric form

$$
\begin{aligned}
D S(t)= & \left(x(t)-x_{0}\right)^{2}+\left(y(t)-y_{0}\right)^{2} \\
= & \left(r_{1} \cos (\alpha) \cos (t)-r_{2} \sin (\alpha) \sin (t)+c_{x}-x_{0}\right)^{2} \\
& +\left(r_{1} \sin (\alpha) \cos (t)+r_{2} \cos (\alpha) \sin (t)+c_{y}-y_{0}\right)^{2}
\end{aligned}
$$

Finding the candidates for global minimum of $D S$ with respect to t, we solve

$$
\frac{d}{d t} D S(t)=0
$$

for $t=t_{0}, t_{1}, t_{2}, t_{3}$. Note, it is possible to have a total of

- 4 real roots within $-\pi \leq t \leq \pi$ (2 maxima (with which 1 is a global max and 1 is just a local max) and 2 minima (with which 1 is a global min and 1 is just a local min)), or
- 3 real roots ($1 \mathrm{max}, 1 \mathrm{~min}$, and a double root neither max nor min), or
- 2 real roots (1 max and 1 min).

Then, we check to see if $\frac{d^{2}}{d t^{2}} D S\left(t_{i}\right)>0$ for $i=0,1,2,3$, i.e, to see which are local minima. Suppose two such local minima were found in the 4 real roots situation, we compare the value of $D S$ to get the global minimum.

When the solution (value of t_{0} that minimize $D S(\cdot)$) cannot not be easily obtained analytically, one would then seek for a numerical solution for t_{0}.

Example Consider a fixed point P_{1} given by (3, 2), and an ellipse

$$
\begin{aligned}
x(t) & =2 \cos (\pi / 4) \cos (t)-\sin (\pi / 4) \sin (t)+3, \\
y(t) & =2 \sin (\pi / 4) \cos (t)+\cos (\pi / 4) \sin (t) .
\end{aligned}
$$

The square of the distance from a point on the ellipse to P_{1} in parametric form

$$
\begin{aligned}
D S(t) & =(x(t)-3)^{2}+(y(t)-2)^{2} \\
& =\left(\sqrt{2} \cos (t)-\frac{\sqrt{2}}{2} \sin (t)\right)^{2}+\left(\sqrt{2} \cos (t)+\frac{\sqrt{2}}{2} \sin (t)-2\right)^{2}
\end{aligned}
$$

Solving $\quad \frac{d}{d t} D S(t)=0 \quad$ yields $\quad \sin (t)=-\frac{2 \cos (t)}{3 \sqrt{2} \cos (t)-4}$. We thus resolve to find the roots numerically.

Within $t \in(-\pi, \pi)$ there are two roots for $\frac{d}{d t} D S(t)=0$, namely

$$
\begin{aligned}
& t_{0} \approx 0.934295578, \text { and } \\
& t_{1} \approx-2.900080183 .
\end{aligned}
$$

We further check that t_{0} has positive second derivative, thus, t_{0} is a minimum, whereas, t_{1} has a negative second derivative, and thus, a maximum.

The closest point on the ellipse to P_{1} is thus given by
$x\left(t_{0}\right) \approx 3.271925$ and $y\left(t_{0}\right) \approx 1.409229$.

