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Subject Lecturer: Dr. LEE Heung Wing Joseph, BSc, PhD 李李李向向向榮榮榮博博博士士士

Contact: via Zoom Chat Function (a built-in instant message function in zoom)

Tutor: Mr. YEUNG Hon Keung Angus, BSc, MPhil
Email address: angus.yeung@polyu.edu.hk , Telephone: 2766 6943

Please note that students should be using their official PolyU student account only
(email and zoom accounts without changing the original given account name) to
contact teaching team members (stating clearly the subject code, student name, and
student id) .
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https://www.polyu.edu.hk/ama/profile/hwlee/ama1007.html
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Reading List and References

■ A Short Course in Calculus and Matrices by Kwok-Chiu Chung, McGraw Hill
2008.

■ Calculus. 7th ed. by James Stewart, Brooks/Cole 2012.
■ Thomas’ Calculus 12th ed. by George B. Thomas Jr., Maurice D. Weir, Joel

Hass, Brooks/Cole 2012.
■ Elementary Linear Algebra 9th ed. by Howard Anton, Chris Rorres, John Wiley

and Sons, 2005.

Students must watch all the four CoCalc demo videos in full:
https://video.polyu.edu.hk/Panopto/Pages/Viewer.aspx?id=88d760d9-622b-47ed-b43a-ac2201157764

https://video.polyu.edu.hk/Panopto/Pages/Viewer.aspx?id=b7d2c61b-5bb2-4d1c-8af3-ac2200871479

https://video.polyu.edu.hk/Panopto/Pages/Viewer.aspx?id=47b10248-d951-4c23-9bac-ac2300f65c1e

https://video.polyu.edu.hk/Panopto/Pages/Viewer.aspx?id=8e2425b3-8544-4335-9ece-ac2b007e3380

https://video.polyu.edu.hk/Panopto/Pages/Viewer.aspx?id=88d760d9-622b-47ed-b43a-ac2201157764
 https://video.polyu.edu.hk/Panopto/Pages/Viewer.aspx?id=b7d2c61b-5bb2-4d1c-8af3-ac2200871479 
 https://video.polyu.edu.hk/Panopto/Pages/Viewer.aspx?id=47b10248-d951-4c23-9bac-ac2300f65c1e 
 https://video.polyu.edu.hk/Panopto/Pages/Viewer.aspx?id=8e2425b3-8544-4335-9ece-ac2b007e3380 
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Grading Policy Continuous Assessment : Assignments 10%
Test 30%

Examination : 60%

Midterm Test and Examination rubric

A-/A /A+ 80 - 100 (out of 100)
B-/ B /B+ 65 - 79 (out of 100)
C-/ C /C+ 50 - 64 (out of 100)
D /D+ 40 - 49 (out of 100)

F 0 - 39 (out of 100)
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Assignments:
There are 5 assignment sets. Solutions with detailed workings and explanations
should be submitted by 5pm of the corresponding due dates:
(06 Oct, 13 Oct, 20 Oct, 10 Nov, 24 Nov).
Students should submit their solutions of the assignments via Blackboard.

■ Solutions must be scanned into one single clear and readable PDF file using
Microsoft Office Lens, but

■ with file size no bigger than 3MB, and
■ the file name must be the student name with surname first, with the covering

declaration signed.

Midterm Test:
The Mid-term Test could be scheduled in one of the lecture between Week 10 to
Week 12 within normal lecture time. Date and Venue TBA. There are 15 multiple
choice questions in the test.



Learning Outcomes
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This is a subject to provide students with a solid foundation in Differential and
Integral Calculus, and in Matrix Algebra. Upon satisfactory completion of the
subject, students are expected to be able to:

■ solve problems using the concept of functions and inverse functions
■ apply the basic operations of matrices and calculate the determinant
■ apply mathematical reasoning to analyse essential features of different

mathematical problems such as differentiation and integration
■ apply appropriate mathematical techniques to model and solve problems in

science and engineering
■ extend their knowledge of mathematical techniques and adapt known solutions in

different situations



Elementary Functions
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Set notations
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■ A set is a collection of objects.
■ An element of a set is an object in the set.
■ Objects — lower case; Sets — Upper case.
■ x ∈ A means “x is an element of the set A”.
■ x 6∈ A means x is not an element of A.

Sets are described by:

■ listing the elements, e.g. A = {2, 3, 4, 5}.
■ stating what special property a typical element x of the set has, e.g.

A = {x : x is an integer and 2 ≤ x ≤ 5}.
Universal and empty sets:

■ ∅ denotes the empty set, the set that contains no element (in some other texts,
symbol φ is used instead).

■ Ω denotes the universal set.
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Sets sometimes are represented by Venn diagrams. A Venn diagram is an oval drawn
on the plane so that all elements of the set are considered to be inside the oval.
In the following, A and B are sets.

■ A is a subset of B (written A ⊂ B) if every element of A is an element of B.
■ A and B are equal (written A = B) if they contain the same elements,

i.e. A ⊂ B and B ⊂ A. The following sets S, T , U are equal.

S = { 1, 2, 3, 4 }, T = { 2, 4, 3, 1 }, U = { 2, 1, 4, 4, 2, 3 },

■ The intersection A ∩B is the set {x : x ∈ A and x ∈ B }.
■ The union A ∪B is the set {x : x ∈ A or x ∈ B }.
■ The relative complement A \B is the set {x : x ∈ A and x /∈ B }.
■ Absolute complement: Ac = Ω \A, (denoted by A in some other texts).
■ Disjoint Sets, A and B are disjoint if A ∩B = ∅.
■ Product of 2 sets

S × T = {(s, t) : s ∈ S and t ∈ T}.
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Note that the empty set is different from the singleton sets {0} or {∅}.
Of course ∅ ∈ {∅}.
Quick Questions : Is it true that ∅ = {∅} ?

Note that in some texts the symbol ⊆ is used to denote subset instead of the
commonly used symbol ⊂.

The followings are not part of the formal mathematical language. We only use them
in informal occasions.

■ For all ∀
■ there exists ∃
■ there exists a unique .... ∃!
■ implies ⇒
Example Consider the following statement about the density of real numbers:

∀ x > 0, ∃ y > 0 such that x > y > 0.



Laws of Algebra of Sets
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A ∪B = B ∪A Commutative Laws
A ∩B = B ∩A
(A ∪B) ∪ C = A ∪ (B ∪ C) Associative Laws
(A ∩B) ∩ C = A ∩ (B ∩ C)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) Distributive Laws
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
A ∪ A = A Idempotent Laws
A ∩ A = A
A ∪ ∅ = A Identity Laws
A ∪ Ω = Ω
A ∩ ∅ = ∅
A ∩ Ω = A
(Ac)c = A Double complementation
A ∪ Ac = Ω
A ∩ Ac = ∅
Ωc = ∅
∅c = Ω
(A ∪B)c = Ac ∩Bc DeMorgan Laws
(A ∩B)c = Ac ∪Bc



Power Set
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The symbol |S| denotes the number of elements in the set S. For example, |∅| = 0.

P(S) denotes the Power set of the set S, it contains all possible subsets of S.

If S = {a, b, c}, then P(S) = {∅, {a} , {b} , {c} , {a, b} , {a, c} , {b, c} , S}.

Quick Question :
If there are n elements in S, how many elements are there in P(S) ?
In other words, if |S| = n, what is |P(S)| ?

Note that ∅ ∈ P(S) and S ∈ P(S).

Note also that S is not a subset of P(S). Rather, S is an element of P(S).
For example, a ∈ S but a 6∈ P(S). Instead, we have {a} ⊂ S and {a} ∈ P(S).



Real numbers and intervals
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Real numbers are numbers represented as points on a straight line which extends
indefinitely on both sides. The set of all real numbers are usually denoted by the
symbol R. Intervals are subsets of R described in the following table. The real
numbers a and b (with a < b) for defining the intervals are the endpoints of the
intervals.

Notation Set description Type

(a, b) {x ∈ R : a < x < b } open

(a, b] {x ∈ R : a < x ≤ b } half-open

[a, b) {x ∈ R : a ≤ x < b } half-open

[a, b] {x ∈ R : a ≤ x ≤ b } closed

(a,∞) {x ∈ R : a < x } open

[a,∞) {x ∈ R : a ≤ x } closed

(−∞, b) {x ∈ R : x < b } open

(−∞, b] {x ∈ R : x ≤ b } closed

(−∞,∞) R open and closed
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Question: Why R = (−∞,∞) could be considered closed?

■ Observe that the open interval (a, a) is empty ∅.
■ So (a, a) = ∅ is open.
■ Now observe that the sets ∅ and Ω = R are complementing each other.
■ The complement of a closed interval is open, and the complement of an open

interval is closed.
■ Since (a, a) = ∅ is open. Therefore, R could be considered closed.
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The following table shows a few examples of subsets of R as well as their graphs
drawn on the x-axis.

Subsets Diagrams for the subsets

(−3, 1) x
1 2 3−1−2−3 0

[−1, 2] b b x
1 2 3−1−2−3 0

(−2, 3] b x
1 2 3−1−2−3 0

[−1, ∞) b x
1 2 3−1−2−3 0

[−3, 0) ∪ (0, 2) b x
1 2 3−1−2−3 0

(−3,−1] ∪ (1, ∞) b x
1 2 3−1−2−3 0

.



Absolute values
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If x is a real number, the absolute value of x is its distance from the origin O. We
use the symbol |x| to denote the absolute value. Mathematically,

|x| =
{

x, if x ≥ 0,

−x, if x < 0.

Therefore we have |3| = 3, | − 4| = 4 and |0| = 0.

Properties. Let a, b ∈ R. Then

■ |a− b| = distance between a and b on the real line.
■ |ab| = |a||b|, |a± b| ≤ |a|+ |b| (the triangle inequality).
■ |a| < b iff1 −b < a < b. Also, |a| ≤ b iff −b ≤ a ≤ b.

1iff means “if and only if”



Basic concepts of functions
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A function is a rule which, when given a number (input), produces a single number
(output). Consider the function (or the rule) by which the output is three times the
input.

input output

2 6

x 3x

t 3t

s− 4 3(s− 4).

If we denote this function by f , the function can be represented by

f : x 7−→ 3x or f(x) = 3x or simply y = 3x

The above function f can be thought of as a machine that gives an output 3x if we
input x to it.

triple
the input

f

(input) (output)

3xx
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For a general function f , we have

a general
function

f

(input)

(argument)

(output)

(value)

f(x)x

■ The input to a function f is called the argument and the corresponding output
the value of the function.

■ If the argument is a given number x (so x is given and fixed), the value is
denoted by f(x).

■ If the argument is a variable number x and y = f(x), then x is called the
independent variable, y is the dependent variable.

To indicate the symbol (x here) being used as the independent variable, we sometimes
denote the function by f(x), rather than just by f , and say that f(x) is a function.
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Function: Map

Domain

Co-Domain

Range



Graph of a function
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Given a function y = f(x), we can plot the points (x, y) on the xy-plane so that the
function values y are plotted vertically and the x-values horizontally. Figures below
show the graphs of two elementary functions.

x

y = x2

4

9

3−2 O

b

b

Graph of f(x) = x2

x

y = 2x

−4

2

1

−2

b

b

Graph of f(x) = 2x
Figure 3.1: Two examples of graphs of functions.



Domain and range
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Consider a given function y = f(x). The set of values that x is allowed to take is
called the domain of f , written for short as Dom f . The domain is sometimes given
when a function is defined. For instance, we can define a function f in the following
way:

f(x) = x+ 2, 1 ≤ x < 3.

This indicates that the domain of the function is the interval [1, 3) so that f is not
defined for x lies outside [1, 3). However, if the domain is not explicitly given, it is
taken to be the largest set possible. For example, consider the function g defined by

g(x) =
√
x− 2,

where no domain is explicitly given. However, we understand that the domain of g is
[2,∞) because it is the largest possible set of real numbers x for which

√
x− 2 are

real. The domain of

F (x) = x2, −∞ < x <∞

is R. If we restrict the domain of F to x > 2 we get a new function G so that

G(x) = x2, x > 2.
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The set of values that the function f takes on is called the range of the function,
written for short as Range f . To find Range f we ask the following question: What
are the values of y = f(x) where x ∈ Dom f?

x

a

b

α β

Dom f = [α, β]

Range f = [a, b]

b b

b

b

b

b

y = f(x)

x

a

b

c

d

α β

Dom g = [α, β)

Range g = [a, b) ∪ (c, d]

y = g(x)

b

b

b

b

b

Range g

Figure 3.2: The domain and the range of functions.
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Example 3.1 Find the domains and ranges of the functions f , g, F and G defined
previously.

Solution. The answers are shown in the following table:

Function Domain Range

f(x) = x+ 2, 1 ≤ x < 3 1 ≤ x < 3 3 ≤ y < 5

g(x) =
√
x− 2 2 ≤ x <∞ 0 ≤ y <∞

F (x) = x2, x ∈ R R 0 ≤ y <∞
G(x) = x2, x > 2 2 < x <∞ 4 < y <∞

The ranges can be found by considering the graphs of the functions.



One-to-one functions
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Consider the function f(x) = x2, −2 ≤ x ≤ 2.5. As −1 and 1 are in the domain
and f(−1) = 1 = f(1), we see that two different inputs produce the same output.
This is demonstrated in the figure below where there are two distinct numbers x1, x2

in the domain with f(x1) = f(x2). In this case, we say that the function f is
many-to-one. A function is one-to-one or injective if different inputs produce
different outputs. If we change the domain of the above function to 0 ≤ x ≤ 2.5, we
have a new function g(x) = x2, 0 ≤ x ≤ 2.5. This function g is one-to-one.

x

y

x1 x2−2 2.5

b

b

(a) f(x) = x2, −2 ≤ x ≤ 2.5

x

y

x1 2.5

b

b

(b) g(x) = x2, 0 ≤ x ≤ 2.5

Figure 3.3: f is many-to-one and g one-to-one.
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.

x

y

x1 x2 x3 x4

(a) A many-to-one function.

x

y

x1

(b) A one-to-one function.

Figure 3.4: Many-to-one and one-to-one functions.



Composition of functions
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Consider the function y = 3x2. The value y of this function can be obtained in two
stages: first we square the input x, then we triple the result.

x x2 3x2

If g and h are functions defined by

g(x) = x2 and h(x) = 3x

we can write

y = 3x2 = 3g(x) = h(g(x)).

The function that is defined in terms of two functions g and h this way is denoted by
h ◦ g. That is,

h ◦ g(x) = h(g(x))
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Example 3.2 Consider functions g and h defined by

g(x) = x+ 1 and h(x) = x2 for all x ∈ R.

Show that g ◦ h 6= h ◦ g and g ◦ h(0) = h ◦ g(0).

Solution. We find that

g ◦ h(x) = g(h(x)) = g(x2) = x2 + 1

and

h ◦ g(x) = h(g(x)) = h(x+ 1) = (x+ 1)2.

Therefore g ◦ h 6= h ◦ g and g ◦ h(0) = h ◦ g(0).



Inverse functions
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For a given function f , suppose that the input x produces the output y, i.e. y = f(x).
We ask: Is there a function g (which depends on the given f) such that

■ Dom g = Range f , and that
■ g(f(x)) = x (i.e. if y = f(x) then g(y) = x) for all x ∈ Dom f ?

If such a function g exists, we call this the inverse function of f and write g = f−1.
In this case, we have

Dom f = Range f−1 and Dom f−1 = Range f.

Theorem 3.1 If the function f is one-to-one, the inverse of f exists so that

f−1(f(x)) = x for all x ∈ Dom f

and

f(f−1(y)) = y for all y ∈ Dom f−1.
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Example 3.3 Find the inverse function of f(x) =
√
x+ 1, 0 ≤ x ≤ 4.

Solution. Write y =
√
x+ 1 and solve x in terms of y. We obtain

x = (y − 1)2

from which we see that the given f is one-to-one. The range of f is obviously
(perhaps from the graph of f) 1 ≤ y ≤ 3. Therefore

f−1(y) = (y − 1)2, 1 ≤ y ≤ 3.

If we wish to use x rather than y as the independent valuable, we can replace y by x
in the above to get another form of the solution:

f−1(x) = (x− 1)2, 1 ≤ x ≤ 3.
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Example 3.4 Consider the function f defined by f(x) = x2, −3 ≤ x ≤ 3. Show
that this function is many-to-one and hence has no inverse.

Solution. If we solve y = x2 for x, we get two results

x =
√
y and x = −√y.

Since
√
y 6= −√y if y 6= 0, we see that there are two different x-values taking the

same nonzero y-value. This shows that the function is many-to-one.

However, if we restrict the domain to say the interval [0, 3], the function f becomes a
new function F which is one-to-one and whose range is [0, 9].



Periodic functions
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A function f(x) defined on R is said to be periodic if there is a positive constant T
(called a period) such that

f(x+ T ) = f(x) for all x ∈ R.

Clearly, if T is a period of f , so are 2T , 3T , etc. Usually, when we say the period of
a function, we mean the smallest period.

Example 3.5 For the functions shown below, each has a period of 2.

x

y

−1−2−3 0 1 2 3 4 5

x

y

−1−2−3 0 1 2 3 4 5

b b b b b

b b b b

Figure 3.5: Two examples of periodic functions.



Even and odd functions
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A function f is an even function if f(−x) = f(x) for all x ∈ R. The graph of an
even function is symmetrical about the y-axis.

x

y

−x xO

(a) An even function

b b

x

y

−a a

a

O

(b) The function |x|

bb

Example 3.6 |x|, x2k (k is an integer) and cosx are even functions.

Note that |x| is an even function.
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A function f is an odd function if f(−x) = −f(x) for all x ∈ R. The graph of an
odd function is symmetrical about the origin.

x

y

−x

xO

(c) An odd function

b

b

Example 3.7 x2k+1 (k is an integer) and sin x are odd functions.



Polynomials
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A polynomial is a function of the form

P (x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

where a0, a1, . . . , an are given constants (called the coefficients) and x is the
independent variable. The domain of P (x) is R. If an 6= 0, n is the degree of P (x).
We sometimes write degP for the degree of P (x).
If all the coefficients a0, a1, . . . , an are zero, the polynomial reduces to the zero
polynomial . The degree of the zero polynomial is regarded as 0 in this book. A zero
of P (x) is a root (or a solution) of the equation P (x) = 0.

Polynomial Degree Name
a0 0 constant
a0 + a1x, (a1 6= 0) 1 linear
a0 + a1x+ a2x

2, (a2 6= 0) 2 quadratic
a0 + a1x+ a2x

2 + a3x
3, (a3 6= 0) 3 cubic

The graphs of polynomials are continuous curves.
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The following theorems are fundamental.

Theorem 3.2 (Remainder theorem) If we divide a polynomial P (x) by x− a, the
remainder is P (a).

Theorem 3.3 (Fundamental theorem of algebra) If P (z) is a polynomial of degree
n (with real or complex coefficients, n 6= 0), the equation P (z) = 0 has exactly n
roots (counting real roots, complex roots and their multiplicities).

This theorem involves complex numbers2 and is the rare occasion where complex
numbers are mentioned in this book (this set of notes).

2See for example, Weir, et al. Thomas’ Calculus, 8th edition, 2005
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x

y

b

O

b

(a) Degree 0: y = b

x

y

a

b

O
b

b

(b) Degree 1: x/a+ y/b = 1

x

y

a b

(c) Degree 2: y = (x− a)(x− b)

bb

x

y

(d) Degree 2: y = −x2 − 2
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x

y

a b c

(e) Degree 3:
y = (x− a)(x− b)(x− c)

bb b
x

y

(f) Degree 3:

y = x3 − x2 − x+ 2

x

y

a c db

(g) Degree 4:
y = (x− a)(x− b)(x− c)(x− d)

bb b b

x

y

(h) Degree 4:

y = x4 − x3



Rational functions
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A rational function f(x) is the quotient of two polynomials: f(x) = P (x)
Q(x) .

f(x) is not defined when Q(x) = 0. The graph of a rational function is formed by
continuous curves broken at the zeros of the denominator.

x

y

2

y = 2

x = 0

x

y

1

−2

x = −2

y = 1

(a)

y =
1 + 2x

x
=

1

x
+ 2

(b) y =
x− 1

x+ 2
= 1− 3

x+ 2

A rational function is proper if the degree of the numerator is less than that of the
denominator. Otherwise it is improper .
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. By direct division, we can write a given improper rational function in the form:

(

An improper
rational function

)

= a polynomial+

(

a proper
rational function

)

(3.1)

x

y

−1

x = −1

y = x+ 3

x

y

−1

1

x = −1

x = 1

y = x

(c) y = x+ 3− 1

x+ 1
(d) y = x+

1

(x− 1)(x+ 1)

Figure 3.6: Examples of rational functions.
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See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page042-CoCalcJupyter.pdf

Example 3.8 Express the improper rational function
x4 + 4x3 + 3x2 − 3

x2 + 3x+ 2
in the

form of an improper rational function.

Solution. By long division, we get

x2 + x −2
x2 +3x +2

)

x4 +4x3 +3x2 + 0 −3
x4 +3x3 +2x2

x3 + x2 + 0
x3 +3x2 +2x

−2x2 −2x −3
−2x2 −6x −4

4x +1

and hence
x4 + 4x3 + 3x2 − 3

x2 + 3x+ 2
= x2 + x− 2 +

4x+ 1

x2 + 3x+ 2
.

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page042-CoCalcJupyter.pdf


Asymptotes of rational functions
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We see that the graph of a rational function consists of two or more continuous
branches. Each of these branches approaches to a straight line (drawn as a dashed
line) as the point on the branch moves towards infinity in a certain direction. Such a
straight line is called an asymptote of the graph. The equations of the asymptotes of
a given rational function can be found using the following theorem.

Theorem 3.4 Let P (x) and Q(x) be nonzero polynomials having no common
factor. Let f(x) = P (x)/Q(x) be a rational function and suppose that (x− c1),
(x− c2), etc. are factors of Q(x) where c1, c2, etc. are distinct real constants.

■ Then the vertical lines x = c1, x = c2, etc. are asymptotes of the graph of f(x).
■ Furthermore, if degP ≤ degQ+ 1 so that f(x) can be resolved in the following

special form of (3.1):

f(x) = ax+ b+
S(x)

Q(x)
, deg(S) < deg(Q).

then the line y = ax+ b is also an asymptote of the graph.
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Remark 3.1 In the first part of the theorem, the asymptotes are vertical. In the
second part of the theorem, if a 6= 0, the asymptote is oblique, while if a = 0 the
asymptote is horizontal. For a proper rational function (degP < degQ), we have
a = b = 0 and therefore the x-axis (y = 0) is an asymptote of the graph.

Example 3.9 Find the asymptotes of the rational function f(x) =
x3 + 2x2 + 1

(x− 1)(x+ 2)
.

Solution. By long division, f(x) = x+ 1 +
x+ 3

(x− 1)(x+ 2)
. Therefore the

asymptotes are the lines

x = 1, x = −2 and y = x+ 1.



Partial fractions
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A proper rational function, with real coefficients, can sometimes be expressed as a
sum of two or more proper rational functions, with real coefficients, called partial
fractions.
For example,

x− 3

(2x− 1)(x2 + 1)
=
−2

2x− 1
+

x+ 1

x2 + 1
.

In Chapter 5 of the text book, we have to resolve a rational function into partial
fractions this way to do integration, an important topic in calculus.
Each factor of the denominator of a given rational function, is associated with a
partial fraction or a sum of partial fractions. The rule of association is shown in the
table next page for a linear factor and an irreducible quadratic factor (that cannot be
factorized into a product of real linear factors).
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.

Rule Factor of denominator Form of the partial fractions

1 ax+ b
A1

ax+ b

2 (ax+ b)2
A1

ax+ b
+

A2

(ax+ b)2

3 (ax+ b)3
A1

ax+ b
+

A2

(ax+ b)2
+

A3

(ax+ b)3

4 ax2 + bx+ c
A1x+B1

ax2 + bx+ c

5 (ax2 + bx+ c)2
A1x+B1

ax2 + bx+ c
+

A2x+B2

(ax2 + bx+ c)2

Note: a, b, c, A1, A2, A3, B1, B2 are real constants, a 6= 0.
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Example 3.10 Resolve f(x) =

x+ 3

(x− 1)(x− 3)
into partial fractions.

