AMA1007 Supplementary Notes: To find the closest points between two parabolas

Assuming two non-intersecting parabolas are given by

$$P_1: \quad y = f_1(x) = a_2 x^2 + a_1 x + a_0,$$

$$P_2: \quad y = f_2(x) = b_2 x^2 + b_1 x + b_0.$$

Let the closest points be (x_1, y_1) on P_1 , and (x_2, y_2) on P_2 .

The square of the distance between the two points is given by

$$D^{2}(x_{1}, x_{2}) = (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}$$

= $(x_{2} - x_{1})^{2} + (b_{2}x_{2}^{2} + b_{1}x_{2} + b_{0} - a_{2}x_{1}^{2} - a_{1}x_{1} - a_{0})^{2}.$

At the closest points, (x_1, y_1) on P_1 and (x_2, y_2) on P_2 , the tangent lines on the respective parabolas must have the same slope. Therefore, we have $f'_1(x_1) = f'_2(x_2)$, or

$$2a_2x_1 + a_1 = 2b_2x_2 + b_1$$

Hence, we have

$$x_2 = \frac{2a_2x_1 + a_1 - b_1}{2b_2}$$

Substituting this into D^2 , the square of the distance would be in terms of x_1 only, i.e., $D^2(x_1)$.

Therefore, minimizing $D^2(x_1)$ would yield the closest distance. So, by solving x_1 from $\frac{d}{dx_1}D^2(x_1) = 0$ would give the candidate position x_1^0 . Moreover, check to see if $\frac{d^2}{dx_1^2}D^2(x_1^0) > 0$ to ensure x_1^0 is indeed a minimum.

Example Find the closest points between the two parabolas:

$$P_1: \quad y = x^2, P_2: \quad y = -x^2 - 16x - 65$$

Thus, the square distance is given by

$$D^{2}(x_{1}, x_{2}) = (x_{2} - x_{1})^{2} + (-x_{2}^{2} - 16x_{2} - 65 - x_{1}^{2})^{2},$$

and at the closest points with equal slope of tangents yield

$$x_2 = \frac{2x_1 - (-16)}{2(-1)} = -x_1 - 8.$$

Hence,

$$D^{2}(x_{1}) = (-2x_{1} - 8)^{2} + (-(-x_{1} - 8)^{2} - 16(-x_{1} - 8) - 65 - x_{1}^{2})^{2}$$

= $4x_{1}^{4} + 8x_{1}^{2} + 32x_{1} + 65.$

Solving x_1 from $\frac{d}{dx_1}D^2(x_1) = 0$ gives

$$16x_1^3 + 16x_1 + 32 = 16(x_1 + 1)(x_1^2 - x_1 + 2) = = 0.$$

 $x_1 = -1$ is the only real solution, thus we have the candidate $x_1 = -1$. Check and find that $\frac{d^2}{dx_1^2}D^2(-1) > 0$, thus, $x_1 = -1$ is the minimum point.

Moreover, $x_2 = -(-1) - 8 = -7$.

The closest points are (-1,1) on P_1 and (-7,-2) on P_2 , and the distance between them is $\sqrt{45} = 3\sqrt{5}$.