AMA1007 Supplementary Notes: To find the closest points between two parabolas

Assuming two non-intersecting parabolas are given by

$$
\begin{aligned}
& P_{1}: \quad y=f_{1}(x)=a_{2} x^{2}+a_{1} x+a_{0} \\
& P_{2}: \quad y=f_{2}(x)=b_{2} x^{2}+b_{1} x+b_{0}
\end{aligned}
$$

Let the closest points be $\left(x_{1}, y_{1}\right)$ on P_{1}, and $\left(x_{2}, y_{2}\right)$ on P_{2}.
The square of the distance between the two points is given by

$$
\begin{aligned}
D^{2}\left(x_{1}, x_{2}\right) & =\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
& =\left(x_{2}-x_{1}\right)^{2}+\left(b_{2} x_{2}^{2}+b_{1} x_{2}+b_{0}-a_{2} x_{1}^{2}-a_{1} x_{1}-a_{0}\right)^{2}
\end{aligned}
$$

At the closest points, $\left(x_{1}, y_{1}\right)$ on P_{1} and $\left(x_{2}, y_{2}\right)$ on P_{2}, the tangent lines on the respective parabolas must have the same slope. Therefore, we have $f_{1}^{\prime}\left(x_{1}\right)=f_{2}^{\prime}\left(x_{2}\right)$, or

$$
2 a_{2} x_{1}+a_{1}=2 b_{2} x_{2}+b_{1}
$$

Hence, we have

$$
x_{2}=\frac{2 a_{2} x_{1}+a_{1}-b_{1}}{2 b_{2}} .
$$

Substituting this into D^{2}, the square of the distance would be in terms of x_{1} only, i.e., $D^{2}\left(x_{1}\right)$.

Therefore, minimizing $D^{2}\left(x_{1}\right)$ would yield the closest distance. So, by solving x_{1} from $\frac{d}{d x_{1}} D^{2}\left(x_{1}\right)=0$ would give the candidate position x_{1}^{0}. Moreover, check to see if $\frac{d^{2}}{d x_{1}^{2}} D^{2}\left(x_{1}^{0}\right)>0$ to ensure x_{1}^{0} is indeed a minimum.

Example Find the closest points between the two parabolas:

$$
\begin{aligned}
& P_{1}: \quad y=x^{2} \\
& P_{2}: y=-x^{2}-16 x-65
\end{aligned}
$$

Thus, the square distance is given by

$$
D^{2}\left(x_{1}, x_{2}\right)=\left(x_{2}-x_{1}\right)^{2}+\left(-x_{2}^{2}-16 x_{2}-65-x_{1}^{2}\right)^{2}
$$

and at the closest points with equal slope of tangents yield

$$
x_{2}=\frac{2 x_{1}-(-16)}{2(-1)}=-x_{1}-8
$$

Hence,

$$
\begin{aligned}
D^{2}\left(x_{1}\right) & =\left(-2 x_{1}-8\right)^{2}+\left(-\left(-x_{1}-8\right)^{2}-16\left(-x_{1}-8\right)-65-x_{1}^{2}\right)^{2} \\
& =4 x_{1}^{4}+8 x_{1}^{2}+32 x_{1}+65 .
\end{aligned}
$$

Solving x_{1} from $\frac{d}{d x_{1}} D^{2}\left(x_{1}\right)=0$ gives

$$
16 x_{1}^{3}+16 x_{1}+32=16\left(x_{1}+1\right)\left(x_{1}^{2}-x_{1}+2\right)==0
$$

$x_{1}=-1$ is the only real solution, thus we have the candidate $x_{1}=-1$. Check and find that $\frac{d^{2}}{d x_{1}^{2}} D^{2}(-1)>0$, thus, $x_{1}=-1$ is the minimum point.
Moreover, $x_{2}=-(-1)-8=-7$.
The closest points are $(-1,1)$ on P_{1} and $(-7,-2)$ on P_{2}, and the distance between them is $\sqrt{45}=3 \sqrt{5}$.