Solution. First we observe that the given f(x) is a proper rational function. Next we
consider each factor of the denominator of f(x). There are two linear factors x− 1
and x− 3. By Rule 1 of the table next page, we can assume partial fractions of the
forms A

x−1 and B
x−3 (where A, B are real constants) and get the identity

x+ 3

(x− 1)(x− 3)
≡ A

x− 1
+

B

x− 3
(3.2)

To find the constants A and B, we remove the denominators and get
x+ 3 ≡ A(x− 3) +B(x− 1).
Comparing the coefficient of x and the constant term, we get two equations
1 = A+B, 3 = −3A−B. Solving these equations we get A = −2, B = 3.
Therefore

x+ 3

(x− 1)(x− 3)
≡ −2

x− 1
+

3

x− 3

The above method for finding the coefficients A and B is called the method of
undetermined coefficients.
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Example 3.11 Resolve f(x) =

7x+ 5

(x+ 1)2(x− 1)
into partial fractions.

Solution. First we observe that the given f(x) is a proper rational function. Next we
consider each factor of the denominator of f(x). There are two linear factors x+ 1
(with power 2) and x− 1. By Rule 1 and Rule 2 of the above table, we can assume
partial fractions of the forms A

x+1 + B
(x+1)2 and C

x−1 (where A, B, C are real

constants) and get the identity 7x+5
(x+1)2(x−1) ≡ A

x+1 + B
(x+1)2 + C

x−1 .

Therefore we have 7x+ 5 ≡ A(x+ 1)(x− 1) +B(x− 1) + C(x+ 1)2.
Comparing the coefficient of

x2 : 0 = A+ C
x : 7 = B + 2C

constant term: 5 = −A−B + C.

Solving these equations we get A = −3, B = 1, C = 3. Therefore

7x+ 5

(x+ 1)2(x− 1)
≡ −3

x+ 1
+

1

(x+ 1)2
+

3

x− 1
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Example 3.12 Resolve f(x) =

x− 3

(2x− 1)(x2 + 1)
into partial fractions.

Solution. The denominator has two factors: one is 2x− 1 and the other is x2 + 1.
By Rule 1 and Rule 4, f(x) has partial fractions in the forms A

2x−1 and Bx+C
x2+1

where A, B, C are real constants. Therefore we have the identity

x− 3

(2x− 1)(x2 + 1)
≡ A

2x− 1
+

Bx+ C

x2 + 1

and hence x− 3 ≡ A(x2 + 1) + (Bx+ C)(2x− 1). Comparing coefficients of

x2 : 0 = A+ 2B
x : 1 = −B + 2C

constant term: −3 = A− C.

Solving the equations, we get A = −2, B = 1, C = 1. Therefore

x− 3

(2x− 1)(x2 + 1)
≡ −2

2x− 1
+

x+ 1

x2 + 1
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Consider the xy-plane in rectangular coordinates such that the scales on both axes
are the same. Let P be an arbitrary point on the unit circle (with centre at the origin
O and unit radius). If the straight line OP makes an angle θ (in radian) with the
positive x-axis and if P has coordinates (x, y), we define the sine, cosine and tangent
functions by

cos θ = x, sin θ = y and tan θ =
sin θ

cos θ

so that

cos2θ + sin2θ = 1.

x

y

cos θ = x sin θ = y

1−1 O

P (x, y)

θ

b

Figure 3.7: Definitions of cos θ and sin θ.
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. Both cos and sin are continuous periodic functions with a period of 2π. cos is even
while sin is odd. tanx is discontinuous at x = ±π/2,±3π/2, . . . where cosx = 0.

x

y = cosx

π−π 0 2π−2π

y = 1

y = −1

x

y = sinx

π−π 0 2π−2π

y = 1

y = −1

Figure 3.8: The graphs of cosx and sin x.
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x

y = tanx

π−π 0 2π−2π

Figure 3.9: The graph of tanx
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. rule0pt0pt Table of trigonometric formulas rule0pt0pt

Compound angle formulas

sin(A+B) = sinA cosB + cosA sinB, sin(A−B) = sinA cosB − cosA sinB

cos(A+B) = cosA cosB − sinA sinB, cos(A−B) = cosA cosB + sinA sinB

tan(A+B) =
tanA+ tanB

1− tanA tanB
, tan(A−B) =

tanA− tanB

1 + tanA tanB

Double angle formulas

sin 2A = 2 sinA cosA

cos 2A = cos2 A− sin2 A tan 2A =
2 tanA

1− tan2 A
= 1− 2 sin2 A = 2 cos2 A− 1

cos2 A =
1 + cos 2A

2
, sin2 A =

1− cos 2A

2



Page – 54

.

Conversion formulas

sin(x+ y) + sin(x− y) = 2 sinx cos y, sin(x+ y)− sin(x− y) = 2 cosx sin y

cos(x+ y) + cos(x− y) = 2 cosx cos y, cos(x+ y)− cos(x− y) = −2 sin x sin y.

sinA+ sinB = 2 sin
(

A+B

2

)

cos

(

A− B

2

)

sinA− sinB = 2 cos
(

A+B

2

)

sin

(

A− B

2

)

cosA+ cosB = 2 cos
(

A+B

2

)

cos

(

A−B

2

)

cosA− cosB = −2 sin
(

A+B

2

)

sin

(

A−B

2

)



Inverse trigonometric functions
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• Arcsine. The function sinx is many-to-one. However, if we restrict the domain to
the interval [−π/2, π/2], the function becomes one-to-one and its range is [−1, 1].
With this special domain restriction, the inverse function of sin exists. It is called the
arcsine function and is denoted by sin−1 or arcsin. Thus,

x = sin−1 y iff y = sin x and x ∈ [−π/2, π/2].

Note that sin(sin−1 y) = y for all −1 ≤ y ≤ 1 but sin−1(sinx) = x iff
−π
2
≤ x ≤ π

2
.

x

y = sinx

π−π π
2

−π
2

1

−1

x

y = sin−1 x

π
2

−π
2

1

−1

b

b

b

b

Figure 3.10: Definition of sin−1 x.
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• Arccosine. The function cosx is many-to-one. However, if we restrict the domain
to the interval [0, π], the function becomes one-to-one and its range is [−1, 1]. With
this special domain restriction, the inverse function of cos exists. It is called the
arccosine function and is denoted by cos−1 or arccos. Thus,

x = cos−1 y iff y = cosx and x ∈ [0, π].

Note that cos(cos−1 y) = y for all −1 ≤ y ≤ 1 but cos−1(cosx) = x iff 0 ≤ x ≤ π.

x

y = cosx

π−π
π
2

−π
2

1

−1

x

y = cos−1 x

π/2

π

1−1

b

b

b

b

Figure 3.11: Definition of cos−1 x.
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• Arctangent. The function tanx is many-to-one. However, if we restrict the
domain to the interval (−π/2, π/2), the function becomes one-to-one and its range is
R. With this special domain restriction, the inverse function of tan exists. It is called
the arctangent function and is denoted by tan−1 or arctan. Thus,

x = tan−1 y iff y = tanx and x ∈ (−π/2, π/2).

Note that tan(tan−1 y) = y for all −∞ < y <∞ but tan−1(tanx) = x iff
−π
2 < x < π

2 .

x

y = tanx

π−π

π
2

−π
2 x

y = tan−1 x

π
2

−π
2

Figure 3.12: Definition of tan−1 x.



Exponential functions
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The function y = ax is called an exponential function. The number a is the base and
x the exponent (or index , or power). In order that y = ax takes on real values for all
real x, we must assume a > 0.

Law of indices

aman = am+n am/an = am−n (am)n = amn

a0 = 1 a−1 = 1/a a−m = 1/am

If the base is the number e = 2.718281828459 · · · , the exponential function is
denoted by exp (exp(x) ≡ ex).

x

y
y = exy = e−x

The graph of y = ex shows the exponential growth while that of y = e−x shows the
exponential decay.



Logarithmic functions
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Let a be a positive constant and consider the exponential function y = ax. This
function is one-to-one and its range is (0,∞). The inverse function of this
exponential function is called a logarithmic function and is defined by

x = loga y (0 < y <∞) iff y = ax (−∞ < x <∞)

The number loga y, where y > 0, is called the logarithm of y to the base a.

x

y

y = lnx

y = ex

y
=

x

Figure 3.13: Graphs of expx and lnx.
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Rules of logarithm Let a, b, x, y be positive real numbers.

loga(xy) = loga x+ loga y loga 1 = 0

loga(x/y) = loga x− loga y loga x
m = m loga x

loga x =
logb x

logb a

where m is real
rule0pt0pt

If the base is e = 2.718281828 · · · , the logarithm function is denoted by ln or log.
Thus

y = lnx (0 < x <∞) iff x = ey (−∞ < y <∞).



Slope of a straight line
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Consider any straight line on the xy-plane. If the line is not parallel to the x-axis, the
angle of inclination is the angle between the line and the positive x-axis. If the line is
parallel to the x-axis, the angle of inclination is 0.
If the angle of inclination of a straight line is α and α 6= π/2, then the slope of the
straight line is the real number

slope = tanα.

y

x
α

Inclined line
0 < α < π/2

Slope (= tanα) is positive

y

x

Horizontal line.
Angle of incl.= 0
Slope = tan 0 = 0

y

x

α

Inclined line
π/2 < α < π

Slope (= tanα) is negative
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The slope gives a measure of the steepness of the straight line. Also the sign of the
slope tells us in which direction the straight line is running. Using the following
theorem, we can find the slope of a non-vertical line based on the coordinates of two
distinct points on the line.

Theorem 3.5 Let (x0, y0) and (x1, y1) be two points on a straight line with
x0 6= x1, then the slope m of the straight line is given by the formula
m = (y1 − y0)/(x1 − x0).

Example 3.13 Find the slope the line containing the points (3,−2) and (−4, 1).

Solution. The slope is (1− (−2))/(−4− 3) = −3/7.



Limits and Continuity
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One-sided limits
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Consider a function f(x) which is defined in R so that

f(x) =

{

x2 if x < 2,

g(x) otherwise
(4.1)

where g(x) is a function which is not important (in fact not considered) in the
following discussion.

x 0.0 1.0 1.90 1.99 1.999 1.9999
y 0.0 1.0 3.61 3.96 3.996 3.9996

The table shows that the values of f(x) approaches the number 4 as x increases and
approaches 2. This number 4 is called the limit of f(x) as x approaches 2 from the
left.



Intuitive definition
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Definition 4.1 Let a be a point on the real axis such that f(x) is defined when x
is on the left of a (x < a) and near to a and let L be a real number. If the values of
f(x) approaches L as x increases and approaches a, we call L the limit of f(x) as x
approaches a from the left and write

lim
x→a−

f(x) = L.

Remark 4.1 The symbol x→ a− represents “x approaches a from the left” which
means “x is getting closer and closer to a though it is always on the left of a”. The
number L, usually dependent on f(x) and a, is also called the left-hand limit of f(x)
at a. The value f(a), whether it is defined or not, plays no part in the definition of
the left-hand limit at a.



Graphical demonstration
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x

y

2 4 6

yA

O

A(2, yA)

b

y = x2

y = g(x)

Figure 4.1: The graph of f(x) in 0 < x < 6.

On an interval to the left of 2, say (0, 2), the graph of the function f(x) is a portion
of the parabola y = x2 as shown in Fig. 4.1.
On the graph, we see that as x moves towards 2 from the left the points on the
parabola moves towards the point A and hence y moves towards the y-coordinate yA
of A. Since the curve OA here is part of the parabola y = x2, we see that
yA = 22 = 4 and hence limx→2− f(x) = 4.
Note that the value of f(2) and the function g(x) appearing in (4.1) do not play any
part in the definition of the left-hand limit at x = 2.



Right-hand limit
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Analogous to the left-hand limit, we define the right-hand limit as follows:

Definition 4.2 Let a be a point on the real axis such that f(x) is defined when x
is on the right of a (x > a) and near to a and let R be a real number. If the values
of f(x) approaches R as x decreases and approaches a, we call R the limit of f(x)
as x approaches a from the right and write

lim
x→a+

f(x) = R.

Remark 4.2 The symbol x→ a+ represents “x approaches a from the right.” The
number R, usually dependent on f(x) and a, is also called the right-hand limit of
f(x) at a. The value f(a), whether it is defined or not, plays no part in the definition
of the right-hand limit at a.



Examples
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Example 4.1 Let F (x) be the piecewise-defined function defined by the graph
shown in Fig. 4.2. Find the left-hand limits and the right-hand limits of F (x) at the
points x = 1, 2, 3, 4, 5 and 6.

x

y = F (x)

1

2

3

4

1 2 3 4 5 6

b

b b

Figure 4.2: The graph of F (x) defined on [1, 4) ∪ (4, 6).
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Solution. From the graph we see that

lim
x→1−

F (x) is not defined, lim
x→1+

F (x) = 1,

lim
x→2−

F (x) = 4, lim
x→2+

F (x) = 2,

lim
x→3−

F (x) = 1, lim
x→3+

F (x) = 1,

lim
x→4−

F (x) = 4, lim
x→4+

F (x) = 4,

lim
x→5−

F (x) = 3, lim
x→5+

F (x) = 3,

lim
x→6−

F (x) = 2, lim
x→6+

F (x) is not defined.
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Example 4.2 Let f(x) be the function on (0, 4) defined by

f(x) =











x3 if 0 < x < 2,

5 if x = 2,

4− x if 2 < x < 4.

Sketch the graph of this function and find the limits limx→2− f(x) and limx→2+ f(x).

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page070-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page070-CoCalcJupyter.pdf
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Solution.

x

y

2 4

8

5

2

O

A

B

b

y = x3 y = 4− x

From the graph we see that

lim
x→2−

f(x) = the y-coordinate of A =
[

x3
]

x=2
= 8.

lim
x→2+

f(x) = the y-coordinate of B =
[

4− x
]

x=2
= 2.

Note that, without referring to the graph, we can simply work out the limits as
follows:

lim
x→2−

f(x) =
[

x3
]

x=2
= 8, and lim

x→2+
f(x) =

[

4− x
]

x=2
= 2.



Limits of functions
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Let

L = lim
x→a−

F (x) and R = lim
x→a+

F (x).

Using the results of Example 4.1 (page 69)

■ At a = 1: L 6= R since L is not defined.
■ At a = 2: L 6= R.
■ At a = 3: L = R = f(a).
■ At a = 4: L = R 6= f(a) since f(a) is not defined.
■ At a = 5: L = R 6= f(a).
■ At a = 6: L 6= R since R is not defined.
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These results shows that for the equality and inequality of L and R at a general point
a, there are three possibilities:

Three possibilities at a

1. L 6= R. a is an endpoint of the domain of f(x), or there is a vertical
gap (or jump) at a.

2. L = R 6= f(a). There is no vertical gap but there is a hole on the graph.
f(a) may or may not be defined in this case.

3. L = R = f(a). There is neither a vertical gap nor a hole on the graph.

When Case 2 or Case 3 in the table occurs we call the common values of L and R
simply the limit of the function.



Definition of Limit of a function
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Definition 4.3 (Limit of a function) If the one-sided limits lim
x→a−

f(x) and

lim
x→a+

f(x) exist and both are equal to L, we say that the limit of f(x) as x

approaches a is L and write

lim
x→a

f(x) = L.

If either of the one-sided limits does not exist or, if they exist but are not equal, we
say that the limit of f(x) as x approaches a does not exist.



Examples
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Example 4.3 Consider again the piecewise-defined function F (x) defined by the
graph in Fig. 4.2. Find the limits of F (x) (if exist) at the points x = 1, 2, 3, 4, 5 and
6.

Solution.

lim
x→1

F (x) does not exist. lim
x→2

F (x) does not exist.

lim
x→3

F (x) = 1. lim
x→4

F (x) = 4.

lim
x→5

F (x) = 3. lim
x→6

F (x) does not exist.
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Example 4.4 Fig. 4.3 shows the graph of f(x) = (sinx)/x. Based on the graph,
we see that the limit lim

x→0
f(x) exists. Find this limit by evaluating the values of f(x)

near x = 0.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page076-CoCalcJupyter.pdf

x

y

O π 2π 3π−π

Figure 4.3: The graph of (sin x)/x.

Solution. The values of f(x) = (sinx)/x are computed by a desk calculator at some
(numerically) small values of x approaching 0. table:

x ±0.100 ±0.080 ±0.060 ±0.040 ±0.020 ±0.010 ±0.008
y 0.9983 0.9989 0.9994 0.9997 0.9999 1.0000 1.0000

From the table, we see that lim
x→0

sin x

x
= 1.

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page076-CoCalcJupyter.pdf


Page – 77

Example 4.5 Fig. 4.4 shows the graph of f(x) = x sin(1/x) near x = 0. Based on
the graph, find lim

x→0
[x sin(1/x)] if it exists.

x

y

1

π
− 1

π

y
=

x

y
= −

x
Figure 4.4: The graph of x sin(1/x) near x = 0.

Solution. From the graph, we see that lim
x→0

x sin(1/x) = 0.
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Example 4.6 Fig. 4.5 shows the graph of f(x) = sin(1/x) near x = 0. Based on
the graph, find lim

x→0
sin(1/x) if it exists.

x

y

1

π
2

π

− 1

π
− 2

π

y = 1

y = −1

Figure 4.5: The graph of sin(1/x) near x = 0.

Solution. From the graph, we see that lim
x→0

sin(1/x) does not exist.



Limit theorems
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The following theorems are important as they help us find limits of functions derived
by algebraic operations on elementary functions.

Theorem 4.1 Let n be a positive integer and k a constant. Assume that the limits
lim
x→a

f(x) and lim
x→a

g(x) exist. Then

1. lim
x→a

k = k

2. lim
x→a

x = a

3. lim
x→a

kf(x) = k lim
x→a

f(x)

4. lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x)

5. lim
x→a

[f(x)g(x)] = lim
x→a

f(x) lim
x→a

g(x)

6. lim
x→a

[f(x)/g(x)] = lim
x→a

f(x)
/

lim
x→a

g(x) if lim
x→a

g(x) 6= 0

7. lim
x→a

[f(x)]n =
[

lim
x→a

f(x)
]n

8. lim
x→a

n√
f(x) = n

√

lim
x→a

f(x) (assume f(x) ≥ 0 near x = a if n is even.)
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Theorem 4.2 (Composite function) If lim
x→a

f(x) = A and lim
u→A

g(u) = B then

lim
x→a

g(f(x)) = B.

Theorem 4.3 (Squeeze Theorem) Let f(x), g(x), h(x) be functions such that
f(x) ≤ g(x) ≤ h(x) for all x near a, except possibly at a itself. If

lim
x→a

f(x) = lim
x→a

h(x) = L

then lim
x→a

g(x) = L.
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Definition 4.4 Let S be a subset of the domain of a function f(x). We say that
f(x) is bounded on S if there is a constant K such that

|f(x)| ≤ K for all x ∈ S.

In particular, if S is an open interval (p, q) where p < a < q, we say that f(x) is
bounded near a.

The composite functions of the form sinF (x) and cosF (x) are bounded functions as
| sinF (x)| ≤ 1 and | cosF (x)| ≤ 1. These functions are bounded on the domain of
F (x).
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The following theorem follows directly from Theorem 4.3.

Theorem 4.4 If g(x) is bounded near a, except possibly at a itself, and if
lim
x→a

f(x) = 0 then lim
x→a

f(x)g(x) = 0.

Remark 4.3 Obviously, the above theorems are true if we replace the limits by the
left-hand limits (or by the right-hand limits).



Continuity of functions
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We know from the table on page 73 that at a general point a there are three
possibilities. If the third case in the table is true, i.e. if on the graph there is no gap
or hole at a, we say that the function is continuous at a.

Definition 4.5 (Continuity at a point) If lim
x→a

f(x) = f(a), we say that f(x) is

continuous at a.

Definition 4.6 (Discontinuity at a point) We say that f(x) is discontinuous
(i.e. not continuous) at a if any one of the following holds:

1. f(a) is not defined 2. lim
x→a

f(x) 6= f(a)

3. lim
x→a

f(x) does not exist

If the function is defined only on one side of a, then the associated one-sided limit is
used instead of two-sided limits in the above definitions.



Properties of continuity
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Theorem 4.5 (Properties of continuity) Let n be a positive integer and k a
constant. If f(x) and g(x) are continuous at a then the following functions are also
continuous at a:

1. (Scalar multiple) kf(x) where k is a constant.
2. (Sum and difference) f(x) + g(x) and f(x)− g(x).
3. (Product) f(x)g(x).
4. (Quotient) f(x)/g(x) if g(a) 6= 0.
5. (Power)

[

f(x)
]n
.

6. (Root)
n√
f(x) (assume f(a) ≥ 0 if n is even.)

Theorem 4.6 If f(x) is continuous at x = a and g(u) is continuous at u = f(a)
then g(f(x)) is continuous at x = a.



Continuity on an interval

Page – 85

Definition 4.7 (Continuity on an interval) Let J be an interval. If f(x) is
continuous at every point of J , we say that f(x) is continuous on J , otherwise f(x)
is not continuous on J .

Continuity on an interval means that the graph of the function is a continuous or
one-piece curve, i.e. the graph can be drawn without lifting the pencil from the paper.



Page – 86

Example 4.7 Consider again the function F (x) defined by Fig. 4.2. Find all the
x-values at which the function is discontinuous. Find the intervals on which the
function is continuous.

Solution. The function is not continuous at x = 2 (where there is a gap), x = 4
(where there is a hole), x = 5 (where there is a hole) and at all points outside the
interval [1, 6) (where F (x) is not defined). The function is continuous at every point
in the intervals [1, 2), [2, 4), (4, 5) and (5, 6).
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Elementary functions continuous on the interval J

Function f(x) Interval J

Polynomials, exp kx (k = const.) R

sin kx, cos kx (k = const.) R

tan kx (k = const., k 6= 0) . . . ,
(−3π

2k , −π
2k

)

,
(−π

2k ,
π
2k

)

,
(

π
2k ,

3π
2k

)

, . . .

ln kx (k = const., k > 0) (0,∞)

Rational functions P (x)/Q(x) (−∞, x0), (x0, x1), (x1, x2), . . . , (xn,∞)
where x0, x1, . . . , xn are distinct zeros
of Q(x).

The above table can be further extended by Theorem 4.5 to include many other
functions generated from elementary functions by algebraic operations.
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Examples of functions continuous on the interval J

f(x) J Remarks

x3 − 2x2 + x− 2 R Polynomial

5 sin 3x R Scalar multiple a of trigonometric
function

exp 2x R Exponential function

sin 2x+ exp 3x R Sum of continuous functions

ex cos 3x R Product of continuous functions

cos(x2 + x+ 1) R Composition of continuous functions

sin lnx (0,∞) Composition of continuous functions
√
ln 2x [1/2,∞) Square-root of a continuous function

cosx

(x− 1)(x− 2)
(−∞, 1), (1, 2),
(2,∞)

Quotient of continuous functions
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In the previous section, we see that for function f(x) continuous at a, we have the
formula:

lim
x→a

f(x) = f(a), (4.2)

i.e. the limit can be found by substitution. If f(x) is generated from elementary
functions by algebraic operations and if f(a) is defined then f(x) is continuous at a
and hence the substitution formula (4.2) works.
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Example 4.8 By substitution, we get

1. lim
x→2

(x3 − 4x2 + x+ 5) = 23 − 4× 22 + 2 + 5 = −1.

2. lim
x→2

x+ 1

x2 − 1
=

2 + 1

22 − 1
= 1.

3. lim
x→0

ex

1 + e2x
=

e0

1 + e0
=

1

1 + 1
=

1

2
.

4. lim
x→2

sin23x = sin2(3× 2) = sin26.

5. lim
x→0

[(x2 − 2) cos 3x] = (0− 2) cos 0 = −2.

6. lim
x→1

sinx

1 + x2
=

sin 1

2
.

7. lim
t→2

tan(3t2 − 2) = tan(3× 22 − 2) = tan 10.

8. lim
y→1

cos exp(y2 + 1) = cos exp(11 + 1) = cos e2.

9. lim
u→π/2

√
u− sinu =

√

π/2− sin(π/2) =
√

π/2− 1.
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Example 4.9 The method of substitution fails in the following cases:

1. lim
x→1

1

x2 − 1
=

1

0
which is undefined.

2. lim
x→π/2

tanx = tan(π/2) which is undefined.

3. lim
x→0

cosx

1− cosx
=

1

0
which is undefined.

4. lim
x→1

ln(x2 − 3) = ln(−2) which is undefined.

5. lim
x→0

sin x

x
=

0

0
which is undefined.

6. lim
x→0

x sin
1

x
= 0 · sin(1/0) which is undefined.



Cancellation of factors
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Example 4.10 Find lim
x→2

x2 − 4

x− 2
.

Solution. On substitution, we get 0/0. The difficulty can be removed by observing
that we do not have to consider x = 2 for the limit. Since

x2 − 4

x− 2
= x+ 2 for x 6= 2,

we have

lim
x→2

x2 − 4

x− 2
= lim

x→2
(x+ 2) = 2 + 2 = 4.
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Example 4.11 Let n be a positive integer. Find lim
x→a

xn − an

x− a
.

