AMA1007 Supplementary Notes: another nice application of linear algebra:

To find the closest points between 2 lines in 3D

Suppose two straight lines in 3D are given in parametric form (and assuming they are not intersecting):

$$
\begin{array}{ll}
\text { line } L_{1}: & \boldsymbol{r}_{\mathbf{1}}(t)=\boldsymbol{a}_{\mathbf{1}}+t \boldsymbol{d}_{\mathbf{1}} \\
\text { line } L_{2}: & \boldsymbol{r}_{\mathbf{2}}(t)=\boldsymbol{a}_{\mathbf{2}}+t \boldsymbol{d}_{\mathbf{2}}
\end{array}
$$

or

$$
\begin{aligned}
& \text { line } L_{1}:\left[\begin{array}{l}
r_{11}(t) \\
r_{12}(t) \\
r_{13}(t)
\end{array}\right]=\left[\begin{array}{l}
a_{11} \\
a_{12} \\
a_{13}
\end{array}\right]+t\left[\begin{array}{l}
d_{11} \\
d_{12} \\
d_{13}
\end{array}\right] \\
& \text { line } L_{2}:\left[\begin{array}{l}
r_{21}(t) \\
r_{22}(t) \\
r_{23}(t)
\end{array}\right]=\left[\begin{array}{l}
a_{21} \\
a_{22} \\
a_{23}
\end{array}\right]+t\left[\begin{array}{l}
d_{21} \\
d_{22} \\
d_{23}
\end{array}\right]
\end{aligned}
$$

Note that, $\boldsymbol{a}_{\boldsymbol{1}}$ is a given fixed point that line L_{1} passes through, and $\boldsymbol{a}_{\boldsymbol{2}}$ is a given fixed point that line L_{2} passes through. Moreover, $\boldsymbol{d}_{\mathbf{1}}$ is direction of line L_{1} is going towards (when t is increasing), and $\boldsymbol{d}_{\mathbf{2}}$ is the direction of line L_{2} is going towards (when t is increasing). We take values of t from $-\infty$ to $+\infty$ of each of $\boldsymbol{r}_{\mathbf{1}}(t)$ and $\boldsymbol{r}_{\mathbf{2}}(t)$ to trace out the two lines.

Suppose $\boldsymbol{P}_{\mathbf{1}}$ is the point on line L_{1} closest to L_{2}, and $\boldsymbol{P}_{\mathbf{2}}$ is the point in line L_{2} closest to L_{1}. Let t_{1} be the parameter that $\boldsymbol{r}_{\mathbf{1}}\left(t_{1}\right)=\boldsymbol{P}_{\mathbf{1}}$, and t_{2} be the parameter that $\boldsymbol{r}_{\mathbf{2}}\left(t_{2}\right)=\boldsymbol{P}_{\mathbf{2}}$.

The line segment $\boldsymbol{P}_{\mathbf{1}}-\boldsymbol{P}_{\mathbf{2}}$ must be perpendicular to both lines L_{1} and L_{2}. Let the direction of this line segment be $\boldsymbol{d}_{\mathbf{3}}$. Hence, the direction of this line segment can be obtained by performing a cross product of $\boldsymbol{d}_{\mathbf{1}}$ and $\boldsymbol{d}_{\mathbf{2}}$, i.e., $\boldsymbol{d}_{\mathbf{3}}=\boldsymbol{d}_{\mathbf{1}} \times \boldsymbol{d}_{\mathbf{2}}$.

Let the parametric form of this line segment be $\boldsymbol{r}_{\mathbf{3}}(t)=\boldsymbol{P}_{\mathbf{1}}+t \boldsymbol{d}_{\mathbf{3}}$. At $t=0$, $\boldsymbol{r}_{\mathbf{3}}(0)=\boldsymbol{P}_{\mathbf{1}}$, and suppose at $t=t_{3}, \boldsymbol{r}_{\mathbf{3}}\left(t_{3}\right)=\boldsymbol{P}_{\mathbf{2}}$.

Therefore, we have

$$
\boldsymbol{P}_{\mathbf{1}}+t_{3} \boldsymbol{d}_{\mathbf{3}}=\boldsymbol{P}_{\mathbf{2}}
$$

or

$$
\boldsymbol{a}_{\mathbf{1}}+t_{1} \boldsymbol{d}_{\mathbf{1}}+t_{3} \boldsymbol{d}_{\mathbf{3}}=\boldsymbol{a}_{\mathbf{2}}+t_{2} \boldsymbol{d}_{\mathbf{2}}
$$

After re-arranging it, we have

$$
t_{1} \boldsymbol{d}_{\mathbf{1}}-t_{2} \boldsymbol{d}_{\mathbf{2}}+t_{3} \boldsymbol{d}_{\mathbf{3}}=\boldsymbol{a}_{\mathbf{2}}-\boldsymbol{a}_{\mathbf{1}}
$$

That is to say

$$
\left[\begin{array}{lll}
d_{11} & -d_{21} & d_{31} \\
d_{12} & -d_{23} & d_{32} \\
d_{13} & -d_{24} & d_{33}
\end{array}\right]\left[\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{21}-a_{11} \\
a_{22}-a_{12} \\
a_{23}-a_{13}
\end{array}\right]
$$

We can then solve for t_{1}, t_{2}, and t_{3}, and thus get the closest points $\boldsymbol{P}_{\mathbf{1}}=\boldsymbol{r}_{\mathbf{1}}\left(t_{1}\right)$, $\boldsymbol{P}_{\mathbf{2}}=\boldsymbol{r}_{\mathbf{2}}\left(t_{2}\right)$. Moreover, the distance between them is given by the norm (length) of $t_{3} d_{3}$.

Example We use the technique to find the closest points on these two lines:

$$
\begin{aligned}
\text { line } L_{1}:\left[\begin{array}{l}
r_{11}(t) \\
r_{12}(t) \\
r_{13}(t)
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+t\left[\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right] \\
\text { line } L_{2}:\left[\begin{array}{l}
r_{21}(t) \\
r_{22}(t) \\
r_{23}(t)
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+t\left[\begin{array}{c}
-2 \\
-1 \\
1
\end{array}\right]
\end{aligned}
$$

The direction $\boldsymbol{d}_{\mathbf{3}}$ is given by

$$
\boldsymbol{d}_{\mathbf{3}}=\boldsymbol{d}_{\mathbf{1}} \times \boldsymbol{d}_{\mathbf{2}}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
3 & 2 & -1 \\
-2 & -1 & 1
\end{array}\right|=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

Hence, we solve the system

$$
\left[\begin{array}{ccc}
3 & 2 & 1 \\
2 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
0 \\
0
\end{array}\right] .
$$

Solving it yield $t_{1}=0, t_{2}=-\frac{2}{3}$, and $t_{3}=-\frac{2}{3}$. Therefore, the closest point are $\boldsymbol{r}_{\mathbf{1}}(0)=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ on line L_{1}, and $\boldsymbol{r}_{\mathbf{2}}\left(-\frac{2}{3}\right)=\left[\begin{array}{c}\frac{1}{3} \\ \frac{2}{3} \\ \frac{1}{3}\end{array}\right]$ on line L_{2}.
The distace between them is $\left\|t_{3} \boldsymbol{d}_{\mathbf{3}}\right\|=\frac{2}{3} \sqrt{3}$.

