Three Practice Questions (no need to submit)

Q1. Consider the rational function $f(x) = \frac{x-3}{x^2-3x-3}$, and the power series of this rational function centered at x = 0, that is, $\sum_{n=1}^{\infty} a_n x^n$.

Consider the technique presented in supplementary notes: https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary10.pdf

- **Ans:** $a_0 = 1, a_1 = \frac{-4}{3}.$ (a) Find a_0 and a_1 .
- (b) For $n \geq 2$, obtain the linear equation of a_n in terms of a_{n-1} and a_{n-2} . Moreover, use this equation and the results obtained in (a) to find a_2 , a_3 , a_4 , a_5 . Express your answers as rational numbers only.

Ans:
$$a_n = \frac{a_{n-2} - 5a_{n-1}}{3}$$
.
 $a_2 = \frac{5}{3}, a_3 = \frac{-19}{9}, a_4 = \frac{8}{3}, a_5 = \frac{-91}{27}$.

(c) Let $L = \lim_{n \to \infty} \frac{a_n}{a_{n-1}}$. Determine the value of L. Ans: L is negative, and $L = -\frac{\sqrt{21}}{6} - \frac{1}{2}$.

(d) Find the radius of convergence of the power series.

Ans:
$$\frac{6}{\sqrt{3}\sqrt{7}+3}$$
.

Q2. Consider the rational function $y = \frac{16x}{4x^2 + 1}$. The function has three inflection points.

(a) Find all inflection points of the given rational function, list them one by one by their xy-coordinates.

Ans:
$$(x_0, y_0) = (\frac{-\sqrt{3}}{2}, -2\sqrt{3})$$

 $(x_1, y_1) = (\frac{\sqrt{3}}{2}, 2\sqrt{3})$
 $(x_2, y_2) = (0, 0)$

(b) Use the technique presented in supplementary notes (Determinant): https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary12.pdf determine if the three inflection points are collinear or not.

Ans:
$$\begin{vmatrix} 1 & 1 & 1 \\ -\frac{1}{2}\sqrt{3} & \frac{1}{2}\sqrt{3} & 0 \\ -2\sqrt{3} & 2\sqrt{3} & 0 \end{vmatrix} = 0.$$

Thus, the three inflection points are collinear.

Q3. Consider
$$A = \begin{bmatrix} \frac{1}{2} & 1 \\ 0 & \frac{1}{3} \end{bmatrix}$$
, and suppose given that $A^8 = \begin{bmatrix} \frac{1}{256} & \frac{6305}{279936} \\ 0 & \frac{1}{6561} \end{bmatrix}$.

Consider the technique presented in supplementary notes: https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary11.pdf

- (a) Find $I A^8$ and $(I A)^{-1}$.
- Ans: $I A^8 = \begin{pmatrix} \frac{255}{256} & -\frac{6305}{279936} \\ 0 & \frac{6561}{6561} \end{pmatrix},$ $(I - A)^{-1} = \begin{pmatrix} 2 & 3 \\ 0 & \frac{3}{2} \end{pmatrix}.$
- (b) Compute $I + A + A^2 + A^3 + \dots + A^7$.
- $\mathbf{Ans:} \left(\begin{array}{ccc} \frac{255}{128} & \frac{137845}{46655} \\ 0 & \frac{3280}{2187} \end{array} \right).$
- (c) Find all eigenvalues of A.
- (d) Evaluate $\sum_{n=0}^{\infty} A^n$.

Ans:
$$\lambda_1 = \frac{1}{2}$$
, and $\lambda_2 = \frac{1}{3}$.

Ans:
$$\begin{pmatrix} 2 & 3 \\ 0 & \frac{3}{2} \end{pmatrix}$$
.