Solution. Using the factorization

xn − an = (x− a)(xn−1 + xn−2a+ · · ·+ xan−2 + an−1)

we get on substitution

lim
x→a

xn − an

x− a
= lim

x→a
(xn−1 + xn−2a+ · · ·+ xan−2 + an−1)

= an−1 + an−1 + · · ·+ an−1 + an−1 (n terms)

= nan−1.



A trigonometric formula
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Theorem 4.7 If θ is in radians, then

lim
θ→0

sin θ

θ
= 1. (4.3)

Remark 4.4 The above limit formula holds for θ in radians, not in degrees. Unless
otherwise stated, the unit for angles in this book is radian.
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Example 4.12 Find lim
x→1

sin(x3 + 2x− 3)

x3 + 2x− 3
.

Solution. Put u = x3 + 2x− 3. Then lim
x→1

u = 1+ 2− 3 = 0. Applying Theorem 4.2

and Theorem 4.7 above, we get

lim
x→1

sin(x3 + 2x− 3)

x3 + 2x− 3
= lim

u→0

sinu

u
= 1.
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Example 4.13 Find lim
x→0

1− cosx

x
.

Solution. Using the formula 1− cos 2θ = 2 sin2θ and Theorem 4.7, we get

lim
x→0

1− cosx

x
= lim

x→0

( 2

x
sin2

x

2

)

= lim
x→0

(

sin
x

2

)

· lim
x→0

sin(x/2)

(x/2)
= 0× 1 = 0.
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Example 4.14 Find lim
x→0

√

7x+ sin 2x

x
.

Solution. By Theorem 4.1 and Theorem 4.7, we get

lim
x→0

√

7x+ sin 2x

x
=

√

lim
x→0

7x+ sin 2x

x

=

√

lim
x→0

(

7 +
sin 2x

x

)

=
√
7 + 2× 1 = 3.
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First consider the case when θ > 0. Since θ is approaching 0, we can assume that
0 < θ < π/2 and construct a right-angled triangle OAB with OA = 1 and

∠BOA = θ as shown in the diagram. The arc AC is part of the circle centred at O
with unit radius.

B
C

AO

θ

1

1

tan θ

Comparing areas, we have △OAC < sectorOAC < △OAB, i.e.
1
2 sin θ < 1

2θ < 1
2 tan θ. Therefore, 1 < θ

sin θ < 1
cos θ and hence, for 0 < θ < π/2,

1 >
sin θ

θ
> cos θ. (4.4)

Since (sin θ)/θ and cos θ are even functions, the inequalities (4.4) are true also for
−π/2 < θ < 0.
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As lim
θ→0

cos θ = 1, we get by Theorem 4.3

lim
θ→0+

sin θ

θ
= 1. (4.5)

For the case θ < 0, we write φ = −θ > 0 and get

lim
θ→0−

sin θ

θ
= lim

φ→0+

sinφ

φ
= 1. (4.6)

Combining (4.5) and (4.6), we get the required result (4.3).

lim
θ→0

sin θ

θ
= 1.



Infinite limits

Page – 100

Consider the function f(x) = 1/x near x = 0 (see Fig. 4.6(a)). If x > 0 anthe value
of f(x) becomes very big and can be made as big as we please (as indicated by the
thick black vertical arrow).
To describe this property of f(x) we introduce the following definitions.

x

y

(a) The graph of y = 1/x.

x

y

(b) The graph of y = −1/x.

Figure 4.6: Functions tending to ∞ and −∞ as x→ 0+.
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Definition 4.8 If the value of f(x) can be made bigger than any prescribed
positive and large number by taking x > a and close enough to a, we say that f(x)
approaches to infinity as x approaches a from the right and we write

lim
x→a+

f(x) =∞.
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The situation in Fig 4.6(b) motivates the next definition.

Definition 4.9 If the value of f(x) can be made smaller than any prescribed
number (usually negative and numerically large) by taking x > a and close enough to
a, we say that f(x) approaches to negative infinity as x approaches a from the right
and we write

lim
x→a+

f(x) = −∞.

Clearly, by considering x approaching from the left, i.e. x < a instead of x > a in the
above two definitions, we can define the two infinite limits from the left:

lim
x→a−

f(x) =∞ and lim
x→a−

f(x) = −∞.
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Definition 4.10

■ If lim
x→a−

f(x) = lim
x→a+

f(x) =∞, we write lim
x→a

f(x) =∞.

■ If lim
x→a−

f(x) = lim
x→a+

f(x) = −∞, we write lim
x→a

f(x) = −∞.

The symbol ∞ stands for “infinity”. It is not a real number and is used as a
“quantity” greater than any real number. In the same way, −∞ is a “quantity”
smaller than any real number. Infinity or negative infinity is always associated with
limits such as those defined above.



Formulas

Page – 104

By actually computing 1/x using small values of x or by observing the graph of 1/x
in Fig 4.6(a), we see that

lim
x→0+

1

x
=∞ and lim

x→0−

1

x
= −∞.

On the other hand, direct substitution gives

lim
x→0+

1

x
=

1

0+
and lim

x→0−

1

x
=

1

0−

which are undefined. Therefore, we can write

1

0+
=∞ and

1

0−
= −∞ (4.7)

where 0− means a function approaching 0 from the left and 0+ means from the right.
Although ∞ is not a number, the above formulas in (4.7) are sometimes useful for
finding limits. These, together with other useful formulas about infinity are listed in
the following table.



Useful formulas involving infinity
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(k is a constant, m and n are positive integers)

∞+ k =∞, (−∞) + k = −∞. (4.8)

∞+∞ =∞, (−∞)−∞ = −∞, ∞−∞ = indeterminate. (4.9)

k · ∞ =∞, k · (−∞) = −∞ if k > 0. (4.10)

k · ∞ = −∞, k · (−∞) =∞ if k < 0. (4.11)

∞ ·∞ =∞, ∞ · (−∞) = −∞, (−∞) · (−∞) =∞. (4.12)

k ÷∞ = 0, k ÷ (−∞) = 0, ∞÷∞ = indeterminate. (4.13)

1÷ 0+ =∞, 1÷ 0− = −∞, 0 · ∞ = indeterminate. (4.14)

m
√∞ =∞, n

√
−∞ = −∞ if n is odd. (4.15)



Page – 106

Remark 4.5 In (4.8) the formula “∞+ k =∞” means that if lim f(x) =∞ then
lim(f(x) + k) =∞. In (4.9) the formula “∞+∞ =∞” means that if
lim f(x) =∞ and lim g(x) =∞ then lim[f(x) + g(x)] =∞. Also the formula
“∞−∞ = indeterminate” means that we cannot draw any conclusion on
lim[f(x)− g(x)] if we only know that lim f(x) =∞ and lim g(x) =∞. Other
formulas in the above table are to be interpreted similarly.

Based on the algebraic operations on infinity given in the above table, Theorem 4.1
(page 79) is also true if lim f(x) and lim g(x) are infinite.
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Example 4.15 Is it true that lim
x→0

1

x
=∞ ?

Solution. No, because lim
x→0−

1

x
= −∞ and lim

x→0+

1

x
=∞ and they are not the

same.
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Example 4.16 Find lim
x→0

1

x2
.

Solution. On substitution, lim
x→0−

1

x2
=

1

0+
=∞ and lim

x→0+

1

x2
=

1

0+
=∞.

Therefore lim
x→0

1

x2
=∞.
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Example 4.17 Find lim
x→1−

x+ 2

(x− 1)(x+ 1)
and lim

x→1+

x+ 2

(x− 1)(x+ 1)
.

Solution. For x near to 1, the factor x− 1 is negative if x < 1, positive if x > 1.
Therefore we have on substitution,

lim
x→1−

x+ 2

(x− 1)(x+ 1)
=

3

(0−)(2)
= −∞ and lim

x→1+

x+ 2

(x− 1)(x+ 1)
=

3

(0+)(2)
=∞.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page109-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page109-CoCalcJupyter.pdf
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Example 4.18 Find lim
x→1−

1

x2 − 1
and lim

x→1+

1

x2 − 1
.

Solution. Similar to the previous example,

lim
x→1−

1

x2 − 1
=

1

0−
= −∞ and lim

x→1+

1

x2 − 1
=

1

0+
=∞.
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Example 4.19 Find lim
x→π/2−

tanx and lim
x→π/2+

tanx.

Solution. Using tanx = (sinx)/ cosx and the fact that

cosx is near to 0 and

{

positive if x < π/2 and near to π/2,

negative if x > π/2 and near to π/2

we get

lim
x→π/2−

tanx =
1

0+
= +∞ and lim

x→π/2+
tanx =

1

0−
= −∞.

The results can also be seen from the graph of tanx directly (Fig. 4.7).
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Remark 4.6 The formula (4.7) is not saying that 1/0 = ±∞ is true. In fact there
are examples of functions f(x) which approach to 0 but the limits of their reciprocals
1/f(x) do not exist and are neither ∞ nor −∞.

x

y

π
2

π

(a) tanx→∞ as x→ π/2−.

x

y

π
2

π

(b) tanx→ −∞ as x→ π/2+.

Figure 4.7: Infinite limits of tanx at x = π/2.
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Consider again the function f(x) = 1/x. As x increases without bound (x→∞) or
decreases without bound (x→ −∞), the value of f(x) approaches to 0. These facts
can be seen from the graph of 1/x (see Fig. 4.8) and are stated mathematically as

lim
x→∞

1

x
= 0 and lim

x→−∞

1

x
= 0.

x

y

(a) y → 0 as x→∞.

x

y

(a) y → 0 as x→ −∞.

Figure 4.8: Function 1/x tending to 0 as x tends to ∞ and −∞.
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Definition 4.11 Let A and B be real numbers.

1. We write lim
x→∞

f(x) = A if f(x) approaches A as x increases without bound.

2. We write lim
x→−∞

f(x) = B if f(x) approaches B as x decreases without bound.

Similar definitions are for
3. lim

x→∞
f(x) =∞,

4. lim
x→∞

f(x) = −∞,

5. lim
x→−∞

f(x) =∞,

6. lim
x→−∞

f(x) = −∞.

The above six types of limits are called limits at infinity. By the formulas in the table
on page 105 we see that Theorem 4.1 (page 79) is true also for limits at infinity.
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Example 4.20 By inspecting the graph of y = tan−1 x we see that

lim
x→−∞

tan−1 x = −π/2 and lim
x→∞

tan−1 x = π/2.



Page – 116

Example 4.21 Find lim
x→∞

(3x− 2) and lim
x→−∞

(3x− 2).

Solution. Using formulas (4.10) and (4.8) on page 105, we get

lim
x→∞

(3x− 2) = 3 · ∞ − 2 =∞− 2 =∞.

lim
x→−∞

(3x− 2) = 3 · (−∞)− 2 = −∞− 2 = −∞.
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Example 4.22 Find lim
x→∞

(−2x3 + x2 + 4x− 3) and lim
x→−∞

(−2x3 + x2 + 4x− 3).

Solution.

lim
x→∞

(−2x3 + 3x2 + 4x− 5) = lim
x→∞

x3
(

− 2 +
3

x
+

4

x2
− 5

x3

)

=∞(−2 + 0 + 0− 0) = −∞.

lim
x→−∞

(−2x3 + 3x2 + 4x− 5) = lim
x→−∞

x3
(

− 2 +
3

x
+

4

x2
− 5

x3

)

= −∞(−2 + 0 + 0− 0) =∞.



Polynomials at infinity
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From these examples, we obtain the rule:

Theorem 4.8 If P (x) is a polynomial of degree n with positive leading coefficient:

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, an > 0,

then

lim
x→∞

P (x) =∞ and lim
x→−∞

P (x) =

{

∞ if n is even,

−∞ if n is odd.



Rational functions at infinity
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In the following examples, we find limits of rational functions at infinity. For this, we
first divide the numerator and denominator by the highest-degree term of the
denominator.



Examples
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Example 4.23 Find lim
x→∞

4x− 1

x2 + 1
and lim

x→−∞

4x− 1

x2 + 1
.

Solution.

lim
x→∞

4x− 1

x2 + 1
= lim

x→∞

4

x
− 1

x2

1 +
1

x2

=
0− 0

1 + 0
= 0.

Similarly we get

lim
x→−∞

4x− 1

x2 + 1
= lim

x→−∞

4

x
− 1

x2

1 +
1

x2

=
0− 0

1 + 0
= 0.
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Example 4.24 Find lim
x→∞

2x2 + 3x− 1

4x2 + 1
and lim

x→−∞

2x2 + 3x− 1

4x2 + 1
.

Solution.

lim
x→∞

2x2 + 3x− 1

4x2 + 1
= lim

x→∞

2 +
3

x
− 1

x2

4 +
1

x2

=
2 + 0− 0

4 + 0
=

1

2
.

Clearly we get the same answer for the second limit.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page121-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page121-CoCalcJupyter.pdf
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Example 4.25 Find lim
x→∞

−3x3 + 4x2 − 1

2x2 + x
and lim

x→−∞

−3x3 + 4x2 − 1

2x2 + x
.

Solution.

lim
x→∞

−3x3 + 4x2 − 1

2x2 + x
= lim

x→∞

−3x+ 4− 1

x2

2 +
1

x

=
−∞+ 4− 0

2 + 0
= −∞.

lim
x→−∞

−3x3 + 4x2 − 1

2x2 + x
= lim

x→−∞

−3x+ 4− 1

x2

2 +
1

x

=
−3(−∞) + 4− 0

2 + 0
=∞.



Limits of rational functions
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From the above examples, we obtain the following rules for limits of rational functions
P (x)/Q(x) at infinity. Here we assume that P (x) and Q(x) are polynomials:

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, an 6= 0,

Q(x) = bmxm + bm−1x
m−1 + · · ·+ b1x+ b0, bm 6= 0.

Theorem 4.9 Let n = degP (x) and m = degQ(x) so that an 6= 0 and bm 6= 0.

1. If n < m, then both limits lim
x→±∞

P (x)/Q(x) = 0.

2. If n = m, then both limits lim
x→±∞

P (x)/Q(x) = an/bm.

3. If n > m, then the limits lim
x→±∞

P (x)/Q(x) = −∞ or +∞ depending on the

signs of the ratio an/bm, and whether n−m is even or odd.
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Example 4.26 Find lim
x→∞

2x+ 3√
x2 + 4

.

Solution.

lim
x→∞

2x+ 3√
x2 + 4

= lim
x→∞

2 +
3

x
√

1 +
4

x2

=
2 + 0√
1 + 0

= 2.
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Example 4.27 Find lim
x→∞

x+ 1
3
√
x2 + 1

.

Solution.

lim
x→∞

x+ 1
3
√
x2 + 1

= lim
x→∞

(x+ 1)÷ x2/3

( 3
√
x2 + 1)÷ x2/3

= lim
x→∞

x1/3 + x−2/3

3
√
1 + x−2

=
∞+ 0

1 + 0
=∞.
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Example 4.28 Find lim
x→∞

(

√

x2 + 3− x
)

.

Solution.

lim
x→∞

(

√

x2 + 3− x
)

= lim
x→∞

(x2 + 3)− x2

√
x2 + 3 + x

= lim
x→∞

3√
x2 + 3 + x

=
3

∞ = 0.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page126-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page126-CoCalcJupyter.pdf
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Definition
The set of all points x such that |x− x0| < δ is called a δ neighborhood of the point
x0. The set of all points x such that 0 < |x− x0| < δ in which x = x0 is excluded, is
called a deleted δ neighborhood of x0.

Definition
The number l is the limit of f(x) as x approaches x0 denoted by

lim
x→x0

f(x) = l,

if ∀ ǫ > 0, ∃ δ > 0 such that |f(x)− l| < ǫ whenever 0 < |x− x0| < δ.

This definition simply says that for any positive number ǫ (however small) we can find
some positive number δ (usually depending on ǫ) such that whenever x in the deleted
δ neighbourhood of x0, x ∈ (x0 − δ , x0 + δ)\{x0}, then f(x) ∈ (l − ǫ , l + ǫ).
Note that f(x0) may not equals the limit value l according to the definition.
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.

l + ε

xoxo δ x + δo

l

f(x)

x

εl
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Example : Consider the function

f(x) = −x2 + 4x− 3

We are going to show that lim
x→2

f(x) = 1 by definition.

εl

l + ε

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

f(x)

intersection points
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Note that no matter how small we choose the number ǫ , the intersection points
indicated in the diagram can be obtained by solving

−x2 + 4x− 3 = 1− ǫ

x2 − 4x+ 4− ǫ = 0,

thus, the intersection points are given by

4±
√

16− 4(4− ǫ)

2
= 2±√ǫ.

Let δ =
√
ǫ. Hence, no matter how small the number ǫ is, we are going to have

|f(x)− 1| < ǫ

whenever 0 < |x− 2| < √ǫ = δ. Therefore, by definition, lim
x→2

f(x) = 1.
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Right and Left Hand Limits
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We call l+ the right hand limit of f(x) at x0 if ∀ ǫ > 0, ∃ δ > 0 such that
|f(x)− l+| < ǫ whenever 0 < |x− x0| < δ and x > x0 . We write it as

lim
x→x+

0

f(x) = l+ = f(x+
0 ).

Similarly, the Left hand limit can be defined with the alternate condition x < x0 the
same way as the above.
Example : Consider the function

f(x) =

{

1, if x ≥ 0,

0, if x < 0.

What is lim
x→0+

f(x) = f(0+) ?

What is lim
x→0−

f(x) = f(0−) ?

In this example, both f(0+) and f(0−) exist, but lim
x→0

f(x) does not.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page132-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page132-CoCalcJupyter.pdf
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Secant line and Tangent line
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Definition 5.1 rule0pt0pt

(a) Let P and Q be two distinct points on a curve C. The straight line which passes
through P and Q is called a secant line (or simply a secant) of the curve C.

(b) If P is fixed and we allow Q to move along the curve towards P from both
sides of P , and if the secants PQ approaches to the same limiting straight line,
we call this limiting straight line the tangent line (or simply the tangent) to the
curve at P .



Tangent to a curve at a point
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(b) Q → P from the left along C

Figure 5.1: Tangent line as the limit of secant lines.

In Fig. 5.1, we see that as Q approaches P from the left and from the right, the
limiting lines TR and TL so obtained are the same straight line and therefore
TR(= TL) is the tangent line to the curve at P .



Slope of a curve at a point
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The slope is a quantity which measures the steepness of the straight line.

x
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b

b
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∆y

a a+∆x

f(a)

f(a+∆x)

(a) The slope of the secant line
PQ is tan θ = ∆y/∆x

x

y

b αP tan
gen

t li
ne

T

C : y = f(x)

(b) The slope of the tangent line
is tanα = lim

∆x→0
∆y/∆x

a

f(a)

Figure 5.2: The slope of a curve as a limit.

Definition 5.2 Let P be a point on a curve C and let T be the tangent to C at P .
Then the slope of the curve C at P is the slope of T , if T is not vertical. (See
Fig. 5.2(b).)
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Let C be a given curve whose equation is y = f(x) and let P (a, f(a)) be a point on
C. Let Q be another point on C with coordinates (a+∆x, f(a+∆x)) (Fig. 5.2(a)).
Here ∆x is called an increment in x. The point x = a+∆x is on the left or on the
right of the point x = a according as ∆x is negative or positive. In Fig. 5.2(a), Q is
on the right of P and therefore ∆x is positive. The increment in y is defined by

∆y = f(a+∆x)− f(a). (5.1)

As Q→ P from both sides along C , ∆x→ 0 from both sides. Consequently, if the
curve C has a tangent line at P , we have:

secant line PQ −→ tangent line at P

θ −→ α
f(a+∆x)− f(a)

∆x
=

∆y

∆x
= tan θ −→ tanα

= the slope of the tangent line at P
= the slope of the curve at P .
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The above limiting values can be seen intuitively from Fig. 5.2 though it shows only
the case when ∆x→ 0+. The result is stated as follows:

Theorem 5.1 The slope of the curve C : y = f(x) at x = a is equal to the limit

lim
∆x→0

f(a+∆x)− f(a)

∆x
or lim

∆x→0

∆y

∆x
(5.2)

where ∆y is defined by (5.1).



Examples
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Example 5.1 Use the formula (5.2) to find the slope of the curve y = x2 at x = a.

Solution. Let f(x) = x2. Then the required slope is equal to

lim
∆x→0

(a+∆x)2 − a2

∆x
= lim

∆x→0
(2a+∆x) = 2a.
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Example 5.2 Show that the absolute value function f(x) = |x| has no slope at
x = 0.

Solution. f(x) = x if x > 0; f(x) = −x if x < 0 and f(0) = 0. Therefore, for
∆x > 0, we have f(0 + ∆x) = f(∆x) = ∆x and hence

lim
∆x→0+

f(0 + ∆x)− f(0)

∆x
= lim

∆x→0+

∆x

∆x
= 1.

However, for ∆x < 0, we have f(0 + ∆x) = f(∆x) = −∆x and hence

lim
∆x→0−

f(0 + ∆x)− f(0)

∆x
= lim

∆x→0−

−∆x

∆x
= −1.

Since the left-hand and right-hand limits are not equal, f(x) has no slope at
x = 0.



Derivative of a function
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The slope of the graph of y = f(x) at x = a is the limit (5.2). This is a number
dependent on the function f(x) and on the constant a. If the limit (5.2) exists, we
say that the function f(x) is differentiable at x = a.
If we consider f(x) as a given function and replace a by the variable x, then the limit
(5.2), if exists, becomes a function of x called the derivative of the function f(x).
The derivative of f(x), which is defined by the formula

lim
∆x→0

f(x+∆x)− f(x)

∆x
or lim

∆x→0

∆y

∆x
(5.3)

where ∆y = f(x+∆x)− f(x), is denoted by the symbols

f ′(x) or y′ or
dy

dx
or

df

dx
.

Note that all these symbols represent the same function of x.



Differentiation
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We often say that we differentiate the function f(x) to get its derivative f ′(x), and
differentiation means the process of getting the derivative f ′(x) from f(x). We also
say that the function f(x) is differentiable on an interval J if f ′(x) exists at every x
in J .
The value of the derivative at a particular point x = a is denoted by

f ′(a) or y′(a) or
dy

dx

∣

∣

∣

∣

x=a

or
df

dx

∣

∣

∣

∣

x=a

.

This value is the slope of the curve y = f(x) at x = a.



Summary
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We summarize the above definitions and notations in the following table:

Derivative of f(x) Derivative of f(x) at x = a

Definition: lim
∆x→0

f(x+∆x)− f(x)

∆x
lim

∆x→0

f(a+∆x)− f(a)

∆x

Nature: A function of x A real number

Notation: f ′(x) or y′ or
dy

dx
or

df

dx
f ′(a) or y′(a) or

dy

dx

∣

∣

∣

∣

x=a

or
df

dx

∣

∣

∣

∣

x=a

Geometric The slope of the curve y = f(x) The slope of the curve y = f(x)

meaning: at a general point x. at a particular point where x = a.

This is equal to tanα in Fig. 5.2.



Examples

Page – 144

Example 5.3 Use the formula (5.3) to differentiate y = x2.

Solution. Let f(x) = x2. Then

y′ = lim
∆x→0

f(x+∆x)− f(x)

∆x
= lim

∆x→0

(x+∆x)2 − x2

∆x

= lim
∆x→0

(2x+∆x) = 2x.

Note that the above process of getting the derivative is exactly the same as that in
Example 5.1 except that we have replaced the constant a by the variable x. In the
forthcoming section, we shall list formulas of derivatives in a table so that we may
use the formulas to get derivatives directly without spending time in evaluating limits.



Differentiability implies continuity
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Using (5.2), we can prove that:

Theorem 5.2 If f ′(a) exists then the function f(x) is continuous at x = a.

The converse of the theorem is not true. The function f(x) = |x| gives a
counter-example. This f(x) is continuous at x = 0 but f(x) is not differentiable at
x = 0.



Rate of change
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Suppose an object moves along a straight line. Its distance from a certain fixed point
O on the line at time t is given by y = F (t). Over the time interval [t0, t0 +∆t], the
object covers a distance equal to ∆y = F (t0 +∆t)− F (t0). The difference quotient

∆y

∆t
=

F (t0 +∆t)− F (t0)

∆t

is the average velocity of the object over the time interval [t0, t0 +∆t].
As a result, the derivative f ′(t0) is simply the instantaneous velocity of the object at
the instant t0.
More generally, for y = f(x), the difference quotient

f(b)− f(a)

b− a

is called the average rate of change of y with respect to x over the interval [a, b], and
the derivative f ′(a) at x = a is called the rate of change of y with respect to x at
x = a.



Differentiation by the first principle
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In addition to Example 5.3, we give more examples to show how differentiation
formulas can be derived from the first principle, i.e. from the definition (5.3) of
derivatives.



