AMA1007 Supplementary Notes: another nice application of linear algebra:To find the closest points between 2 lines in 3D

Suppose two straight lines in 3D are given in parametric form (and assuming they are not intersecting):

line L_1 : $r_1(t) = a_1 + td_1$ *line* L_2 : $r_2(t) = a_2 + td_2$

or

$$line \ L_1: \begin{bmatrix} r_{11}(t) \\ r_{12}(t) \\ r_{13}(t) \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{12} \\ a_{13} \end{bmatrix} + t \begin{bmatrix} d_{11} \\ d_{12} \\ d_{13} \end{bmatrix}$$
$$line \ L_2: \begin{bmatrix} r_{21}(t) \\ r_{22}(t) \\ r_{23}(t) \end{bmatrix} = \begin{bmatrix} a_{21} \\ a_{22} \\ a_{23} \end{bmatrix} + t \begin{bmatrix} d_{21} \\ d_{22} \\ d_{23} \end{bmatrix}$$

Note that, a_1 is a given fixed point that line L_1 passes through, and a_2 is a given fixed point that line L_2 passes through. Moreover, d_1 is direction of line L_1 is going towards (when t is increasing), and d_2 is the direction of line L_2 is going towards (when t is increasing). We take values of t from $-\infty$ to $+\infty$ of each of $r_1(t)$ and $r_2(t)$ to trace out the two lines.

Suppose P_1 is the point on line L_1 closest to L_2 , and P_2 is the point in line L_2 closest to L_1 . Let t_1 be the parameter that $r_1(t_1) = P_1$, and t_2 be the parameter that $r_2(t_2) = P_2$.

The line segment $P_1 - P_2$ must be perpendicular to both lines L_1 and L_2 . Let the direction of this line segment be d_3 . Hence, the direction of this line segment can be obtained by performing a cross product of d_1 and d_2 , i.e., $d_3 = d_1 \times d_2$.

Let the parametric form of this line segment be $\mathbf{r_3}(t) = \mathbf{P_1} + t\mathbf{d_3}$. At t = 0, $\mathbf{r_3}(0) = \mathbf{P_1}$, and suppose at $t = t_3$, $\mathbf{r_3}(t_3) = \mathbf{P_2}$.

Therefore, we have

$$\boldsymbol{P_1} + t_3 \boldsymbol{d_3} = \boldsymbol{P_2},$$

or

$$a_1 + t_1 d_1 + t_3 d_3 = a_2 + t_2 d_2.$$

After re-arranging it, we have

$$t_1 d_1 - t_2 d_2 + t_3 d_3 = a_2 - a_1.$$

That is to say

$$\begin{bmatrix} d_{11} & -d_{21} & d_{31} \\ d_{12} & -d_{23} & d_{32} \\ d_{13} & -d_{24} & d_{33} \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} = \begin{bmatrix} a_{21} - a_{11} \\ a_{22} - a_{12} \\ a_{23} - a_{13} \end{bmatrix}$$

We can then solve for t_1 , t_2 , and t_3 , and thus get the closest points $P_1 = r_1(t_1)$, $P_2 = r_2(t_2)$. Moreover, the distance between them is given by the norm (length) of t_3d_3 .

Example We use the technique to find the closest points on these two lines:

$$line \ L_1: \begin{bmatrix} r_{11}(t) \\ r_{12}(t) \\ r_{13}(t) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix}$$
$$line \ L_2: \begin{bmatrix} r_{21}(t) \\ r_{22}(t) \\ r_{23}(t) \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}$$

The direction d_3 is given by

$$d_3 = d_1 \times d_2 = \begin{vmatrix} i & j & k \\ 3 & 2 & -1 \\ -2 & -1 & 1 \end{vmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{vmatrix}.$$

Hence, we solve the system

$$\begin{bmatrix} 3 & 2 & 1 \\ 2 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix}.$$

Solving it yield $t_1 = 0$, $t_2 = -\frac{2}{3}$, and $t_3 = -\frac{2}{3}$. Therefore, the closest point are $\boldsymbol{r_1}(0) = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$ on line L_1 , and $\boldsymbol{r_2}(-\frac{2}{3}) = \begin{bmatrix} \frac{1}{3}\\\frac{2}{3}\\\frac{1}{3} \end{bmatrix}$ on line L_2 . The distace between them is $||t_3\boldsymbol{d_3}|| = \frac{2}{3}\sqrt{3}$.