Examples
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Example 5.4 Let y = f(x) = C, a constant. Show that
dy

dx
= 0 for every x.

Proof. Since

∆y = f(x+∆x)− f(x) = C − C = 0,

we get

dy

dx
= lim

∆x→0

∆y

∆x
= lim

∆x→0

0

∆x
= 0.
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Example 5.5 Let y = f(x) = xn, where n is a positive integer. Show from the first

principle that
dy

dx
= nxn−1.

Proof. Let x be fixed and ∆x approach to 0 but not equal to 0. Write z = x+∆x.
Then ∆x→ 0 means z → x. As ∆x 6= 0, we have

∆y

∆x
=

(x+∆x)n − xn

∆x
=

zn − xn

z − x

= zn−1 + zn−2x+ zn−3x2 + · · ·+ zxn−2 + xn−1 (n terms)

Therefore,

dy

dx
= lim

∆x→0

∆y

∆x
= lim

z→x
(zn−1 + zn−2x+ zn−3x2 + · · ·+ xn−1) = nxn−1.
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Example 5.6 Let y = 1/x. Show from the first principle that y′ = −1/x2.

Proof. rule0pt0pt

y′ = lim
∆x→0

1

x+∆x
− 1

x
∆x

= lim
∆x→0

−1
x(x+∆x)

= − 1

x2
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Example 5.7 Let y = sin x. Show from the first principle that y′ = cosx.

Proof. Using the identity sinA− sinB = 2 cos
(

A+B

2

)

sin
(

A−B

2

)

, we have, for

any fixed x and any ∆x 6= 0,

sin(x+∆x)− sin x

∆x
=

2 cos
(

x+
∆x

2

)

· sin ∆x

2
∆x

=
sin

∆x

2
∆x

2

· cos
(

x+
∆x

2

)

Since

lim
∆x→0

sin
∆x

2
∆x

2

= 1 and lim
∆x→0

cos
(

x+
∆x

2

)

= cosx,

we have

dy

dx
= lim

∆x→0

sin(x+∆x)− sin x

∆x
= cosx.



Table of differentiation formulas
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f(x) f ′(x)

1. constant 0

2. xn nxn−1 n = real constant

3. sin x cosx

4. cosx − sinx

5. tanx sec2 x

6. cot x − csc2 x

7. secx secx tanx

8. cscx − cscx cotx

9. ex ex e = 2.718281828 · · ·
10. ax ax ln a a > 0, real constant

11. lnx 1/x x > 0

12. loga x (loga e)/x a > 0, real constant

13. sin−1 x 1/
√
1− x2

14. cos−1 x −1/
√
1− x2

15. tan−1 x 1/(1 + x2)



Examples
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Example 5.8 If y = 1/x3, find y′.

Solution. Since we can write y = x−3, we get, using formula 2 with n = −3,

y′ = (−3)x−3−1 = −3x−4.
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Example 5.9 If y = 3
√
x, find y′.

Solution. Since we can write y = x1/3, we get , using formula 2 with n = 1/3,

y′ =
1

3
x1/3−1 =

1

3x2/3
.
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Example 5.10 The point P (π/4, 1) lies on the curve y = tanx. Find the slope of
the curve at this point.

Solution. Using formula 5, we have y′ = sec2 x. Therefore at x = π/4, the slope of
the curve y = tanx is given by

m = sec2(π/4) = 2.
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Example 5.11 The point A(2, 8) lies on the curve y = x3. Find the equation of
the tangent line at A.

Solution. Using formula 2 with n = 3, we have y′ = 3x2. Therefore at x = 2, the
slope of the curve y = x3 is m = 3 · 22 = 12. Hence the equation of the tangent line
through A(2, 8) is

y − 8 = 12(x− 2) or y = 12x− 16.



Basic rules of differentiation
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(Scalar multiplication) y = kf(x), k is a constant :
dy

dx
= k

df

dx
= kf ′(x)

(Sum) y = f(x) + g(x):
dy

dx
=

df

dx
+

dg

dx
= f ′(x) + g′(x)

(Difference) y = f(x)− g(x):
dy

dx
=

df

dx
− dg

dx
= f ′(x)− g′(x)

(Product) y = f(x)g(x):
dy

dx
= f(x)

dg

dx
+ g(x)

df

dx
= f(x)g′(x) + g(x)f ′(x)

(Quotient) y =
f(x)

g(x)
:

dy

dx
=

g(x)f ′(x)− f(x)g′(x)

[g(x)]2

(Composite function) y = f(u) & u = g(x):
dy

dx
=

dy

du
· du
dx

= f ′(u)g′(x)

(Inverse function) y = f(x)&x = f−1(y):
dx

dy
=

1

dy

dx

=
1

f ′(x)
if f ′(x) 6= 0



Examples: Constant multiplication,

sums and differences
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Example 5.12 If y = 4x3, find y′.

Solution. y′ = 4 · 3x2 = 12x2.
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Example 5.13 If y = x3 + x2 − 2x+ 3, find y′.

Solution. y′ = 3x2 + 2x− 2.
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Example 5.14 If y = 5x3 + x+ 4/x, find y′.

Solution. y′ = 5 · 3x2 + 1− 4/x2 = 15x2 + 1− 4/x2.
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Example 5.15 If y =
3

x2
− 2

x
, find y′.

Solution. y′ =
3 · (−2)

x3
− 2 · (−1)

x2
=

2

x2
− 6

x3
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Example 5.16 If y = xn + bx3 + c where n, b, c are constants. Find y′.

Solution. y′ = nxn−1 + 3bx2.
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Example 5.17 If y = 2 cosx+ sin x, find y′.

Solution. y′ = −2 sinx+ cosx.
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Example 5.18 If y = 2ex + 3 sinx, find y′.

Solution. y′ = 2ex + 3 cosx.
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Example 5.19 If y = 4x+ lnx, find y′.

Solution. y′ = 4 + 1/x.
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Example 5.20 If y = 3x2 − 2 tanx, find y′.

Solution. y′ = 6x− 2 sec2 x.
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Example 5.21 If y = 2x3 + 3ex − sin x, find y′.

Solution. y′ = 6x2 + 3ex − cosx.
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Example 5.22 If y = 1 + x+ x2 + x3 + x4 + x5, find y′.

Solution. y′ = 1 + 2x+ 3x2 + 4x3 + 5x4.



Examples: Products and quotients
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Example 5.23 If y = x3 sinx, find y′.

Solution.

y′ = x3 d

dx
sinx+ sinx

d

dx
x3 = x3 cosx+ 3x2 sin x.
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Example 5.24 If y = x2ex, find y′.

Solution.

y′ = x2 d

dx
ex + ex

d

dx
x2 = x2ex + 2xex = exx(x+ 2).
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Example 5.25 If y = (x2 + x− 2)ex, find y′.

Solution.

y′ = (x2 + x− 2)
d

dx
ex + ex

d

dx
(x2 + x− 2)

= (x2 + x− 2)ex + ex(2x+ 1) = ex(x2 + 3x− 1).
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Example 5.26 If y = (x2 + 3x− 2) cosx, find y′.

Solution.

y′ = (x2 + 3x− 2)
d

dx
cosx+ cosx

d

dx
(x2 + 3x− 2)

= (x2 + 3x− 2)(− sinx) + (cosx)(2x+ 3)

= −(x2 + 3x− 2) sinx+ (2x+ 3) cosx.
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Example 5.27 If y =
x2

sinx
, find y′.

Solution.

y′ =
(sinx)

d

dx
(x2)− x2 d

dx
sinx

[sin x]2
=

2x sinx− x2 cosx

sin2x
.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page173-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page173-CoCalcJupyter.pdf
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Example 5.28 If y =
x2 + 3x+ 2

x2 + 2
, find y′.

Solution.

y′ =
(x2 + 2)

d

dx
(x2 + 3x+ 2)− (x2 + 3x+ 2)

d

dx
(x2 + 2)

(x2 + 2)2

=
(x2 + 2)(2x+ 3)− (x2 + 3x+ 2)(2x)

(x2 + 2)2
=
−3(x2 − 2)

(x2 + 2)2
.
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Example 5.29 If y =
ex

cosx
, find y′.

Solution.

y′ =
(cosx)

d

dx
(ex)− ex

d

dx
cosx

cos2x
=

ex(cosx+ sin x)

cos2x
.



Examples: Chain rule
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Example 5.30 If y = sin 3x, find y′.

Solution. Let y = sin u and u = 3x. Then

y′ =
dy

du
· du
dx

= (cosu)(3) = 3 cos 3x.
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Example 5.31 If y = cosx3, find y′.

Solution. Let y = cosu and u = x3. Then

y′ =
dy

du
· du
dx

= (− sinu)(3x2) = −3x2 sinx3.
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Example 5.32 If y = (x2 − 3x+ 2)6, find y′.

Solution. Let y = u6 and u = x2 − 3x+ 2. Then

y′ =
dy

du
· du
dx

= (6u5)(2x− 3) = 6(2x− 3)(x2 − 3x+ 2)5.
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Example 5.33 If y = e−4x2+3x−1, find y′.

Solution. Let y = eu and u = −4x2 + 3x− 1. Then

y′ = (eu)(−8x+ 3) = (−8x+ 3) exp(−4x2 + 3x− 1).
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Example 5.34 If y = ln(2x2 + 1), find y′.

Solution. Let y = lnu and u = 2x2 + 1. Then

y′ =
1

u
· (4x) = 4x

2x2 + 1
.
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Example 5.35 Let y =
√
x2 + a2 where a is a nonzero constant. Find y′.

Solution. Let y = u1/2 and u = x2 + a2. Then

y′ =
1

2
u−1/2(2x) =

x√
x2 + a2

.
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Example 5.36 If y =
1

x2 + 4x+ 2
, find y′.

Solution. Let y = u−1 and u = x2 + 4x+ 2. Then

y′ = −u−2(2x+ 4) = − 2(x+ 2)

(x2 + 4x+ 2)2
.
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Example 5.37 If y = sin lnx2, find y′.

Solution. Let y = sin u, u = ln v and v = x2. Then

y′ =
dy

du
· du
dv
· dv
dx

= (cosu)
1

v
(2x) =

2(cos ln x2)

x
.
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Example 5.38 If y = (sinx2) exp(cosx), find y′.

Solution.

y′ = exp(cosx)
d

dx
(sin x2) + (sinx2)

d

dx
exp(cosx)

= 2x exp(cosx)(cosx2)− (sinx) (sinx2) exp(cosx).

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page184-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page184-CoCalcJupyter.pdf
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Example 5.39 If y = ln
(2x+ 3

x+ 2

)

, find y′.

Solution.

y′ =
x+ 2

2x+ 3
· 2(x+ 2)− (2x+ 3)

(x+ 2)2

=
1

(2x+ 3)(x+ 2)
.
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Example 5.40 Let f and g be two differentiable functions. If y = f(x2)g(3x+ 2),
find y′ in terms of f , g, f ′ and g′.

Solution.

y′ = f(x2)
d

dx
g(3x+ 2) + g(3x+ 2)

d

dx
f(x2)

= 3 f(x2) g′(3x+ 2) + 2x g(3x+ 2) f ′(x2).



Examples: Inverse functions
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Example 5.41 Let y = sinx2, 0 < x < 1. Find
dx

dy
in terms of x.

Solution.

dx

dy
= 1

/dy

dx
=

1

2x cosx2
.
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Example 5.42 Show that
d

dx

(

sin−1 x
)

=
1√

1− x2
for |x | < 1.

Proof. If y = f(x) = sinx, −π/2 < x < π/2, then x = g(y) = sin−1 y. Since
cosx > 0 whenever −π/2 < x < π/2, we have

dx

dy
or g′(y) =

1

f ′(x)
=

1

cosx
=

1
√

1− sin2x
=

1
√

1− y2
,

for every y ∈ (−1, 1). Changing the dummy variable y to x, we have

d

dx

(

sin−1 x
)

=
1√

1− x2
for |x | < 1.

Remark 5.1 Similarly, we can establish the formula

d

dx
(cos−1 x) = − 1√

1− x2
for |x | < 1.



Implicit functions
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In the xy-plane, the unit circle with centre at the origin O can be represented by the
equation

x2 + y2 = 1. (5.4)

We see that the circle describes two functions of x. One of these can be represented
by the upper half of the circle while the other by the lower half (see Fig. 5.3).

x

y

1−1 O

y =
√
1− x2

bb

x

y

1−1

O

y = −
√
1− x2

bb

Figure 5.3: Two functions defined by the equation x2 + y2 = 1.
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Each of these functions is called an implicit function defined by the equation (5.4). In
fact, the functions in this special case can be defined explicitly by:

y =
√

1− x2, −1 ≤ x ≤ 1

and

y = −
√

1− x2, −1 ≤ x ≤ 1.

However, not all implicit functions can be expressed in explicit forms. For example,
the equation

y + sin(xy) = 2π (5.5)

defines y as one or more functions of x implicitly, but not explicitly.
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Example 5.43 Find y′ if y is the function defined implicitly by the equation (5.5).
Show that the point P (1, 2π) lies on the curve defined by (5.5) and find the slope of
the curve at P .
See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page191-CoCalcJupyter.pdf

Solution. Regarding y as a function of x, we can differentiate both sides of (5.5)
with respect to x:

d

dx
(y + sin xy) =

d

dx
(2π).

It follows that y′ + (cosxy)(xy′ + y) = 0. Solving for y′, we get

y′ =
−y cosxy
1 + x cosxy

.

At x = 1, y = 2π, the LHS of (5.5) is 2π + sin 2π which is equal to the RHS.
Therefore the point P (1, 2π) lies on the curve defined by (5.5). At this point, x = 1
and y = 2π. Therefore the slope of the curve at P is

y′ =
−y cosxy
1 + x cosxy

=
−2π cos(2π)

1 + cos(2π)
= −π.

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page191-CoCalcJupyter.pdf
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If y = f(x) has a derivative f ′(x) and if f ′(x) also has a derivative, this derivative of
the derivative of f(x) is called the second order derivative of f(x). The second order
derivative is denoted by

y′′ or f ′′(x) or
d2y

dx2
.

If we differentiate the second order derivative, we get the third order derivative
denoted by:

y′′′ or f ′′′(x) or
d3y

dx3
.

In this way, the nth order derivative is defined and is denoted by

y(n) or f (n)(x) or
dny

dxn
.

For convenience, we also define

y(0) = f (0)(x) = f(x)

so that y(n) or f (n)(x) is defined for n = 0, 1, 2, 3, . . ..
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Example 5.44 Let y = x3 − 4 lnx. Find y′, y′′ and y′′′.

Solution. y′ = 3x2 − 4/x, y′′ = 6x+ 4/x2 and y′′′ = 6− 8/x3.

A useful rule for differentiating a product n times is:



Leibniz’s rule
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For differentiable functions u(x) and v(x),

(uv)(n) =
n
∑

k=0

(

n

k

)

u(n−k)v(k)

where
(

n
k

)

denotes the coefficient of tk in the binomial expansion of (1+t)n.

The formula for the binomial coefficient is
(

n

k

)

=
n!

k!(n− k)!
for n = 1, 2, 3, . . . ; k = 0, 1, 2, . . . , n

and the rules for n = 1, 2, 3, 4 are:

(uv)′ = u′v + uv′

(uv)′′ = u′′v + 2u′v′ + uv′′

(uv)′′′ = u′′′v + 3u′′v′ + 3u′v′′ + uv′′′

(uv)(4) = u(4)v + 4u′′′v′ + 6u′′v′′ + 4u′v′′′ + uv(4)
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Example 5.45 Find y′′ if y = x3 sin 2x.

Solution.

y′′ = x3(−4 sin 2x) + 2(3x2)(2 cos 2x) + 6x sin 2x

= (−4x3 + 6x) sin 2x+ 12x2 cos 2x.
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Example 5.46 Let y = x2e2x. Find y(n) for n ≥ 0.

Solution.
Let u = x2 and v = e2x. Then u(k) = 0 for k ≥ 3. By Leibniz’s rule,

y(n) = x2(2ne2x) + n(2x)(2n−1e2x) +
n(n− 1)

2
(2)(2n−2e2x) + 0 + · · ·

= 2n−2e2x[4x2 + 4nx+ n(n− 1)] (5.6)

for n ≥ 2. Furthermore, direct differentiation gives

y = x2e2x and y′ = e2x(2x+ 2x2)

showing that (5.6) is also true for n = 0 and 1.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page196-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page196-CoCalcJupyter.pdf
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Increasing and decreasing functions
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Definition 6.1 Let J be an open interval.

■ A function y = f(x) is increasing on J if y increases as x increases on J .
■ The function is decreasing on J if y decreases as x increases on J .

y

xO x1

y1

x2

y2

An increasing function.

y

xO x1

y1

x2

y2

An decreasing function.

Figure 6.1: The meaning of an increasing function and a decreasing function.
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Example 6.1 Show that y = x2 is increasing in the interval J = (0,∞)

Solution. For any two distinct numbers x1 and x2 in J = (0,∞), we have

x2
1 − x2

2

x1 − x2
= x1 + x2 > 0.

Therefore x2
1 < x2

2 whenever x1 < x2. Hence y = x2 is increasing in J .
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If a function is differentiable, we can determine its monotonicity by considering the
sign of its derivative.

Theorem 6.1 Let f(x) be differentiable on an open interval J . Then

■ f ′(x) > 0 on J =⇒ f is increasing on J .
■ f ′(x) < 0 on J =⇒ f is decreasing on J .



Examples
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Example 6.2 Use the above theorem to show that the function y = x3 is
increasing on the interval J1 = (−∞, 0) and on the interval J2 = (0,∞).

Solution. Since y′ = 3x2 > 0 on J1 and on J2, the above theorem asserts that the
function y = x3 is increasing on either interval.

In fact using directly the definition of increasing function we can show that the
function y = x3 is increasing over the entire real line.
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Example 6.3 Determine the open intervals in which the function f(x) = x4 + 4x is
increasing or decreasing.

Solution. f ′(x) = 4x3 + 4 = 4(x3 + 1).

When x < −1, f ′ < 0. ∴ f is decreasing in the interval (−∞,−1).
When x > −1, f ′ > 0. ∴ f is increasing in the interval (−1,∞).



Local maxima and minima
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Definition 6.2 Consider y = f(x) and a ∈ Dom f .

■ f(x) has a local (or relative) maximum at a, and f(a) is a local (or relative)
maximum if f(a) ≥ f(x) for all x in an open interval containing a.

■ The definition for a local (or relative) minimum is similar.
■ We say that f(x) has a local extremum at a if it has either a local maximum or a

local minimum at a.
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The local extrema of a differentiable function are illustrated in Fig. 6.2. From the
diagram, we see that the local extrema occur when the tangents to the graph are
horizontal, i.e. when the graph has zero slope.

xx1 x2 x3 x4

• Local maxima at x1 and x3. Local minima at x2 and x4.

b

b

Figure 6.2: The meaning of local extrema.



Stationary point
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Definition 6.3 If f ′(a) = 0, we say that x = a is a stationary point.

In Fig. 6.2, x1, x2, x3 and x4 are stationary points.

Theorem 6.2 (A necessary condition for local extrema) If f(x) is differentiable in
an open interval J and if it has a local extremum at x = a in J , then x = a must be
a stationary point, i.e. f ′(a) = 0.

The theorem tells us that for differentiable functions, the local extrema can be found
by considering only the stationary points. Having found the stationary points, we can
test them one by one for local maxima or local minima using the tests introduced in
the following sections.



First derivative test
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Assume f(x) is differentiable in an interval J containing a and f ′(a) = 0.

If f ′(x) changes sign from positive to negative as x increases through x = a then
f(x) has a local maximum at a.

If f ′(x) changes sign from negative to positive as x increases through x = a then
f(x) has a local minimum at x = a.

x

y

a

(+)
(0)

(−)
b

(a) Local maximum is attained at a.

Slope changes sign from + to −.

x

y

a

(−)
(0)

(+)
b

(b) Local minimum is attained at a.

Slope changes sign from − to +.

Figure 6.3: Slope changes sign through a local extremum.
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Example 6.4 Find the local extrema of y = x3 − 9x2 + 24x+ 5.

Solution. y′ = 3x2 − 18x+ 24 = 3(x− 2)(x− 4).

∴ y′ = 0 when x = 2, 4.
We can find the signs of y′ in the intervals separated by x = 2 and x = 4 as shown in
the table:

x x < 2 x = 2 2 < x < 4 x = 4 4 < x
y′ + 0 − 0 +

Since y′ changes sign from positive to negative as x increases through x = 2, we
conclude that y has a local maximum at x = 2. Similarly, y has a local minimum at
x = 4.
By direct substitution, we get

local maximum= 23 − 9 · 22 + 24× 2 + 5 = 25 attained at x = 2.

local minimum = 43 − 9× 42 + 24× 4 + 5 = 21 attained at x = 4.



Second derivative test
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Assume f(x) is twice differentiable at x = a. The second derivative test is:

• f ′(a) = 0 and f ′′(a) < 0 =⇒ Local maximum is attained at x = a.

• f ′(a) = 0 and f ′′(a) > 0 =⇒ Local minimum is attained at x = a.

• f ′(a) = 0 and f ′′(a) = 0 =⇒ No conclusion can be made.
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Example 6.5 Find the local maximum and local minimum of

y = x3 − 9x2 + 24x+ 5

by the second derivative test. (Compare with the previous example.)

Solution. y′ = 3x2 − 18x+ 24 = 3(x− 2)(x− 4).

∴ y′′ = 6x− 18 = 6(x− 3) and y′ = 0 when x = 2, 4.
At x = 2, y′′ < 0. ∴ y has a local maximum at x = 2 and the local maximum is 25.
At x = 4, y′′ > 0. ∴ y has a local minimum at x = 4 and the local minimum is 21.



Remark
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Fig. 6.4 illustrates that the test fails if we know only f ′(a) = f ′′(a) = 0. Indeed,
consider the following three cases: (i) f(x) = x4 (ii) f(x) = −x4 (iii) f(x) = x3.
In all these cases, we have f ′(0) = f ′′(0) = 0. However, at x = 0, f(x) has a local
minimum in (i), a local maximum in (ii) and has no local extremum at all in (iii).

f(x) = x4, f ′(0) = f ′′(0) = 0.

A local minimum at x = 0.

x

y

b

f(x) = x3, f ′(0) = f ′′(0) = 0.

Neither a local minimum

nor a local maximum at x = 0.

x

y

b

Figure 6.4: Failing cases of the second derivative test.



Global maxima and minima
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In practical problems, we often require to find the actual maximum or minimum value
rather than the local maxima or minima.

Definition 6.4 Let a be a point in the domain J of a function f(x).

■ If f(a) ≥ f(x) for all x in J , we say that f(a) is the maximum value of f(x) on
J and that f(x) has its maximum attained at x = a. The maximum value is also
called the global maximum or the absolute maximum, or simply the maximum.

■ We have similar definitions for minimum value on J .
■ The extremum means the maximum value or the minimum value.
■ The function f(x), whose extrema are being sought, is called the objective

function.

The method of locating global extrema varies and is dependent on the objective
function f(x) and on the type of its domain. In the following sections, we consider
the cases where (i) J is a closed and bounded interval of the form [a, b], and (ii) J is
an interval of any other types.



Global extrema on [a, b]
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Suppose that the domain of a continuous function f(x) is a closed and bounded
interval J = [a, b]. The global extrema must exist in J . Furthermore, if f(x) is
differentiable3 on [a, b], an extremum must be attained at an endpoint or at a
stationary point of J .

Theorem 6.3 Let f(x) be differentiable on its domain J = [a, b] and c ∈ J . If f(c)
is an extremum of f(x), then c is an endpoint of J or f ′(c) = 0.

Hence for differentiable functions on [a, b], the extrema can be obtained by finding
and comparing the function values at the endpoints and the stationary points.

3Differentiability at an endpoint of J means the associated one-sided limit of (5.3) exists.
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Example 6.6 Find the extrema of the function y = x3 − 6x2 + 9x, 0 ≤ x ≤ 5.

Solution. Solving y′ = 3x2 − 12x+ 9 = 3(x− 1)(x− 3) = 0, we get x = 1 or
x = 3. Therefore the function y has stationary points at x = 1 and x = 3. We
compute the y-values at the end-points and the stationary points:

x y
Endpoint : 0 0
Endpoint : 5 20
Stationary point: 1 4
Stationary point: 3 0

Comparing y-values in the table, we see that

max y = 20 attained at x = 5; min y = 0 attained at x = 0 and at x = 3.
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Example 6.7 A lighthouse H is in the sea 3 km from a point A of a straight
coastline which is perpendicular to the line joining A to H. There is a store S
located 5 km down the coast from A. The lighthouse keeper can row his boat at 4
km per hour and he can walk at 6 km per hour. To what point of the shore should he
row so as to reach the store in shortest time? What is this shortest time?

Solution.

H

SA

√
x2 + 9

x 5− x

3

b

bb

If the lighthouse keeper lands x km from A, he must row for
√
x2 + 9 km and walk

for (5− x) km. The total time required on this route is

T (x) =

√
x2 + 9

4
+

5− x

6
, 0 ≤ x ≤ 5.
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To minimize the time T , we differentiate T to get

T ′(x) =
x

4
√
x2 + 9

− 1

6
.

Solving T ′(x) = 0 in 0 ≤ x ≤ 5, we get x = 6/
√
5. Comparing the time T :

x T
Endpoint : 0 1.583
Endpoint : 5 1.458

Stationary point : 6/
√
5 1.392

we see that the shortest time is 1.392 hours when x = 6/
√
5.



Global extrema on an interval of

other types
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Suppose that the domain of a differentiable function f(x) is an interval J not of the
form [a, b]. This includes the cases like J = (a,∞), J = (−∞, b] and J = (−∞,∞).
In each of these cases, the existence of a global extremum is not guaranteed. This
can be seen from Fig. 6.5.

b

1 stationary point
Minimum exists
Maximum exists

b

1 stationary point
Minimum not exist
Maximum exists

1 stationary point
Minimum not exist
Maximum not exist

2 stationary points
Minimum exists
Maximum exists

b

2 stationary points
Minimum not exist
Maximum exists

2 stationary points
Minimum not exist
Maximum not exist

Figure 6.5: Global extrema may or may not exist.



Page – 217

If f(x) is differentiable on the interval J , we can get the global extrema by simply
comparing values of f(x) at the stationary points and at the endpoints a and b.
Though the values at a and b may not be defined, they can be replaced by their
limiting values.
For instance, if f(x) is not defined at the endpoint b of J where b is finite or b =∞,
we can use limx→b− f(x) or limx→∞ f(x) to replace f(b) in the comparison. If the
largest value in the comparison table is attained in the domain J , this value is the
global maximum. If the largest value is not attained in J , the global maximum does
not exists. Similar conclusions are for the global minimum.
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Example 6.8 The profit function of producing and selling x units of a kind of
product is given by P (x) = −x3 + 9x2 − 15x. Assuming that x is a continuous
variable and 0 ≤ x <∞, find the maximum profit.

Solution. Being a polynomial, P is differentiable in J = [0,∞). We differentiate P
to get P ′ = −3x2 + 18x− 15 = −3(x− 1)(x− 5). Solving P ′ = 0, we get the
stationary points x = 1 and x = 5. We compute the limiting values of P at infinity
and the P -values at x = 0 and at the stationary points:

x P (x)
Endpoint : 0 P (0) = 0
Endpoint : ∞ lim

x→∞
P (x) = −∞

Stationary point : 1 P (1) = −7
Stationary point : 5 P (5) = 25

By comparison we see that the maximum profit is 25 attained at x = 5.



Case: exactly one stationary point
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When there is only one stationary point and the domain is an interval, there is a
simple rule to get the global extremum.

Theorem 6.4 Let f(x) be a function defined on an interval J . Assume that f(x)
is differentiable on J and has exactly one stationary point a in J . Then,

■ f(a) is a local minimum =⇒ f(a) is the global minimum.
■ f(a) is a local maximum =⇒ f(a) is the global maximum.

The theorem is obviously true for the case J = (a, b) as a global extremum must be a
local one. It is true for an interval J of any type and the proof is omitted here. In
many practical problems, the objective functions satisfy the assumption of the
theorem. For such a problem, the global extremum is the same as the local extremum
if the objective function has only one stationary point in J .
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Example 6.9 Find the smallest sum of two positive numbers if their product is 16.

Solution. Let x and y be positive numbers satisfying xy = 16. Let S = x+ y with
x > 0 and y > 0. Since y = 16/x, we have to minimize S(x) = x+ 16/x over the
domain J = (0,∞).
We first differentiate S with respect to x and get S′ = 1− 16/x2 and S′′ = 32/x3.
Solving S′ = 0, we have x = ±4. We reject the solution x = −4 as it is not in the
domain J . Therefore there is only one stationary point x = 4.
Since S′(4) = 0 and S′′(4) > 0, S has a local minimum at the point x = 4. By
Theorem 6.4, S has a global minimum at the point x = 4 and the minimum value is
4 + 4 = 8.



Concavity and inflection points
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Definition 6.5 Let f(x) be differentiable on an open interval J .

■ f(x) is said to be concave up on J if for any point a in J , the graph of f(x) near
x = a lies above its tangent at a. Similarly,

■ f(x) is said to be concave down on J if its graph lies below its tangents.

x

y

b

b
b

b

J

(a) Concave up on J :

Curve above its tangents.

x

y

b

b
b

b

J

(b) Concave down on J :

Curve below its tangents.

Figure 6.6: Meaning of concave up and concave down over an interval.



Concavity
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Theorem 6.5 Let J be an open interval.

■ f(x) is concave up on J iff f ′(x) is increasing on J .
■ f(x) is concave down on J iff f ′(x) is decreasing on J .

x

y

b

b
b

b

m = −1

m = 0

m = 0.7

m = 2

(a) Concave up: the slope m

is increasing.

x

y

b

b
b

b

m = 1 m = −0.7

m = −2

m = 0

(b) Concave down: the slope m

is decreasing.

Figure 6.7: Concavity of f(x) as monotonicity of f ′(x).
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Furthermore, if f ′′(x) exists, we have the following theorem.

Theorem 6.6 Let f(x) be twice differentiable on an open interval J .

■ f(x) is concave up on J iff f ′′(x) > 0 on J .
■ f(x) is concave down on J iff f ′′(x) < 0 on J .



Summary
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We summarize the above definitions and theorems in the following table.

f(x) is concave up on J f(x) is concave down on J
Definition: Graph above its tangents on J Graph below its tangents on J

Theorem 6.5: f ′(x) is increasing on J f ′(x) is decreasing on J

Theorem 6.6: f ′′(x) > 0 on J f ′′(x) < 0 on J
rule0pt0pt



Example
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Example 6.10 Find the open intervals in which the function
f(x) = x3 + 3x2 − 4x+ 2 is concave up. Also find the open intervals in which f(x)
is concave down.

Solution. f(x) = x3 + 3x2 − 4x+ 2. ∴ f ′(x) = 3x2 + 6x− 4 and hence
f ′′(x) = 6x+ 6. In the interval (−1,∞), we have f ′′(x) > 0 and f(x) is concave up.
In the interval (−∞,−1), we have f ′′(x) < 0 and f(x) is concave down.



Inflection points
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Definition 6.6 Let f(x) be differentiable on an open interval J and a be a point in
J . We say that (a, f(a)) is an inflection point of f(x) if f(x) is concave up on one
side and concave down on the other side of a.

y

x

b
concave
down

concave
up

inflection
point

y

x

b

concave
down

concave
up

inflection
point

y

x

b

concave
up

concave
down

inflection
point

y

x

b

concave
down

concave
up

inflection
point

Figure 6.8: Meaning of inflection point.
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By definition, if (a, f(a)) is an inflection point of the function f(x), then f ′′(x) is
positive on one side of a and f ′′(x) < 0 on the other side. Therefore if f ′′(x) is
continuous, we have f ′′(a) = 0.
Conversely, the condition f ′′(a) = 0 is not sufficient to deduce that (a, f(a)) is an
inflection point. Take for example the smooth function f(x) = x4. Clearly this f(x)
has no inflection point but f ′′(0) = 0.
However, the following theorem gives a sufficient condition to identify an inflection
point. This theorem is useful when the third order derivative can be found without
difficulty.

Theorem 6.7 Suppose that f ′′′(x) exists over an open interval containing a. If
f ′′(a) = 0 but f ′′′(a) 6= 0 then (a, f(a)) is an inflection point of f(x).



Example
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Example 6.11 Find the inflection points (if any) of the function

f(x) = x3 + 3x2 − 4x+ 2.

Solution. Let y = x3 + 3x2 − 4x+ 2. As in the previous example, we have
y′ = 3x2 + 6x− 4 and y′′ = 6x+ 6. To find the inflection point, we solve for x the
equation y′′ = 0, i.e. 6x+ 6 = 0. The only solution is x = −1 at which y = 8. Since
y′′′ = 6 6= 0, the function f(x) has an inflection point (−1, 8).

Another example Using CoCalc to find inflection points of a rational function
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/rational-function-inflection-points.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/rational-function-inflection-points.pdf


Curve sketching

The general procedure
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1. Find the domain of the function if it is not given. Observe if there is any
symmetry. If f(x) is even (f(−x) = f(x)), the graph is symmetrical about the
y-axis. If it is odd (f(−x) = −f(x)), the graph is symmetrical about the origin.

2. Find the first derivative f ′(x). Hence obtain the points where f ′(x) is undefined
and the stationary points where f ′(x) = 0. Find also the local extrema and the
intervals of monotonicity. Find the points on the graph at the stationary points.

3. Find the second derivative f ′′(x) (if not too difficult), hence obtain the intervals
of concavity and the inflection points (if any).

4. Summarize the results of No. 2 to 3 in a table.
5. Find the asymptotes (if any).
6. If necessary, find additional points that help to fix the position of the graph.
7. If necessary, find the limiting value of f(x) like limx→∞ f(x).
8. Based on No. 4, 5, 6 and 7, select good x-range and y-range to include the

main characteristics of the graph. Sketch the graph.



Examples of curve sketching
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Example 6.12 Sketch the curve y = x3 − 3x.

Solution

1. The domain is R. The function is odd as (−x)3 − 3(−x) = −(x3 − 3x).
2. First derivative: y′ = 3x2 − 3 = 3(x2 − 1). Therefore there are two stationary

points x = −1 and x = 1. These stationary points subdivide the real axis into
three intervals:

(−∞,−1), (−1, 1), (1,∞)

We get: y′ > 0 (y increasing) in (−∞,−1) and in (1,∞); y′ < 0 (y decreasing)
in (−1, 1). By the first derivative test, the function has a local maximum at
x = −1 and has a local minimum at x = 1. The extremum points on the graph
are (−1, 2) and (1,−2).

3. Second derivative: y′′ = 6x. Therefore, y′′ < 0 (y concave down) if x < 0;
y′′ > 0 (y concave up) if x > 0. It follows that the origin (0, 0) is an inflection
point.
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4. No. 3 and 4 are summarized as (see footnote4 for the meanings of symbols):

x x < −1 −1 −1 < x < 0 0 0 < x < 1 1 1 < x
y′ + 0 − − − 0 +
y′′ − − − 0 + + +

ր loc.max ց ց ց loc.min ր
y concave down i.p. concave up

2 0 −2

5. Being a polynomial, the graph has no asymptote.
6. The x-intercept is found by solving x3 − 3x = 0. The solutions are x = 0 and

x = ±
√
3. These give three points (0, 0), (−

√
3, 0) and (

√
3, 0) on the graph.

7. lim
x→−∞

(x3 − 3x) = −∞ and lim
x→∞

(x3 − 3x) =∞.

8. Based on No. 1, 4, 5, 6 and 7, the graph is sketched as follows:

4ր means increasing; ց means decreasing; i.p. means inflection point.
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y

x

b

b

b

b b
O √

3

−
√
3 1

−1

2

−2
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Example 6.13 Sketch the curve y = 4
√
x− x.

Solution

1. The domain is x ≥ 0.
2. y′ = 2/

√
x− 1. Solving y′ = 0, we get x = 4 and y = 4. Also, we get y′ > 0 if

x < 4; and y′ < 0 if x > 4. By the first derivative test, (4, 4) is the point at
which the local maximum is attained.

3. y′′ = −1/x3/2. Therefore the function is concave down over x > 0 and has no
inflection point.

4.

x 0 < x < 4 4 4 < x < 16 16 16 < x
y′ + 0 − − −
y′′ − − − − −

ր loc.max ց ց ց
y concave down

4 0
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5. y = 0 at x = 0. y → −∞ as x→∞. Also y′ →∞ as x→ 0+.
6. The graph is sketched as follows:

y

x
b

b

b
(0, 0)

(4, 4)

(16, 0)
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Example 6.14 Sketch the curve y =
x

(x− 1)2
, x 6= 1.

Solution

1. The domain is (−∞, 1) ∪ (1,∞).

2. y′ =
−(x+ 1)

(x− 1)3
for all x 6= 1. Thus the curve has a stationary point x = −1 at

which y = −1/4. The sign of y′ is the same as that of −(x+ 1)(x− 1) and is
shown in the table below.

3. y′′ = − 1

(x− 1)3
− −3(x+ 1)

(x− 1)4
=

2(x+ 2)

(x− 1)4
.

∴ at x = −2 we have y′′ = 0. The sign of y′′ is the same as that of x+2 and is
shown in the table below.
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4.

x −∞ < x < −2 −2 −2 < x < 1 −1 −1 < x < 1 1 1 < x <∞
y′ − − − 0 + −
y′′ − 0 + + + +

ց ց ց loc.min ր ց
y conc. down i. p. concave up conc. up

−2/9 −1/4

5. The asymptotes are the lines y = 0 and x = 1.
6. y = 0 if and only if x = 0. Also y = 2 at x = 2.
7. limx→−∞ y = 0, limx→1− y =∞, limx→1+ y = +∞, limx→∞ y = 0.
8. The graph is sketched as follows:
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1 x

y

−1−2

1

2

3

2

− 1

2

−1

b

b

b
b

minimum
inf. pt.

asymptotes



Supplementary Notes
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To find the closest point from an ellipse to a given point
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary04.pdf

Two Roots (CoCalc) https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary04_CoCalcJupyter.pdf

Four Roots (CoCalc) https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary04a_CoCalcJupyter.pdf

Three Roots but still two extrema (CoCalc)
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary04b_CoCalcJupyter.pdf

Visualize the distribution of locations giving 4 roots (green), 2 roots (red),
and 3 roots (the two blue dots, right on the EVOLUTE) (CoCalc)
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary04c_CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary04.pdf
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary04_CoCalcJupyter.pdf
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary04a_CoCalcJupyter.pdf
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary04b_CoCalcJupyter.pdf
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary04c_CoCalcJupyter.pdf


Increments and differentials
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Consider a differentiable function y = f(x) with independent variable x and
dependent variable y .

Definition 6.7 Let x be fixed and let there be a small increment in x denoted by
∆x. We define:
• dx = ∆x (called the differential of x and the increment in x)
• dy = f ′(x) dx (called the differential of y)
• ∆y = f(x+∆x)− f(x) (called the increment in y)

Examples

Example 6.15 If y = x2 + 3x+ 1, find dy.

Solution. dy = (2x+ 3) dx.
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Example 6.16 For the function y = x3, find dy and ∆y with x = 1 and
∆x = 0.05.

Solution. dy = 3x2 dx.
Therefore with x = 1 and dx = ∆x = 0.05, we get

dy = 3× 12 × 0.05 = 0.15 and ∆y = 1.053 − 13 = 0.158.



Differentials and approximations
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The meaning of dx, dy, ∆x and ∆y are illustrated in the following diagram. Note
that dy and ∆y are quantities dependent on the function f(x) and the values of x
and ∆x.

y

x
O

b

b

b

y = f(x)

P (x, y)

Q(x+∆x, y +∆y)

∆x

dx

∆y
dy

From the above diagram, we can see the truth of the following theorem:

Theorem 6.8 ∆y ≈ dy if ∆x is small.

For a differentiable function y = f(x), this theorem allows us to get an estimate of
∆y using the value dy when ∆x is small.



Example
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Example 6.17 For the function y = f(x) with f(1) = a and f ′(1) = m, estimate
the value of f(1.2).

Solution. Taking x = 1 and dx = ∆x = 0.2, we get
∆y ≈ dy = f ′(1)×∆x = (0.2)m, ∴ f(1.2) = f(1) + ∆y ≈ a+ (0.2)m.
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Example 6.18 For the function f(x) =
√
x with f(64) = 8, find f ′(64) and hence

estimate the value of f(63) using differentials.

Solution. f ′(x) =
1

2
√
x
. Taking x = 64 and dx = ∆x = −1, we get

∆y ≈ dy = f ′(64)× dx = −1/16,

∴ f(63) = f(64) + ∆y ≈ 8− 1
16 = 7.9375.



L’Hôpital’s rule for finding limits
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In Chapter 2, we learned the formula

lim
x→a

f(x)

g(x)
=

A

B
(6.1)

where A and B are the limits

A = lim
x→a

f(x) and B = lim
x→a

g(x). (6.2)

If B 6= 0, the formula (6.1) works fine and gives a finite value. If the limit B is zero
and A is nonzero, A/B is ∞ or −∞. What happens when both A and B are zero?
In this case the following l’Hôpital’s rule may help.

Theorem 6.9 (l’Hôpital’s rule for type 0/0) If f(x) and g(x) are differentiable over
an open interval containing a, and if A and B defined in (6.2) are zero, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

if the latter limit exists or is infinite.



Example
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Example 6.19 Find lim
x→0

sin x

x
by l’Hôpital’s rule.

Solution. Since limx→0 sinx = 0 and limx→0 x = 0, the required limit is of type
0/0. By l’Hôpital’s rule,

lim
x→0

sinx

x
= lim

x→0

cosx

1
= 1.
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Example 6.20 Find lim
x→1

x3 − 1

x− 1
by l’Hôpital’s rule.

Solution. Since limx→1(x
3 − 1) = 0 and limx→1(x− 1) = 0, the required limit is

of type 0/0. By l’Hôpital’s rule,

lim
x→1

x3 − 1

x− 1
= lim

x→1

3x2

1
= 3.
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Example 6.21 Find lim
x→0

x− sin x

x3 − x2
by l’Hôpital’s rule.

Solution. Here we apply l’Hôpital’s rule twice to get the answer.

lim
x→0

x− sin x

x3 − x2

(

type
0

0

)

= lim
x→0

1− cosx

3x2 − 2x

(

type
0

0

)

= lim
x→0

sin x

6x− 2

(

type
0

nonzero

)

= 0.



Another form of l’Hôpital’s rule
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Theorem 6.10 (l’Hôpital’s rule for type ∞/∞) If f(x) and g(x) are differentiable
over an open interval containing a, and if A and B defined in (6.2) are infinite (i.e.
∞ or −∞, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

if the latter limit exists or is infinite.



Example
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Example 6.22 Find lim
x→∞

ex

x3
by l’Hôpital’s rule.

Solution. Here we apply l’Hôpital’s rule three times to get the answer.

lim
x→∞

ex

x3

(

type
∞
∞

)

= lim
x→∞

ex

3x2

(

type
∞
∞

)

= lim
x→∞

ex

6x

(

type
∞
∞

)

= lim
x→∞

ex

6

(

type
∞

finite

)

= ∞.



Mean Value Theorem
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Extreme Value Theorem
If f is continuous on a closed interval [a, b], then f attains an absolute maximum
value f(c) and an absolute minimum value f(d) at some numbers c and d in [a, b].
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Fermat’s Theorem
If f has a local maximum or minimum at c, and if f ′(c) exists, then f ′(c) = 0.
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Rolle’s Theorem
Let f be a function that satisfies the following three properties

(i) f is continuous on the closed interval [a, b].
(ii) f is differentiable on the open interval (a, b).
(iii) f(a) = f(b).

Then, there is a number c in (a, b) such that f ′(c) = 0.

 



Mean Value Theorem
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Let f be a function that satisfies the following hypotheses

(i) f is continuous on the closed interval [a, b].
(ii) f is differentiable on the open interval (a, b).

Then, there is a number c in (a, b) such that f ′(c) = f(b)−f(a)
b−a , or equivalently,

f(b)− f(a) = f ′(c)(b− a).
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Example: Consider f(x) = x3 − x defined on the interval [0, 2]. Since f is a
polynomial, it is continuous and differentiable. Thus, by Mean Value Theorem, there
is a number c in [0, 2] such that

f(2)− f(0) = f ′(c)(2− 0)

Now f(2) = 6, f(0) = 0, and f ′(x) = 3x2 − 1, so this equations becomes

6 = (3c2 − 1)2 = 6c2 − 2

which gives c2 = 4
3 , that is c = ± 2√

3
. But c must line in (0, 2), so c = 2√

3
.
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Example: Suppose that f(0) = −3 and f ′(x) ≤ 5 for all values of x. How large can
f(2) possibly be?

Solution: We are given that f is differentiable (and therefore continuous)
everywhere. In particular, we can apply Mean Value Theorem on the interval [0, 2].
There exists a number c such that

f(2)− f(0) = f ′(c)(2− 0)

so

f(2) = f(0) + 2f ′(c) = −3 + 2f ′(c).

We are given that f ′(x) ≤ 5 for all x, so in particular we know f ′(c) ≤ 5. Multiplying
both sides of this inequality by 2, we have 2f ′(c) ≤ 10, so

f(2) = = −3 + 2f ′(c) ≤ −3 + 10 = 7.

The largest possible value for f(2) is 7.



Indefinite Integral
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Definition of indefinite integrals
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We know that if we differentiate a function F (x) we get a function f(x):

d

dx
F (x) = f(x) (8.1)

called the derivative of F (x). In this chapter we start from a function f(x) and
proceed reversely to find an F (x) satisfying (8.1).

Definition 8.1 A function F (x) is called a primitive or antiderivative of a function
f(x) if (8.1) is true.

The definition is illustrated in the following diagram and we see that finding a
primitive is just the reverse process of differentiation.

= F (x) f(x) =

Differentiation

Getting a primitive

A primitive of
f(x)

The derivative of
F (x)
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If C is any constant, then
d

dx
C = 0. It follows that if F (x) is a primitive of f(x)

then F (x) + C is also a primitive. Therefore, if F (x) is a primitive of f(x), we have

∫

f(x) dx = F (x) + C

where C is an arbitrary constant. Note that if, instead of x, we use another symbol,
say u, for the independent variable, the above equation can be written

∫

f(u) du = F (u) + C.



Examples
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Example 8.1 Find the indefinite integral

∫

cosx dx.

Solution. rule0pt0pt

Since
d

dx
sinx = cosx, we can write at once

∫

cosx dx = sinx+ C

where C is an arbitrary constant.

sinx+ C cos xC

Diffn

Integn
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Example 8.2 Find the indefinite integral

∫

x3 dx.

Solution. rule0pt0pt

Since
d

dx
x4 = 4x3 and hence

d

dx

(

x4

4

)

= x3, we can write at once

∫

x3 dx =
x4

4
+ C

where C is an arbitrary constant.

1

4
x4 + C x3C

Diffn

Integn



A Table of Integrals
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f(x)

∫

f(x) dx

1 xn (n 6= −1) xn+1

n+ 1
+ C

2
1

x
(x 6= 0) ln |x|+ C

3 ex ex + C

4 sinx − cosx+ C

5 cosx sin x+ C

6 tanx − ln | cosx| = ln | secx|+ C

7 cotx ln | sin x|+ C

8 secx ln | secx+ tanx|+ C

9 cscx − ln | cscx+ cotx|+ C

10 secx tanx secx+ C

11 cscx cotx − cscx+ C
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f(x)

∫

f(x) dx

12
1

a2 + x2
(a 6= 0)

1

a
tan−1

(x

a

)

+ C

13
1

a2 − x2
(a 6= 0)

1

2a
ln

∣

∣

∣

a+ x

a− x

∣

∣

∣
+ C

14
1√

a2 − x2
(a > 0) sin−1

(x

a

)

+ C

15
1√

x2 + a2
(a 6= 0) ln

∣

∣x+
√
x2 + a2

∣

∣+ C

16
1√

x2 − a2
(a 6= 0) ln

∣

∣x+
√
x2 − a2

∣

∣+ C

17
√
x2 + a2

x

2

√
x2 + a2 +

a2

2
ln
∣

∣x+
√
x2 + a2

∣

∣+ C

18
√
x2 − a2

x

2

√
x2 − a2 − a2

2
ln
∣

∣x+
√
x2 − a2

∣

∣+ C

19
√
a2 − x2 (a > 0)

x

2

√
a2 − x2 +

a2

2
sin−1

(x

a

)

+ C



Basic rules of integration
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Each of the following rules can be easily deduced by differentiating the RHS and
verifying that it is equal to the integrand of the LHS.

1.

∫

kf(x) dx = k

∫

f(x) dx (k =constant)

2.

∫

[f(x) + g(x)] dx =

∫

f(x) dx+

∫

g(x) dx

3. If a, b are constants with a 6= 0 and if

∫

f(x) dx = F (x) + C, then

∫

f(ax+ b) dx =
1

a
F (ax+ b) + C.

4.

∫

f ′(x)

f(x)
dx = ln |f(x)|+ C.

5.

∫

f ′(x)
√

f(x)
dx = 2

√

f(x) + C.



Examples: Rule 1, 2
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Example 8.3

∫

(2x2 + 3x− 4) dx =
2x3

3
+

3x2

2
− 4x+ C.

Example 8.4

∫

(

2x3 +
1

x2

)

dx =
x4

2
− 1

x
+ C.

Example 8.5

∫

(

3x+
2

x

)

dx =
3x2

2
+ 2 ln |x|+ C.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page266-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page266-CoCalcJupyter.pdf


Examples: Rule 3
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Example 8.6

∫

(ax+ b)4 dx =
(ax+ b)5

5a
+ C (if a 6= 0).

Example 8.7

∫

sin(2x− 3) dx = −1

2
cos(2x− 3) + C.



Examples: Rule 4
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Example 8.8

∫

tanx dx = −
∫ − sin x

cosx
dx =− ln| cosx|+ C.

Example 8.9

∫

x

x2 − 3
dx =

1

2

∫

2x

x2 − 3
dx =

1

2
ln |x2 − 3|+ C.



Examples: Rule 5
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Example 8.10

∫

x√
x2 − 1

dx =
1

2

∫

2x√
x2 − 1

dx =
√

x2 − 1 + C.



Techniques of integration:

Substitution
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Theorem 8.1 If u = φ(x) with φ(x), φ′(x) being continuous, then

∫

f(φ(x))φ′(x) dx =

∫

f(u) du (8.2)



Approach A
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Suppose we are required to find the LHS of (8.2). The theorem says that we can find
the RHS of (8.2) instead. We use this approach if the RHS can be found readily.
However, we seldom use (8.2) directly. Instead, we often proceed in the following way.
Suppose that the RHS of (8.2) can be found readily as

∫

f(u) du = F (u) + C.

Then the substitution u = φ(x) gives du = φ′(x) dx and we can proceed formally as
follows:

∫

f(φ(x))φ′(x) dx =

∫

f(u) du = F (u) + C = F (φ(x)) + C.

To save the trouble of introducing new variable (the u in the above working), we may
simply write

∫

f(φ(x))φ′(x) dx =

∫

f(φ(x)) d(φ(x)) = F (φ(x)) + C.



Examples

Page – 272

Example 8.11 Find

∫

tan−1 x

1 + x2
dx.

Solution. Putting u = tan−1 x and du = dx/(1 + x2), we have

∫

tan−1 x

1 + x2
dx =

∫

u du =
1

2
u2 + C =

1

2
(tan−1 x)2 + C

or simply,

∫

tan−1 x

1 + x2
dx =

∫

(tan−1 x) d(tan−1 x) =
1

2
(tan−1 x)2 + C.
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Example 8.12 Find I =

∫

x(x2 + 2)3 dx.

Solution. rule0pt0pt

I =

∫

u3 · 1
2
du =

1

8
u4 + C =

1

8
(x2 + 2)4 + C.

u = x2 + 2
du = 2x dx

∴ x dx =
1

2
du
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Example 8.13 Find J =

∫

sinx cos3x dx.

Solution. rule0pt0pt

J =

∫

sin x cos3x dx =

∫

u3 (−du) = −1

4
u4 + C = −1

4
cos4x+ C.

u = cosx
du = − sin x dx
∴ sin x dx = −du.
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Example 8.14 Find K =

∫

ln x

x
dx.

Solution. rule0pt0pt

K =

∫

lnx

x
dx =

∫

u du =
1

2
u2 + C =

1

2
(lnx)2 + C.

u = lnx
du = (1/x) dx.



Approach B
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In this approach, the formula (8.2) is applied from the RHS to the LHS. Suppose
that f(u), φ(x), φ′(x) are continuous, and that φ−1(u) exists and differentiable.
Suppose further that the LHS of (8.2) can be found readily as

∫

f(φ(x))φ′(x) dx = G(x) + C.

Then the substitution u = φ(x) gives du = φ′(x) dx and we can proceed formally as
follows:

∫

f(u) du =

∫

f(φ(x))φ′(x) dx = G(x) + C = G(φ−1(u)) + C.



Examples
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Example 8.15 Find I =

∫

1√
1− u2

du with |u| < 1.

Solution. rule0pt0pt

I =

∫

1√
1− u2

du =

∫

cosx

| cosx| dx =

∫

dx = x+ C = sin−1 u+ C.

u = sin x
du = cosx dx
Take −π/2 < x < π/2
so that
−1 < u < 1 and cosx > 0.
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Example 8.16 Find J =

∫

dx√
x2 − 1

, |x| > 1.

Solution First assume x > 1.

J =

∫

dx√
x2 − 1

=

∫

sec θ tan θ dθ

| tan θ| =

∫

sec θ dθ = ln | sec θ + tan θ|+ C

= ln
∣

∣x+
√

x2 − 1
∣

∣+ C.

x = sec θ
dx = tan θ sec θ dθ
Take 0 < θ < π/2
so that
x > 1 and tan θ > 0.
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Next, we assume x < −1. Using the substitution v = −x we get the same result:

J =

∫ −dv√
v2 − 1

= − ln
∣

∣v +
√

v2 − 1
∣

∣+ C (since v > 0)

= − ln
∣

∣− x+
√

x2 − 1
∣

∣+ C = ln
∣

∣x+
√

x2 − 1
∣

∣+ C

since

ln
∣

∣− x+
√

x2 − 1
∣

∣+ ln
∣

∣x+
√

x2 − 1
∣

∣ = ln
∣

∣(x2 − 1)− x2
∣

∣ = ln 1 = 0.



Integration by parts

Page – 280

Theorem 8.2 If u and v are differentiable functions of x, then
∫

u(x) v′(x) dx = u(x) v(x)−
∫

u′(x) v(x) dx (8.3)

which can be written, in a simpler form, as

∫

u dv = uv −
∫

v du.

The above formula can be deduced by integrating both sides of the product rule
(uv)′ = uv′ + vu′.



Integrate product of two functions
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Integration by parts is often useful when the integrand is a product of two functions
say, u(x)φ(x).

u′(x) = w(x),

∫

φ(x) dx = v(x) + C

Since v′(x) = φ(x), the formula (8.3) becomes

∫

u(x)φ(x) dx = u(x) v(x)−
∫

w(x) v(x) dx. (8.4)

Thus the method works if the new product w(x)v(x) on the RHS is more easily
integrable than the original product u(x)φ(x) on the LHS. There are two ways to
present the working.



Method A: Traditional
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To get (8.4) from (8.3), we proceed formally as:
∫

uφ dx =

∫

u dv (v′ = φ ∴ dv = φ dx)

= uv −
∫

v du by (8.3)

= uv −
∫

vw dx. (u′ = w ∴ du = w dx.)

The last line is (8.4).
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Example 8.17 Find the integral

∫

(x+ 2) cosx dx

Solution.
∫

(x+ 2) cosx dx

=

∫

u dv (u = x+ 2, dv = cosx dx)

= uv −
∫

v du (using (8.3) and v = sinx)

= (x+ 2) sinx−
∫

sinx d(x+ 2)

= (x+ 2) sinx−
∫

sinx dx (d(x+ 2) = dx)

= (x+ 2) sinx+ cosx+ C.
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To save the trouble of introducing symbols like u, v, we can present the working in
the following way:

∫

(x+ 2) cosx dx =

∫

(x+ 2) d(sinx)

= (x+ 2) sinx−
∫

sin x d(x+ 2)

= (x+ 2) sinx−
∫

sin x dx

= (x+ 2) sinx+ cosx+ C.



Method B: Presenting the working

in a chart
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We can obtain (8.4) directly while presenting the working in a chart as shown in
Fig. 8.1(a). An example where u = x+ 2 and φ = cosx is shown in Fig. 8.1(b).

Diffn Integn

u(x) φ(x)

w(x) v(x)

(+)

(−)

(a) For the integrand u(x)φ(x)

Diffn Integn

x+ 2 cos x

1 sinx

(+)

(−)

(b) For the integrand (x+ 2) cosx

Figure 8.1: Working chart for integration by parts.
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In the working chart,

■ the dashed vertical arrows indicate differentiation and integration.
■ the dashed horizontal line represents the product of the original factors. This

forms the LHS of (8.4), namely,

∫

uφ dx.

■ the solid lines (one slanted with a plus sign and the other horizontal with a minus
sign) joining two functions represent the product of the functions. These

products form the RHS of (8.4), namely, +uv −
∫

wv dx.
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The steps of integration by parts is:

1. Write the given integrand as a product of two factors u and φ. Differentiate one
factor u and integrate the other factor φ. Show these results by drawing two
vertical arrows as in the above working chart. Multiply the results (and draw the
solid horizontal line) and see if the product can be integrated or if it is simpler
than the original product. If so, the method works and we can continue. If not,
try changing the assignments of u and φ and start from scratch. Note that
there is no guarantee that integration by parts will work.

2. Complete the chart by drawing the slanted solid line. The slanted line is drawn
from the “differentiation” side downward to the “integration” side. Put down
(8.4) based on the chart.
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Example 8.18 Find the integral

∫

(x+ 2) cosx dx.

Solution. Using the chart (same as Fig. 8.1(b)), we have

∫

(x+ 2) cosx dx = (x+ 2) · sinx−
∫

1 · sinx dx = (x+ 2) sinx+ cosx+ C.

Diffn Integn

x+ 2 cosx

1 sinx

(+)

(−)
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In the above example, if we differentiate cosx and integrate x+ 2, we get the results
shown on the right. As the product 1

2 (x+ 2)2 sinx is more involved than the original
product (x+ 2) cosx. This way of doing integration by parts fails.

Diffn Integn
cosx x+ 2

− sinx 1

2
(x+ 2)2

If one factor is a polynomial (like x+ 1 in the above example) and the other is not,
we normally differentiate the polynomial and integrate the other factor, hoping to
reduce the integral to a simpler form.
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Example 8.19 Find the integral

∫

x lnx dx (x > 0).

Solution. If we differentiate x, then we must integrate lnx. Since we do not know
the integral of lnx, we do the other way: differentiating lnx and integrating x. Now
the method works.

∫

x lnx dx = (lnx) · x
2

2
−
∫

1

x
· x

2

2
dx =

1

2
x2 lnx−

∫

x

2
dx

=
1

2
x2 lnx− x2

4
+ C.

Diffn Integn

lnx x

1/x x2/2

(+)

(−)

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page290-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page290-CoCalcJupyter.pdf
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integration by parts

Page – 291

After one application of integration by parts the result may also involve an integral of
a product of functions. Sometimes a second application (or even more applications)
is necessary.
The following is an example on integrating x2ex. Note that in the middle chart, we
started with an integral with a negative sign and hence the subsequent signs are −
and +.

1st application

Diffn Integn

x2 ex

2x ex

(+)

(−)

plus

2nd application

Diffn Integn

2x ex

2 ex

(−)

(−)

(+)

gives

2 applications combined

Diffn Integn

x2 ex

2x ex

2 ex

(+)

(−)

(+)
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Based on the combined chart, we obtain
∫

x2ex dx = +x2ex − 2xex +

∫

2ex dx.

For this particular integral we can actually do one more integration by parts to finish.
The complete working is shown in the next example.
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Example 8.20 Find

∫

x2ex dx

Solution. From the chart, we get

∫

x2ex dx = x2ex − 2xex + 2ex + C since the

last row of the chart gives

∫

0 dx = C.

Diffn Integn

x2 ex

2x ex

2 ex

0 ex

(+)

(−)

(+)

(−)
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Example 8.21 Find I =

∫

eax cos bx dx assuming b 6= 0.

Solution. From the chart, we get, with b 6= 0,

I =

∫

eax cos bx dx = eax
sin bx

b
+ aeax

cos bx

b2
− a2

b2

∫

eax cos bx dx.

The two integrals appearing in the above equation are of the same form but they may
differ by a constant K. Therefore we have

I = eax
sin bx

b
+ aeax

cos bx

b2
− a2

b2
(I +K).

Solving for I, we get

I =
b sin bx+ a cos bx

a2 + b2
eax + C

where C is the constant of integration.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page294-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page294-CoCalcJupyter.pdf
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Diffn Integn

eax cos bx

aeax
sin bx

b

a2eax
− cos bx

b2

(+)

(−)

(+)

Note that we can get the same result by assuming a 6= 0.
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Example 8.22 Find J =

∫

sec3x dx.

Solution.

J =

∫

sec3x dx =

∫

secx sec2x dx

= secx tanx−
∫

secx tan2x dx = secx tanx−
∫

(sec2x− 1) secx dx

= secx tanx− J +

∫

secx dx.

= secx tanx− J + ln | secx+ tanx|+ C1

Solving for J , we have

J =
1

2
secx tanx+

1

2
ln | secx+ tanx|+ C.
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Diffn Integn

secx sec2x

secx tanx tanx

(+)

(−)



Products of sine and cosine
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If the integrand is a product of sine and cosine, we can express it in the form of a
sum using the formulas:

2 sinA cosB = sin(A−B) + sin(A+B)

2 cosA cosB = cos(A−B) + cos(A+B)

2 sinA sinB = cos(A−B)− cos(A+B)

For an integrand that is a product of powers of sine and cosine, we may have to use
formulas like:

cos2A+ sin2A = 1, 2 sin2A = 1− cos 2A and 2 cos2A = 1 + cos 2A.



Examples
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Example 8.23 Find I =

∫

sin 3x sin 2x dx.

Solution. I =

∫

1

2
[cos(3x− 2x)− cos(3x+ 2x)] dx

=
1

2

∫

(cosx− cos 5x) dx

=
1

2
sinx− 1

10
sin 5x+ C.
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Example 8.24 Find I =

∫

sin2x cos2x dx.

Solution.

I =
1

4

∫

(sin 2x)2 dx =
1

8

∫

(1− cos 4x) dx =
1

8

(

x− sin 4x

4

)

+ C.
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Example 8.25 Find I =

∫

sin2x cos3x dx.

Solution.

I =

∫

sin2x(1− sin2x) d(sinx)

=

∫

(sin2x− sin4x) d(sinx)

=
1

3
sin3x− 1

5
sin5x+ C.
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Example 8.26 Find I =

∫

sinnx cosx dx.

Solution. This type of integrals can be found by substitution (cf. Example 8.13.)

I =

∫

sinnx d(sinx) =
sinn+1x

n+ 1
+ C.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page302-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page302-CoCalcJupyter.pdf
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A rational function in x is a function of the form

R(x) ≡ P (x)

Q(x)

where P (x) and Q(x) are polynomials. A proper rational function is one with
deg P < deg Q. Recall that

■ Every rational function = a polynomial + a proper rational function.
■ Every proper rational function = a sum of partial fractions.

Integrating a polynomial is straightforward. So we can integrate a rational function if
we know how to integrate its partial fractions. Examples of a few simple cases are
demonstrated as follows.



Examples
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Example 8.27 Find

∫

3x+ 2

x2 + 1
dx.

Solution. The integrand is a proper rational function.
∫

3x+ 2

x2 + 1
dx =

3

2

∫

2x

x2 + 1
dx+ 2

∫

1

x2 + 1
dx

=
3

2
ln(x2 + 1) + 2 tan−1 x+ C.
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Example 8.28 Find

∫

x2(x− 3)

(x− 1)(x− 2)
dx.

Solution The integrand is not a proper rational function. By long division, we get

x2(x− 3)

(x− 1)(x− 2)
=

x3 − 3x2

x2 − 3x+ 2
= x+

−2x
(x− 1)(x− 2)

.

In partial fractions,

−2x
(x− 1)(x− 2)

=
A

x− 1
+

B

x− 2

where A and B are constants. Removing denominators,

−2x ≡ A(x− 2) +B(x− 1)

Comparing coefficients of x and constant terms, we get

−2 = A+B, 0 = −2A−B and hence A = 2, B = −4.
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Therefore

x2(x− 3)

(x− 1)(x− 2)
= x+

2

x− 1
+
−4

x− 2

and hence
∫

x2(x− 3)

(x− 1)(x− 2)
dx =

∫
(

x+
2

x− 1
+
−4

x− 2

)

dx

=
x2

2
+ 2 ln |x− 1| − 4 ln |x− 2|+ C.
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Example 8.29 Find

∫

x2 − 2x− 1

(x− 1)(x2 + 1)
dx.

Solution We first put the integrand in partial fractions:

x2 − 2x− 1

(x− 1)(x2 + 1)
=

A

x− 1
+

Bx+ C

x2 + 1
.

∴ x2 − 2x− 1 ≡ A(x2 + 1) + (Bx+ C)(x− 1).

Comparing coefficients of powers of x, we obtain:

1 = A+B, −2 = −B + C, −1 = A− C.

Solving these equations, we get A = −1, B = 2, C = 0.

∴

∫

x2 − 2x− 1

(x− 1)(x2 + 1)
dx =

∫
( −1
x− 1

+
2x

x2 + 1

)

dx

= − ln |x− 1|+ ln(x2 + 1) + C.
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Example 8.30 Find the integral

∫

x2 + 1

(x− 1)(x− 2)(x+ 3)
dx.

Solution. We first put the integrand in partial fractions:

x2 + 1

(x− 1)(x− 2)(x+ 3)
=

A

x− 1
+

B

x− 2
+

C

x+ 3

∴ x2 + 1 ≡ A(x− 2)(x+ 3) +B(x− 1)(x+ 3) + C(x− 1)(x− 2).

Comparing coefficients of powers of x, we obtain:

1 = A+B + C, 0 = A+ 2B − 3C, 1 = −6A− 3B + 2C.

Solving these equations, we get A = −1/2, B = 1, C = 1/2. Therefore
∫

x2 + 1

(x− 1)(x− 2)(x+ 3)
dx =

∫
(−1/2
x− 1

+
1

x− 2
+

1/2

x+ 3

)

dx

= −1

2
ln |x− 1|+ ln |x− 2|+ 1

2
ln |x+ 3|+ C.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page308-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page308-CoCalcJupyter.pdf
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The Riemann sum
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A Riemann sum is the sum of products of the form f(ci) ·∆xi. If f(x) ≥ 0, each
product represents the area of the rectangle of length f(ci) and width ∆xi. (See
Fig. 9.1(a).) In this case, the definite integral gives the area under the curve between
x = a and x = b (see Fig. 9.1(b).)

y

x
a bc1 c2 c3 c4 c5 c6 c7 c8

E5
∆x1

(a) The Riemann sum

8
∑

i=1

f(ci)∆xi

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

y = f(x) ≥ 0 on [a, b] y

x
a b

y = f(x) ≥ 0 on [a, b]

(b)
∫ b

a
f(x) dx = the area under the curv.

Figure 9.1: The Riemann sum and the definite integral.



Definition of definite integrals

Page – 311

Definition 9.1 Let [a, b] (a < b) be a closed and finite interval and let f(x) be a
continuous function defined on [a, b].

■ If the interval [a, b] is subdivided into N small subintervals Ei (i = 1, 2, . . . , N)
whose length is ∆xi and if ci is any point inside Ei, then the sum

SN =

N
∑

i=1

f(ci)∆xi

is called a Riemann sum of the function f(x) on [a, b]. (See Fig. 9.1(a).)

■ The definite integral of f(x) over [a, b], denoted by

∫ b

a

f(x) dx, is defined as the

limit (if it exists)

lim
all∆xi→0

SN = lim
all∆xi→0

N
∑

i=1

f(ci)∆xi.

(See Fig. 9.1(b).) In the limiting process we allow N →∞ with all ∆xi → 0.
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■ Also, we define (note that a < b)

∫ a

b

f(x) dx = −
∫ b

a

f(x) dx and

∫ a

a

f(x) dx = 0.

■ For the definite integral

∫ b

a

f(x) dx, the numbers a and b are called the lower

and upper limits of integration respectively. The function f(x) is the integrand .



Basic properties of definite

integrals
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The following basic properties follows directly from the definition of definite integrals.

1. The definite integral
∫ b

a
f(x) dx is a number which depends on the function

f(x) and the interval [a, b] only. That is to say, we may use any convenient
symbol (say x or s or other) for the variable and we always have

∫ b

a

f(x) dx =

∫ b

a

f(s) ds =

∫ b

a

f(t) dt.

2. Linearity. For constants α and β,

∫ b

a

[αf(x) + βg(x)] dx = α

∫ b

a

f(x) dx+ β

∫ b

a

g(x) dx.

3. Additivity over subintervals. If a < c < b, then

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.
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Let f(x) be a continuous function on [a, b] where a < b. The definite integral

I =
∫ b

a
f(x) dx is a number which may be positive, zero or negative, depending on

the behaviour of f(x).

■ f(x) ≥ 0. Then
∫ b

a
f(x) dx = A where A is the area bounded between C and the

x-axis over the interval [a, b] (see Fig. 9.2(a) or Fig. 9.1(b)).

■ f(x) ≤ 0. Then the integral is negative. In fact we have
∫ b

a
f(x) dx = −B where

B is the area bounded between C and the x-axis over the interval [a, b] (see
Fig. 9.2(b)).

■ f(x) ≥ 0 on [a, c] and f(x) ≤ 0 on [c, b] where a < c < b. Then
∫ b

a
f(x) dx = A−B where A and B are the areas bounded between C and the

x-axis over the intervals [a, c] and [c, b] respectively (see Fig. 9.2(c)).
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x

Area A

a b

(a)
∫ b

a
f(x) dx = A

y = f(x)

x

Area B

a b

(b)
∫ b

a
f(x) dx = −B

y = f(x)

x

a

b

c

Area A

Area B

(c)
∫ b

a
f(x) dx = A−B

y = f(x)

Figure 9.2: The definite integral and the area between the curve and the x-axis.
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Let f(x) be given. Recall that a primitive of f(x) is a function F (x) such that
F ′(x) = f(x).

Theorem 9.1 (Fundamental Theorem of Calculus) Let F (x) denote any one
primitive of f(x). Then

∫ b

a

f(x) dx = F (b)− F (a) =
[

F (x)
]b

a

This theorem is an important tool for evaluating a definite integral. It tells us that
the value of the definite integral of f(x) over [a, b] is just the difference of the values
of any primitive F (x) at the limits b and a of integration.



Proof of the Fundamental

Theorem of Calculus
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b

f(x)

O

A(x)

a x t

y

x+∆x

y = f(t)

∆x

(a) A(x) is the shaded area.

b

f(x)

O a x t

y

A(x)

x+∆x

y = f(t)

∆x

(b) A(x+∆x)−A(x) is the shaded area.

Figure 9.3: If A(x) =
∫ x

a
f(t) dt then A′(x) = f(x).

For simplicity, we only consider the case when f(x) > 0 on [a, b]. Then the integral
∫ b

a
f(x) dx is the area under the curve y = f(x) over the interval [a, b]. For each x in

[a, b], we define (see Fig. 9.3(a))

A(x) =

∫ x

a

f(t) dt = area under the curve on [a, x]. (9.1)
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Then

d

dx
A(x) = lim

∆x→0

A(x+∆x)−A(x)

∆x

= lim
∆x→0

Area of the strip shaded in Fig 9.3(b)

Width of the strip

= f(x) (See Fig. 9.3(b).)

Therefore, in addition to the given F (x), A(x) is also a primitive of f(x).
It follows that

d

dx
(A(x)− F (x)) = f(x)− f(x) = 0 and ∴ A(x) = F (x) + C

where C is a constant. By (9.1), A(x) = 0 when x = a.
Therefore 0 = A(a) = F (a) + C giving C = −F (a) and hence A(x) = F (x)− F (a).

Putting x = b, we have A(b) = F (b)− F (a), i.e.

∫ b

a

f(x) dx = F (b)− F (a).
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Example 9.1 Find I =

∫ 2

0

(x3 + 3x2 − 4) dx.

Solution. Since

∫

(x3 + 3x2 − 4)dx = x4/4 + x3 − 4x+ C, we have

I =
[x4

4
+ x3 − 4x

]2

0
=

(

24

4
+ 23 − 4× 2

)

− 0 = 4.
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Example 9.2 Find I =

∫ 1

0

(x2 − 3 sin x) dx.

Solution. I =
[

x3

3
+ 3 cosx

]1

0
=

1

3
+ 3(cos 1− 1) = 3 cos 1− 8/3 ≈ −1.046.
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Example 9.3 Find I =

∫ 2

0

1

2x− 5
dx

Solution.

I =
1

2

[

ln |2x− 5|
]2

0
=

1

2

(

ln 1− ln 5
)

= − ln 5

2
.



Finding definite integrals:

Substitution
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In the following examples, we change the variable of integration from x to u using a
substitution u = φ(x). Also, the limits of integration are changed accordingly.

Example 9.4 Find I =

∫ 2

0

x(x2 + 2)3 dx.

Solution. rule0pt0pt

I =

∫ 6

2

u3 · 1
2
du =

1

8

[

u4
]6

2
= 160.

u = x2 + 2
du = 2x dx
∴ x dx =

1

2
du

x = 0 =⇒ u = 2,
x = 2 =⇒ u = 6.
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Example 9.5 Find I =

∫

√
3

0

x5
√

x2 + 1dx.

Solution. rule0pt0pt

I =

∫ 4

1

(u− 1)2 · u1/2 · 1
2
du =

1

4

∫ 2

1

(u5/2 − 2u3/2 + u1/2) du

=
[u7/2

7
− 2

u5/2

5
+

u3/2

3

]4

1
= 8

8

105
.

u = x2 + 1
du = 2x dx
x dx =

1

2
du

x2 = u− 1.
x = 0, u = 1
x =
√
3, u = 4.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page323-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page323-CoCalcJupyter.pdf
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Example 9.6 Find I =

∫ π/3

0

sec2 x tanx dx.

Solution. rule0pt0pt

I =

∫ 2

1

u du =
[u2

2

]2

1
=

3

2
.

u = secx
du = secx tanx dx
x = 0, u = 1
x = π/3, u = 2.

Two More Examples:
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/TwoIntegrationExamples.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/TwoIntegrationExamples.pdf
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Meaning of Integration by parts
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/Integration_by_Parts.pdf

Example 9.7 Find I =

∫ 2

0

2xe2x dx.

Solution. Using the working chart, we get

I =

[

xe2x − 1

2
e2x

]2

0

= 2e4 − 0− 1

2
(e4 − 1) =

3

2
e4 +

1

2
.

Diffn Integn

x 2e2x

1 e2x

0 e2x/2

(+)

(−)

(+)

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/Integration_by_Parts.pdf
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Example 9.8 Evaluate I =

∫ 1

0

x2 cosx dx.

Solution. Using the working chart, we get

I =
[

x2 sin x+ 2x cosx− 2 sinx
]1

0
= 2 cos 1− sin 1 ≈ 0.239.

Diffn Integn

x2 cosx

2x sinx

2 − cos x

0 − sinx

(+)

(−)

(+)

(−)



More examples
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Example 9.9 Find I =

∫ 1

0

cos2x dx.

Solution. By the trigonometric formula: cos2x = 1
2 (1 + cos 2x), we have

I =
1

2

∫ 1

0

(1 + cos 2x) dx =
1

2

[

x+
1

2
sin 2x

]1

0
=

1

2

(

1 +
sin 2

2

)

≈ 0.7273.
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Example 9.10 Find J =

∫ π/2

0

sin 2x sin 3x dx.

Solution. By the trigonometric formula: 2 sin 2x sin 3x = cosx− cos 5x, we have

J =
1

2

∫ π/2

0

(cosx− cos 5x) dx =
1

2

[

sinx− 1

5
sin 5x

]π/2

0

=
1

2

(

1− 1

5

)

=
2

5
.
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Example 9.11 Find K =

∫ −1

−2

1

x(x− 1)
dx.

Solution. Resolving into partial fractions:
1

x(x− 1)
=

1

x− 1
− 1

x
, we have

K =

∫ −1

−2

(

1

x− 1
− 1

x

)

dx =
[

ln |x− 1| − ln |x|
]−1

−2

= ln 2− ln 3− ln 1 + ln 2 = 2 ln 2− ln 3 = ln(4/3).



Reduction formulas for definite

integrals
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Consider the definite integrals
∫ 1

0
xnex dx where n is a non-negative integer. As this

integral involves an integer n, we can denote it by Jn. With this notation, we can
show that (see Example 9.12)

Jn = e− nJn−1, n = 1, 2, . . . .

Such a formula is called a reduction formula.
If J0 is known, we can find inductively (using the above reduction formula) the values
of J1 and then J2, J3, . . ..
Usually we can establish reduction formulas using integration by parts.



Examples
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Example 9.12 Establish a reduction formula for the integral Jn =

∫ 1

0

xnex dx.

Hence find the value of J3.

Soltion For n = 1, 2, . . .

Jn =

∫ 1

0

xnex dx =
[

xnex
]1

0
−
∫ 1

0

nxn−1ex dx = e− nJn−1.

which is the reduction formula for Jn.

Diffn Integn

xn ex

nxn−1 ex

(+)

(−)
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Now J0 can be found directly as

J0 =

∫ 1

0

ex dx = e− 1.

Therefore, inductively we get

J1 = e− J0 = e− (e− 1) = 1,

J2 = e− 2J1 = e− 2,

J3 = e− 3J2 = e− 3(e− 2) = −2e + 6.
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Example 9.13 Establish a reduction formula for the integral Jn =

∫ π/2

0

sinnx dx.

Hence find the values of J4 and J5.

Solution For n = 2, 3, 4, . . .,

Jn =

∫ π/2

0

sinnx dx =

∫ π/2

0

sinn−1x sinx dx

=
[

− sinn−1x cosx
]π/2

0
+

∫ π/2

0

(n− 1) sinn−2x cos2x dx

= 0 + (n− 1)

∫ π/2

0

sinn−2x (1− sin2x) dx = (n− 1)(Jn−2 − Jn).

Diffn Integn

sinn−1x sinx

(n− 1) sinn−2x cosx − cos x

(+)

(−)
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Now J0 and J1 can be found directly as

J0 =

∫ π/2

0

sin0x dx =

∫ π/2

0

dx =
π

2
, J1 =

∫ π/2

0

sinx dx =
[

− cosx
]π/2

0
= 1.

Therefore, inductively we get

J2 =
1

2
J0 =

π

4
, J3 =

2

3
J1 =

2

3
,

J4 =
3

4
J2 =

3

4
· π
4
=

3π

16
, J5 =

4

5
J3 =

4

5
· 2
3
=

8

15
.



Even and odd functions
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■ a function f(x) is an even function iff f(−x) = f(x) for all x.
■ a function f(x) is an odd function iff f(−x) = −f(x) for all x.
For an even or odd function f(x), the integral over an interval of the form [−a, a]
(where a > 0) can be simplified. By considering the area of the graph of f(x), the
following results are obvious.

Theorem 9.2 rule0pt0pt

• If f(x) is even then
∫ a

−a
f(x) dx = 2

∫ a

0
f(x) dx.

• If f(x) is odd then
∫ a

−a
f(x) dx = 0.



Examples
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Example 9.14 Find the integral I =

∫ 1

−1

(x4 − 3x2 + 1) dx.

Solution. Let f(x) = x4 − 3x2 + 1. Then f(−x) = (−x)4 − 3(−x)2 + 1 = f(x).
Therefore f(x) is even. By Theorem 9.2, we have

I =

∫ 1

−1

(x4 − 3x2 + 1) dx = 2

∫ 1

0

(x4 − 3x2 + 1) dx

= 2

[

x5

5
− x3 + x

]1

0

= 2

(

1

5
− 1 + 1

)

=
2

5
.
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Example 9.15 Find the integral I =

∫ 1

−1

(x3 − 6x) dx.

Solution. Let f(x) = x3 − 6x. Then f(−x) = (−x)3 − 6(−x) = −f(x). Therefore
f(x) is odd. By Theorem 9.2, we have I = 0.
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Example 9.16 Find the integral I =

∫ 2

−2

x3 cos 5x dx.

Solution. Let f(x) = x3 cos 5x. Then

f(−x) = (−x)3 cos(−5x) = −x3 cos 5x = −f(x).

Therefore f(x) is odd and hence I = 0.



Page – 339

Example 9.17 Find the integral I =

∫ 4

−4

tan(x3 − 6x) dx.

Solution. Let f(x) = tan(x3 − 6x). Then

f(−x) = tan[(−x)3 − 6(−x)] = tan(−x3 + 6x) = − tan(x3 − 6x) = −f(x).

Therefore f(x) is odd and hence I = 0.
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Example 9.18 Find the integral I =

∫ 2

−2

(x2 + sin x) dx.

Solution. Since x2 is even and sinx is odd, we have

I =

∫ 2

−2

(x2 + sin x) dx = 2

∫ 2

0

x2 dx+ 0 = 2

[

x3

3

]2

0

=
16

3
.



Applications of Definite Integral
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Area bounded by curves
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Suppose that f(x) ≥ 0 on [a, b] and that we want to find the area A of a region R
bounded by the graph of y = f(x) and the x-axis over the interval [a, b].

bb

b

by = f(x)

a b
x

A

B

R



Area of rectangle
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First we consider two nearby points x and x+∆x in the interval [a, b] with ∆x > 0.
With height equal to y(= f(x)), a rectangle of small width ∆x is drawn standing on
the interval [x, x+∆x]. The area of this rectangle is f(x)∆x.

y = f(x)

a b
x

x

y

bb bb

x+∆x∆x

A

B



Riemann sum
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If we partition the interval [a, b] into N subintervals of equal length ∆x, we can form
N rectangles as described above. The sum of all the areas of such rectangles
therefore forms a Riemann sum.

a b

bb



Taking limit
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To get the area of R, we let ∆x→ 0 and hence obtain the formula:

Area of the region R is

∫ b

a

f(x) dx. (10.1)

bb

b

b
y = f(x)

a b
x

A

B

R

Area of R is

lim
∑

y∆x =
∫ b

a
y dx.



Modifications
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R is bounded by the curve y = f(x) (f(x) ≥ 0) and the x-axis over [a, b].

x

y = f(x)

a b

A =

∫ b

a

f(x) dx
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R is bounded by the curve y = f(x) (f(x) ≤ 0) and the x-axis over [a, b].

x

y = f(x)

a b

A = −
∫ b

a

f(x) dx
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R is bounded by the curve y = f(x) and the x-axis over [a, b]. a < c < b. f(x) ≥ 0
on [a, c] and f(x) ≤ 0 on [c, b].

x

a

b

c

y = f(x)

A =

∫ c

a

f(x) dx−
∫ b

c

f(x) dx
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R is bounded by the curves y = f(x), y = g(x) over [a, b] with f(x) ≥ g(x) on [a, b].

y = f(x)

y = g(x)

x = a x = b

A =

∫ b

a

[f(x)− g(x)] dx



Examples
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Example 10.1 Find the area A of the region R between the curve y =
√
x+ 1 and

the x-axis over the interval 3 ≤ x ≤ 8.

Solution. The function
√
x+ 1 is positive on the interval [3, 8]. Therefore

A =

∫ 8

3

√
x+ 1dx =

2

3

[

(x+ 1)3/2
]8

3
=

2

3

[

93/2 − 43/2
]

=
38

3
.

y

x
O 3 8

R

y =
√
x+ 1

R
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Example 10.2 Find the area A of the region R bounded by the curve
y = x2(x− 2) and the x-axis.

Solution. The curve y = x2(x− 2) intersects the x-axis at only two points where
x = 0 and x = 2. The given region therefore lies between x = 0 and x = 2 and is
sketched in the diagram. Over the interval [0, 2] the function y = x2(x− 2) is
non-positive. Therefore

A = −
∫ 2

0

x2(x− 2) dx = −
∫ 2

0

(x3 − 2x2) dx = −
[

x4

4
− 2x3

3

]2

0

= −24

4
+

24

3
=

4

3
.

y

x

O

2

y = x2(x− 2)

R
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Example 10.3 Find the area between the curves y = sin x and y = cosx over the
interval 0 ≤ x ≤ π.

Solution.

y

xO
ππ

2
π
4

y = sinx

y = cos x

1

The curves intersect when sin x = cosx. The solution of this equation is x = π/4.
Since cosx ≥ sinx on 0 ≤ x ≤ π/4 and cosx ≤ sinx on π/4 ≤ x ≤ π,

the area =

∫ π/4

0

(cosx− sin x) dx+

∫ π

π/4

(sinx− cosx) dx

=
[

sinx+ cosx
]π/4

0
+
[

− cosx− sinx
]π

π/4
= 2
√
2.



Volume of revolution
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A solid can be generated in space when a plane area is rotated about an axis. This
solid is called a solid of revolution. For example, if the area of a semi-circle is rotated
about its diameter it will generate a solid sphere.

Axis L

b

Rotation
about L

Figure 10.1: Rotation of a semi-circular region about its diameter to get a solid sphere.



Step 1: Area under an arc
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Suppose that f(x) ≥ 0 on [a, b]. Consider the part AB of the curve y = f(x)
between x = a and x = b.

bb

b

b

y = f(x)

a b
x

A

B



Step 2: A rectangle of width ∆x
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Consider two nearby points x and x+∆x in the interval [a, b] with ∆x > 0. With
height equal to y = f(x), a rectangle of width ∆x is standing on the interval
[x, x+∆x].

y = f(x)

a b
x

x

y

bb bb

x+∆x∆x

A

B

Area of rectangle = y∆x.



Step 3: Revolving the rectangle
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On rotation (through 360◦ about the x-axis), the rectangle generates a thin solid disk
of thickness ∆x (see Box 3 of Fig. 7.4.) The volume of the disc is πy2∆x where
y = f(x) ≥ 0.

bb

y = f(x)

a b
x

y

Volume of disc = πy2∆x.



Step 4: Add the volumes of

elements
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If we partition the interval [a, b] into N subintervals of equal length ∆x, we can form
N discs as described above. The sum of the volumes of all these discs is

∑

πy2 ∆x.

bb

y = f(x)

a b
x

Total volume of disc =
∑

πy2∆x.



Step 5: Taking limit as ∆x→ 0
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The volume V of revolution is the limit as ∆x→ 0 of the sum of all the volumes of
the discs, i.e.

V = lim
∆x→0

∑

πy2 ∆x.

This gives the formula for the volume of revolution about the x-axis:

V = π

∫ b

a

[f(x)]2 dx. (10.2)

y = f(x)

bb
a b

x

Volume of revolution = lim
∑

πy2∆x = π
∫ b

a
y2 dx.



Examples
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Example 10.4 Find the volume of revolution about the x-axis of the region R
which is bounded by the curve y = sin x, the x-axis, the vertical lines x = 0 and
x = 2.

Solution. Here f(x) = sinx and f(x) ≥ 0 on [0, 2]. Therefore by (10.2) the
volume is

V = π

∫ 2

0

sin2x dx =
π

2

∫ 2

0

(1− cos 2x) dx

=
π

2

[

x− sin 2x

2

]2

0
=

π

2

(

2− sin 4

2

)

≈ 3.736.



Volume of revolution bounded

between curves
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If the region R is bounded between two curves y = f(x) and y = g(x) with
f(x) ≥ g(x) ≥ 0 on [a, b], then by the same principle, we can get the following
formula for the volume of revolution of R about the x-axis:

V = π

∫ b

a

(f2 − g2) dx. (10.3)
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Example 10.5 Find the volume of revolution about the x-axis of the region R
which is bounded by the curves y = sinx and y = cosx over the interval [0, π/4].

Solution. cosx ≥ sinx on [0, π/4]. Therefore by (10.3) the volume is

V = π

∫ π/4

0

(cos2x− sin2x) dx = π

∫ π/4

0

cos 2x dx

=
π

2

[

sin 2x
]π/4

0
=

π

2
.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page361-CoCalcJupyter.pdf

Cylindrical Shell Method to find the volume of rotation
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary06.pdf

See CoCalc https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary06_CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page361-CoCalcJupyter.pdf
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary06.pdf
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary06_CoCalcJupyter.pdf


Length of curves
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Let y = f(x) be the equation of the curve and consider the part AB of the curve
between x = a and x = b.
Let P (x, y) and Q(x+∆x, y +∆y) be two points on AB with ∆x > 0 and small.
Let s be the length of the arc from A to P and s+∆s be the length from A to Q.
Then the length of the arc PQ is ∆s.

b
b

b

b

P
Q

a b

A

B

x

∆x

(a) ∆s = length of PQ

P

Q

∆x

∆y

(b) ∆s ≈ PQ

b

b

Figure 10.2: Getting the formula for the arc length.
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By Pythagoras’ theorem,

∆s ≈ PQ =
√

(∆x)2 + (∆y)2.

Therefore, the length of the arc AB is

L = lim
∆x→0

∑
√

(∆x)2 + (∆y)2 = lim
∆x→0

∑

√

1 +
(∆y

∆x

)2

∆x.

This gives the formula

Arc length of AB=

∫ b

a

√

1 +
(dy

dx

)2

dx (10.4)



Examples
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Example 10.6 Find the length of the arc of the parabola y = 1
2x

2 between x = 0
and x = 1.

Solution. y = 1
2x

2. Therefore
dy

dx
= x. Hence by (10.4) the arc length is

L =

∫ 1

0

√

1 +
(dy

dx

)2

dx =

∫ 1

0

√

1 + x2 dx

=
1

2

[

x
√

1 + x2 + ln

∣

∣

∣

∣

x+
√
x2 + 1

2

∣

∣

∣

∣

]1

0

=
1

2
[
√
2 + ln(1 +

√
2)] ≈ 1.1478.
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Example 10.7 Use (10.4) to find the length of the quarter-circle y =
√
a2 − x2,

(0 ≤ x ≤ a) of radius a.

Solution. y =
√
a2 − x2. Therefore

dy

dx
=

−x√
a2 − x2

. Hence by (10.4) the arc

length of the quarter-circle is

L =

∫ a

0

√

1 +
(dy

dx

)2

dx =

∫ a

0

√

1 +
x2

a2 − x2
dx

=

∫ a

0

a√
a2 − x2

dx = a

[

sin−1 x

a

]a

0

=
πa

2
.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page365-CoCalcJupyter.pdf

To find the area of the surface by rotation
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary05.pdf

See CoCalc https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary05_CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page365-CoCalcJupyter.pdf
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary05.pdf
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary05_CoCalcJupyter.pdf


Improper Integrals
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Improper Integrals of Type 1
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Definition

(1) If

∫ t

a

f(x)dx exists for every number t ≥ a, then,
∫ ∞

a

f(x)dx = lim
t→∞

∫ t

a

f(x)dx provided this limit exists (as a finite number).

(2) If

∫ b

t

f(x)dx exists for every number t ≤ b, then,

∫ b

−∞
f(x)dx = lim

t→−∞

∫ b

t

f(x)dx provided this limit exists (as a finite number).

The improper integrals

∫ t

a

f(x)dx and

∫ b

t

f(x)dx are called convergent if the

corresponding limit exists, and divergent if the limit does not exist.

(3) If both

∫ ∞

a

f(x)dx and

∫ a

−∞
f(x)dx are convergent, then we define

∫ ∞

−∞
f(x)dx =

∫ ∞

a

f(x)dx +

∫ a

−∞
f(x)dx

for any real number a.
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Example Determine the convergence the integrals

∫ ∞

1

1

x2
dx and

∫ ∞

1

1

x
dx.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page368-CoCalcJupyter.pdf
Solution

∫ ∞

1

1

x2
dx = lim

t→∞

∫ t

1

1

x2
dx = lim

t→∞
− 1

x

]t

1

= lim
t→∞

(

1− 1

t

)

= 1.

∫ ∞

1

1

x
dx = lim

t→∞

∫ t

1

1

x
dx = lim

t→∞
ln |x|

]t

1
= lim

t→∞
(ln t− ln 1) = lim

t→∞
ln t = ∞

 

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page368-CoCalcJupyter.pdf
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Theorem

∫ ∞

1

1

xp
dx is convergent if p > 1, and divergent if p ≤ 1.

Proof
∫ ∞

1

1

xp
dx = lim

t→∞

∫ t

1

x−pdx = lim
t→∞

x−p+1

−p+ 1

]x=t

x=1

= lim
t→∞

1

1− p

[

1

tp−1
− 1

]

If p > 1, then, p− 1 > 0, so as t→∞, tp−1 →∞ and 1
tp−1 → 0.

Therefore

∫ ∞

1

1

xp
dx =

1

p− 1
, and so the integral converges for p > 1.

But if p < 1, then, p− 1 < 0, and so
1

tp−1
= t1−p →∞ as t→∞, and the integral

diverges.



Improper Integrals of Type 2
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Definition

(1) If f is continuous on [a, b) and is discontinuous at b, then
∫ b

a

f(x)dx = lim
t→b−

∫ t

a

f(x)dx if this limit exists (as a finite number).

(2) If f is continuous on (a, b] and is discontinuous at a, then
∫ b

a

f(x)dx = lim
t→a+

∫ b

t

f(x)dx if this limit exists (as a finite number).

The improper integral

∫ b

a

f(x)dx is called convergent if the corresponding

limit exists, and divergent if the limit does not exist.
(3) If f has a discontinuity at c, where a < c < b, and both

∫ c

a
f(x)dx and

∫ b

c
f(x)dx are convergent, then we define

∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.
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Example Evaluate

∫ 1

0

lnxdx.

Solution Function f(x) = lnx has a vertical asymptote at 0, lim
x→0+

lnx = −∞.

Thus, it is an improper integral

∫ 1

0

lnxdx = lim
t→0+

∫ 1

t

lnxdx

Using Integration by Parts with u = lnx, v = x, and thus, du = dx
x , dv = dx

∫ 1

t

lnxdx = [x lnx]1t −
∫ 1

t

dx = 1 ln 1− t ln t− (1− t) = −t ln t− 1 + t.

To find the limit of the first term we use L’Hospital’s Rule

lim
t→0+

t ln t = lim
t→0+

ln t

1/t
= lim

t→0+

1/t

−1/t2 = lim
t→0+

(−t) = 0.

Therefore,

∫ 1

0

lnxdx = lim
t→0+

(−t ln t− 1 + t) = −0− 1 + 0 = −1.
See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page371-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page371-CoCalcJupyter.pdf
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Infinite Series
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Infinite series
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An infinite series (or simply series) is an expression of the form

a1 + a2 + a3 + · · ·

where a1, a2, a3, . . . are real numbers. It is convenient to use the notation
∑∞

n=1 an
to represent the series. For every positive integer n, we define the n-th partial sum of
the series by Sn = a1 + · · ·+ an.
Definition: The infinite series

∑∞
n=1 an is said to be convergent if limn→∞ Sn exists

(and is finite). This limit is called the sum of the series. A series which is not
convergent is called a divergent series.

Example: Consider the series
∞
∑

n=1

1

n (n+ 1)
. Observe that

Sn =
1

1× 2
+

1

2× 3
+ · · ·+ 1

n× (n+ 1)

=

(

1− 1

2

)

+

(

1

2
− 1

3

)

+ · · ·+
(

1

n
− 1

n+ 1

)

= 1− 1

n+ 1
,

which tends to 1 as n→∞. Therefore, the series is convergent with its sum equal to 1.
See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page374-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page374-CoCalcJupyter.pdf
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Example: The series
∑∞

n=0 α
n = 1 + α+ α2 + α3 + · · · , where α is a given real

number, is called a geometric series with common ratio α. Since

Sn = 1 + α+ α2 + · · ·+ αn−1 =
1− αn

1− α
( if α 6= 1),

we conclude that the series converges to
1

1− α
if −1 < α < 1. On the other hand,

if |α| ≥ 1, then
∑∞

n=0 α
n is divergent.

Example:
∞
∑

n=0

1

3n
is a geometric series with common ratio α =

1

3
. Thus, the series is

convergent with its sum equal to
3

2
.
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The following facts on convergence of series follow from the corresponding results on
limit of sequences.

Proposition: If
∑∞

n=1 an and
∑∞

n=1 bn are convergent series and t is any scalar,
then both

∑∞
n=1(an + bn) and

∑∞
n=1 t an are convergent. Moreover, one has

∞
∑

n=1

(an + bn) =

∞
∑

n=1

an +

∞
∑

n=1

bn

and

∞
∑

n=1

t an = t
∞
∑

n=1

an.
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We have the following necessary condition for the convergence of a series.

Theorem: If
∑∞

n=1 an is convergent, then an → 0 as n→∞.

Proof: Convergence of the series
∑∞

n=1 an ⇒ limn→∞ Sn = limn→∞ Sn−1. Since
an = Sn − Sn−1, one concludes that

lim
n→∞

an = lim
n→∞

(Sn − Sn−1) = lim
n→∞

Sn − lim
n→∞

Sn−1 = 0.

This Theorem tells us that if the general term of a series does not tend to zero, then

the series must be divergent. For instance, the series
∞
∑

n=1

n

n+ 2
is divergent since

lim
n→∞

n

n+ 2
6= 0. However, it should be emphasized that this necessary condition is

not sufficient for the convergence of a series. For example, even though
1

n
→ 0, the

series
∞
∑

n=1

1

n
is divergent.
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Positive series
In general, it is very difficult to tell whether a given series is convergent or otherwise.
In this connection, “positive series” are a lot easier to handle.

Definition: A series
∑∞

n=1 an is said to be positive if an ≥ 0 for every n.

It is evident that the partial sums of a positive series form a monotonically increasing
sequence of non-negative real numbers, i.e., they satisfy the inequalities
0 ≤ S1 ≤ S2 ≤ S3 ≤ · · · . This simple observation proves the following

Theorem: A positive series
∑∞

n=1 an is convergent if and only if {Sn} is bounded.

Using this Theorem, we obtain the following tests of convergence for positive series.
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Suppose
∑∞

n=1 an is a positive series and that an ≤ bn for all except finitely many
positive integer n. If

∑∞
n=1 bn is known to be convergent, then

∑∞
n=1 an is also

convergent.

Example Since n2 ≥ n2 − n = n(n− 1) for any n ≥ 2, we have 0 <
1

n2
≤ 1

(n− 1)n
.

Since
∞
∑

n=2

1

(n− 1)n
is convergent, the infinite series

∞
∑

n=2

1

n2
is convergent by the

Comparison Test. Thus,

∞
∑

n=1

1

n2
= 1 +

∞
∑

n=2

1

n2
is convergent.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page379-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page379-CoCalcJupyter.pdf
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Suppose f (x) is a decreasing and nonnegative function for x ≥ 1. If f (n) = an for
every positive integer n, then the series

∑∞
n=1 an is convergent if and only if

lim
n→∞

∫ n

1

f (x) dx < ∞.

Example Test the series
∞
∑

n=1

1

n2 + 1
for convergence or divergence.

Solution The function f(x) = 1
x2+1 is continuous, positive, and decreasing on [1,∞)

so we use Integral Test:

∫ ∞

1

1

x2 + 1
dx = lim

t→∞

∫ t

1

1

x2 + 1
dx = lim

t→∞
tan−1

∣

∣

∣

t

1
= lim

t→∞

(

tan−1 t− π

4

)

=
π

2
− π

4
=

π

4
.

Thus

∫ ∞

1

1

x2 + 1
dx is a convergent integral and so, by the Integral Test, the series

∞
∑

n=1

1

n2 + 1
is convergent.
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Suppose an > 0 and let ρ = lim
n→∞

an+1

an
. Then

1. If ρ < 1,
∑∞

n=1 an is convergent;
2. If ρ > 1,

∑∞
n=1 an is divergent;

3. If ρ = 1, the ratio test is inconclusive.

Example Test the convergence of the series

∞
∑

n=1

nn

n!
.

Solution

an+1

an
=

(n+ 1)n+1

(n+ 1)!

n!

nn
=

(n+ 1)(n+ 1)n

(n+ 1)n!

n!

nn
=

(

n+ 1

n

)n

=

(

1 +
1

n

)n

.

Since lim
n→∞

(

1 +
1

n

)n

= e > 1, the given series is divergent by the Ratio Test.
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Convergence of non-positive series is much more difficult to handle. Fortunately, in
most applications, the more useful series are “absolutely convergent”.

Definition
∑∞

n=1 an is said to be absolutely convergent if
∑∞

n=1 |an| is convergent.

Theorem If
∑∞

n=1 | an| is convergent, then
∑∞

n=1 an is also convergent. In other
words, an absolutely convergent series is convergent.

Proof We define two sequences {bn} and {cn} as follows:

bn =

{

an, if an ≥ 0;
0, if an < 0.

and cn =

{

0, if an ≥ 0;
−an, if an < 0.

It is clear that {bn} and {cn} are positive sequences such that an = bn − cn.
Furthermore, the inequalities 0 ≤ bn ≤ | an| and 0 ≤ cn ≤ | an|, together with the
convergence of

∑∞
n=1 | an| ⇒ the convergence of the series

∑∞
n=1 bn and

∑∞
n=1 cn.

Therefore,
∑∞

n=1 an is convergent.
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Example Since
∞
∑

n=1

1

n2
is convergent, the Theorem implies the convergence of the

non-positive series

1 +
1

22
− 1

32
+

1

42
+

1

52
− 1

62
+ · · · .

Alternating series – Leibniz’s test
The converse of the Theorem is false, i.e., a convergent series may not converge
absolutely. The following theorem, due to Leibniz, gives useful information regarding
convergence of alternating series,

∑∞
n=1(−1)n+1an where an ≥ 0.

Theorem (Leibniz’s test) Let {an} be a sequence of real numbers such that

1. an > 0 for every positive integer n;
2. a1 ≥ a2 ≥ a3 ≥ a4 ≥ . . . and
3. an → 0 as n→∞.

Then the alternating series a1 − a2 + a3 − a4 + . . . is convergent.
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Example Leibniz’s test implies the convergence of the following series

1.
∞
∑

n=1

(−1)n+1

n2
= 1− 1

22
+

1

32
− 1

42
+ · · ·;

2.

∞
∑

n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ · · ·;

3.
∞
∑

n=1

(−1)n+1

√
n

= 1− 1√
2
+

1√
3
− 1√

4
+ · · ·;

4.
∞
∑

n=2

(−1)n
lnn

=
1

ln 2
− 1

ln 3
+

1

ln 4
− 1

ln 5
+ · · · .

Note that (1) is absolutely convergent, while the remaining are not.
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Radius of convergence A power series in x is a series of the form

∞
∑

n=0

an x
n = a0 + a1x+ a2x

2 + a3x
3 + · · · ,

where a0, a1, a2, a3, . . . are real constants and x is a real variable. More generally,
we may consider power series in (x− x0), where x0 is a fixed number. In other
words, we may consider

∞
∑

n=0

an (x− x0)
n
= a0 + a1 (x− x0) + a2 (x− x0)

2
+ a3(x− x0)

3 + · · · .

Note: a power series in (x− x0) can be transformed into a power series in x by a
simple change of variable.

The power series in x may converge for some values of x and diverge for others. For
example, every power series in x is convergent when x = 0. Using the Ratio Test, we
have the following useful result governing the range of convergence of a given power
series.
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Theorem For the power series in x, we define R = lim
n→∞

∣

∣

∣

∣

an
an+1

∣

∣

∣

∣

.

1. If −R < x < R, then the series converges absolutely;
2. if |x| > R, then the series diverges.

Note that 0 ≤ R ≤ +∞. The number R is called the radius of convergence of the
power series, and the interval (−R,R) is known as the interval of convergence. Note
that if R = +∞, then the power series converges for all x.

Example Radii of convergence for the following series are

1.
∞
∑

n=0
xn, R = 1;

2.
∞
∑

n=0
nxn, R = 1;

3.
∞
∑

n=0

xn

n+ 1
, R = 1;

4.
∞
∑

n=0

xn

n!
, R =∞.
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The following theorem says that term-by-term differentiation and integration of a
power series is legitimate within its interval of convergence.

Theorem Let R be the radius of convergence of the power series in x, and let f be
defined by f (x) =

∑∞
n=0 an x

n for every x in the interval (−R,R). Then

1. f ′ (x) =
∑∞

n=1 nanx
n−1 =

∑∞
n=0 (n+ 1)an+1 x

n for every x in the interval
(−R,R);

2. if −R < α ≤ β < R, then

∫ β

α

f (x) dx =
∞
∑

n=0

an

[

∫ β

α

xndx

]

=
∞
∑

n=0

an
n+ 1

[

βn+1 − αn+1
]

.
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Example

It follows from previous discussions that the power series
∞
∑

n=0

xn converges to
1

1− x

whenever −1 < x < 1. Using (i) of the above Theorem, we may differentiate

term-by-term to obtain
∞
∑

n=0
(n+ 1) xn =

1

(1− x)
2 for −1 < x < 1. On the other

hand, we may use the 2nd result of the Theorem to obtain

ln
1

1− x
= x+

x2

2
+

x3

3
+

x4

4
+ · · · ,

for −1 < x < 1.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page388-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page388-CoCalcJupyter.pdf
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Theorem
If f has a power series representation (expansion) at a, that is, if

f(x) =

∞
∑

n=0

cn(x− a)n, |x− a| < R

then its coefficients are given by the formula

cn =
f (n)(a)

n!
.

That is to say,

f(x) =
∞
∑

n=0

f (n)(a)

n!
(x− a)n

= f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f (3)(a)

3!
(x− a)3 + . . .

This series is called the Taylor Series of the function f at a. In the special case of
a = 0, it is called the Maclaurin Series.
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Example Maclaurin expansions of the following functions are useful.

1. ex = 1 + x+
1

2!
x2 +

1

3!
x3 + · · · =

∞
∑

n=0

xn

n!
;

2. cos x = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + · · · =

∞
∑

n=0

(−1)n
x2n

(2n)!
;

3. sinx = x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + · · · =

∞
∑

n=0

(−1)n
x2n+1

(2n+ 1)!
;

4.
1

1− x
= 1 + x+ x2 + x3 + · · · =

∞
∑

n=0

xn ;

5.
1

1 + x
= 1− x+ x2 − x3 + · · ·

∞
∑

n=0

(−1)nxn ;

6. ln (1 + x) = x− 1

2
x2 +

1

3
x3 − 1

4
x4 + · · · =

∞
∑

n=0

(−1)n
xn+1

n+ 1
;

7. tan−1 x = x− 1

3
x3 +

1

5
x5 − 1

7
x7 + · · · =

∞
∑

n=0

(−1)n
x2n+1

2n+ 1
.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page391-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page391-CoCalcJupyter.pdf
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Note Expansions of ex, cosx and sin x are valid for all real x, while those of the
remaining functions are for −1 < x < 1. Note that the Maclaurin expansion of sinx
may be obtained from differentiating the expansion of cosx, and the expansion of

ln(1 + x) follows from term-by-term integration of the expansion of
1

1 + x
.

Supplementary Notes on Power Series of Rational Functions
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary10.pdf

See CoCalc https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary10-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary10.pdf
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary10-CoCalcJupyter.pdf
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Theorem

If f(x) = Tn(x) +Rn(x), where Tn is the n-th degree Taylor polynomial of f at a,
and

lim
n→∞

Rn(x) = 0

for |x− a| < R, then f is equal to the sum of its Taylor series on the interval
|x− a| < R.

Taylor’s Inequality

If |f (n+1)(x)| ≤M for |x− a| ≤ d, then the remainder Rn(x) of the Taylor series
satisfies the inequality

|Rn(x)| ≤
M

(n+ 1)!
|x− a|n+1 , |x− a| ≤ d.
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Consider a system of two linear equations in two unknowns x and y:

{

a1x + b1y = k1

a2x + b2y = k2
(14.1)

An ordered pair of numbers (x, y) is said to be a solution of the system if x and y
satisfy the equations in the system.
To find x we eliminate y from the equations to get

(a1b2 − a2b1)x = k1b2 − k2b1. (14.2)

To find y we eliminate x from the equations to get

(a1b2 − a2b1)y = a1k2 − a2k1. (14.3)

Therefore if a1b2 − a2b1 6= 0, the solution is given by

x =
k1b2 − k2b1
a1b2 − a2b1

, y =
a1k2 − a2k1
a1b2 − a2b1

. (14.4)
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The solution is unique. Indeed, if (x, y) is a solution, the above elimination method
shows that x and y cannot be numbers other than those given by (14.4). Hence the
solution is uniquely determined.
What happens if a1b2 − a2b1 = 0? In this case, (14.2) reduces to

0 · x = k1b2 − k2b1.

Therefore if the RHS= k1b2 − k2b1 6= 0, the equation has no solution for x; while if
k1b2 − k2b1 = 0, any x satisfies the equation. We can get similar conclusion for y
based on (14.3). We therefore have the following theorem:

Theorem 14.1 rule0pt0pt
• If a1b2 − a2b1 6= 0, the system (14.1) has a unique solution given by (14.4).
• If a1b2 − a2b1 = 0, the system (14.1) has no solution or infinitely many solutions.
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b

x

y

(a) Lines intersect at a point.

Exactly one solution.

x

y

(b) Two parallel lines.

No solution.

x

y

(c) Two identical lines.

Infinitely many solution.

Figure 14.1: Three possibilities for the solutions of two linear equations.

Each equation in the system (14.1) is a straight line in the xy-plane. Theorem 14.1
says that if a1b2 − a2b1 6= 0, the two straight lines intersect at exactly one point in
the xy-plane (see Fig. 14.1(a)). The following are examples of linear systems which
have no solution or have infinitely many solutions.
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Example 14.1 Let a1 = 2, b1 = 3, k1 = 9, a2 = 4, b2 = 6, k2 = 12. Then
a1b2 − a2b1 = 2× 6− 4× 3 = 0 and the system (14.1) becomes

{

2x + 3y = 9

4x + 6y = 12.

This system has no solution, otherwise we would have 2× 9 = 12. On the xy-plane,
the two linear equations represent two parallel lines that do not intersect at any
point. (See Fig. 14.1(b))
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Example 14.2 As in the previous example, we let a1 = 2, b1 = 3, a2 = 4, b2 = 6,
k2 = 12. In this example, we let k1 = 6. Then a1b2 − a2b1 = 0 and the system
(14.1) becomes

{

2x + 3y = 6

4x + 6y = 12.

This system represent two identical lines in the xy-plane. Any point (x, y) on the line
satisfies both equations and therefore the system has infinitely many solutions. (See
Fig. 14.1(c))
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By a determinant of the second order we mean the symbol

∣

∣

∣

∣

∣

a1 b1

a2 b2

∣

∣

∣

∣

∣

which represents the number a1b2 − a2b1 evaluated in the following way:

∣

∣

∣

∣

∣

a1 b1

a2 b2

∣

∣

∣

∣

∣

The second order determinant has two (horizontal) rows and two (vertical) columns5.

5We write Ri for row i and Cj for column j in this book.
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With the notation of determinants, we may now write (14.4) as

x =

∣

∣

∣

∣

∣

k1 b1

k2 b2

∣

∣

∣

∣

∣

÷
∣

∣

∣

∣

∣

a1 b1

a2 b2

∣

∣

∣

∣

∣

, y =

∣

∣

∣

∣

∣

a1 k1

a2 k2

∣

∣

∣

∣

∣

÷
∣

∣

∣

∣

∣

a1 b1

a2 b2

∣

∣

∣

∣

∣

. (14.5)

The formulas (14.5) are called Cramer’s rule in which we assume that the
denominator

∣

∣

∣

∣

∣

a1 b1

a2 b2

∣

∣

∣

∣

∣

6= 0.
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Example 14.3 Solve the following linear system by Cramer’s rule.

{

2 x + 3 y = 4

4 x + y = −2

Solution. Using Cramer’s rule (14.5), we get

x =

∣

∣

∣

∣

∣

4 3

−2 1

∣

∣

∣

∣

∣

÷
∣

∣

∣

∣

∣

2 3

4 1

∣

∣

∣

∣

∣

=
10

−10 = −1, y =

∣

∣

∣

∣

∣

2 4

4 −2

∣

∣

∣

∣

∣

÷ (−10) = −20−10 = 2.
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A third-order determinant consists of three rows and three columns. It is denoted by

∣

∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

∣

and is a number which can be found as follows:

∣

∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

∣

= a1

∣

∣

∣

∣

∣

b2 c2

b3 c3

∣

∣

∣

∣

∣

− b1

∣

∣

∣

∣

∣

a2 c2

a3 c3

∣

∣

∣

∣

∣

+ c1

∣

∣

∣

∣

∣

a2 b2

a3 b3

∣

∣

∣

∣

∣

(14.6)

= a1(b2c3 − b3c2)− b1(a2c3 − a3c2) + c1(a2b3 − a3b2) (14.7)

= a1b2c3 + a3b1c2 + a2b3c1 − a3b2c1 − a1b3c2 − a2b1c3. (14.8)
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Formula (14.6) or (14.7) is the result obtained by expanding the determinant along
the first row . In this method, in order to find the coefficient of b1, say, we imagine
the row and column containing b1 erased and the determinant of the remaining
entries put down as they stand. Also we put the + sign to a1 (the upper-left entry),
− sign to b1 (the one adjacent to a1), etc. so that the signs associated with the
entries of the determinant appear alternately as shown below. Thus we have +a1,
−b1, +c1, −c2, +b2, etc. with

∣

∣

∣

∣

∣

∣

∣

∣

+ − +

− + −
+ − +

∣

∣

∣

∣

∣

∣

∣

∣

overlaying on

∣

∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

∣

.
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We can also get the same value of the determinant by expanding along any row or
column. For example, if we expand along the second column, we get

∣

∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

∣

= −b1
∣

∣

∣

∣

∣

a2 c2

a3 c3

∣

∣

∣

∣

∣

+ b2

∣

∣

∣

∣

∣

a1 c1

a3 c3

∣

∣

∣

∣

∣

− b3

∣

∣

∣

∣

∣

a1 c1

a2 c2

∣

∣

∣

∣

∣

= −b1(a2c3 − a3c2) + b2(a1c3 − a3c1)− b3(a1c2 − a2c1)

= a1b2c3 + a3b1c2 + a2b3c1 − a3b2c1 − a1b3c2 − a2b1c3.

which is the same as (14.8). It can be proved that all values obtained by expansion
along a row or column are equal.
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This rule says that we evaluated the determinant directly as

∣

∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

∣

= a1b2c3 + b1c2a3 + c1a2b3 − a3b2c1 − b3c2a1 − c3a2b1.

The rule can be easily memorized using the following diagram. The six terms on the
RHS are obtained by multiplying the entries following the arrows. A downward right
arrow is associated with a positive sign while an upward right arrow a negative sign.

∣

∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

∣

a1 b1

a2 b2

a3 b3
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Example 14.4 Evaluate the determinant

D =

∣

∣

∣

∣

∣

∣

∣

∣

3 1 2

2 3 4

5 3 1

∣

∣

∣

∣

∣

∣

∣

∣

by

(a) expanding along the first row;
(b) expanding along the second column;
(c) expanding along the third row;
(d) Sarrus’ rule.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page407-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page407-CoCalcJupyter.pdf
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Solution. rule0pt0pt

(a) D = 3

∣

∣

∣

∣

∣

3 4

3 1

∣

∣

∣

∣

∣

− 1

∣

∣

∣

∣

∣

2 4

5 1

∣

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

∣

2 3

5 3

∣

∣

∣

∣

∣

(expansion along R1)

= 3(−9)− (−18) + 2(−9) = −27.

(b) D = −1
∣

∣

∣

∣

∣

2 4

5 1

∣

∣

∣

∣

∣

+ 3

∣

∣

∣

∣

∣

3 2

5 1

∣

∣

∣

∣

∣

− 3

∣

∣

∣

∣

∣

3 2

2 4

∣

∣

∣

∣

∣

(expansion along C2)

= −(−18) + 3(−7)− 3(8) = −27.

(c) D = 5

∣

∣

∣

∣

∣

1 2

3 4

∣

∣

∣

∣

∣

− 3

∣

∣

∣

∣

∣

3 2

2 4

∣

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

∣

3 1

2 3

∣

∣

∣

∣

∣

(expansion along R3)

= 5(−2)− 3(8) + (7) = −27.
(d) By Sarrus’ rule

D = (3)(3)(1) + (1)(4)(5) + (2)(2)(3)− (5)(3)(2)− (3)(4)(3)− (1)(2)(1)

= −27.
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1. The value of a determinant is not changed if we put its rows as columns, in the
same consecutive order, e.g.

∣

∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

∣

∣

(Transposition)

2. Interchanging any two columns (or any two rows) changes the sign of the
determinant, e.g.

∣

∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

∣

∣

c1 b1 a1

c2 b2 a2

c3 b3 a3

∣

∣

∣

∣

∣

∣

∣

∣

(C1 ∼ C3)

where the first and third columns (C1, C3) of the first determinant have been
interchanged to form the second determinant.
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3. If a determinant has two rows (or two columns) identical, its value is zero, e.g.

∣

∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a2 b2 c2

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (R2 = R3)

since the second and third rows (R2, R3) are identical.
4. A common factor of any row or column can be taken out to multiply the

remaining determinant value, e.g.

∣

∣

∣

∣

∣

∣

∣

∣

kma1 mb1 mc1

ka2 b2 c2

ka3 b3 c3

∣

∣

∣

∣

∣

∣

∣

∣

= km

∣

∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

∣

.
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5. If each element of a row (or a column) is the sum of two or more terms, the
determinant can be expressed as the sum of two or more determinants, e.g.

∣

∣

∣

∣

∣

∣

∣

∣

a1 +m1 b1 c1

a2 +m2 b2 c2

a3 +m3 b3 c3

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

m1 b1 c1

m2 b2 c2

m3 b3 c3

∣

∣

∣

∣

∣

∣

∣

∣

.

A more general formula is

∣

∣

∣

∣

∣

∣

∣

∣

ka1 + lm1 b1 c1

ka2 + lm2 b2 c2

ka3 + lm3 b3 c3

∣

∣

∣

∣

∣

∣

∣

∣

= k

∣

∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

∣

+ l

∣

∣

∣

∣

∣

∣

∣

∣

m1 b1 c1

m2 b2 c2

m3 b3 c3

∣

∣

∣

∣

∣

∣

∣

∣

. (14.9)
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6. By choosing l = −a3/b3 (possible if b3 6= 0) so that a3 + lb3 = 0, we can
simplify the determinant as

∣

∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

a1 + lb1 b1 c1

a2 + lb2 b2 c2

0 b3 c3

∣

∣

∣

∣

∣

∣

∣

∣

. (C1 + lC2 → C1)

Note that in the result, a3 is replaced by 0 since a3+ lb3 = 0. This result follows
by putting k = 1 and mi = bi in (14.9). This helps to change one or more
entries of the determinant to 0 without changing the value of the determinant.
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Remark 14.1 rule0pt0pt

■ In No. 6 above, we used the abbreviation C1 + lC2 → C1 to represent the
column operation:

New column 1 is formed by adding old column 1 to l times column 2

For convenience, we will simply write C1 + lC2 to represent this operation in the
future. The convention being used is: when we write kCi +mCj (i 6= j) to
represent a column operation, the result is used to replace Ci, the column being
first written.

■ Row operations kRi +mRj (i 6= j) are defined similarly.
■ If a determinant D is transformed to another determinant E by the operation:

kCi +mCj or kRi +mRj (i 6= j), then E = kD. This fact follows from (14.9)
above.
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Example 14.5 Evaluate the determinant ∆ =

∣

∣

∣

∣

∣

∣

∣

∣

2 3 23

1 6 16

3 8 38

∣

∣

∣

∣

∣

∣

∣

∣

.

Solution 1. By expansion along a row or a column, or using Sarrus’ rule, we can get
∆ = 0. For details, see Example 14.4 on page 407.
Solution 2.

∆ =

∣

∣

∣

∣

∣

∣

∣

∣

2 3 23

1 6 16

3 8 38

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

0 −9 −9
1 6 16

0 −10 −10

∣

∣

∣

∣

∣

∣

∣

∣

= 90

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1

1 6 16

0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

Solution 3. Obviously the third column is 10 times the first plus the second.
Therefore

∆ =

∣

∣

∣

∣

∣

∣

∣

∣

2 3 23

1 6 16

3 8 38

∣

∣

∣

∣

∣

∣

∣

∣

= 10

∣

∣

∣

∣

∣

∣

∣

∣

2 3 2

1 6 1

3 8 3

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

2 3 3

1 6 6

3 8 8

∣

∣

∣

∣

∣

∣

∣

∣

= 10× 0 + 0 = 0.
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Example 14.6 Factorize the determinant ∆ =

∣

∣

∣

∣

∣

∣

1 a a3

1 b b3

1 c c3

∣

∣

∣

∣

∣

∣

.

Solution.

∆ =

∣

∣

∣

∣

∣

∣

∣

∣

1 a a3

1 b b3

1 c c3

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1 a a3

0 b− a b3 − a3

0 c− a c3 − a3

∣

∣

∣

∣

∣

∣

∣

∣

= (b− a)(c− a)

∣

∣

∣

∣

∣

∣

∣

1 a a3

0 1 b2 + a2 + ab
0 1 c2 + a2 + ac

∣

∣

∣

∣

∣

∣

∣

= (b− a)(c− a)

∣

∣

∣

∣

∣

∣

∣

1 a a3

0 1 b2 + a2 + ab
0 0 c2 − b2 + a(c− b)

∣

∣

∣

∣

∣

∣

∣

= (b− a)(c− a)(c− b)

∣

∣

∣

∣

∣

∣

∣

1 a a3

0 1 b2 + a2 + ab
0 0 a+ b+ c

∣

∣

∣

∣

∣

∣

∣

= (b− a)(c− a)(c− b)(a+ b+ c).

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page415-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page415-CoCalcJupyter.pdf
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Consider the linear system of three linear equations in three unknowns x, y, z:







a1 x + b1 y + c1 z = k1
a2 x + b2 y + c2 z = k2
a3 x + b3 y + c3 z = k3

(14.10)

Theorem 14.2 (Cramer’s Rule) Let

D =

∣

∣

∣

∣

∣

∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣

∣

∣

∣

∣

∣

. (14.11)

If D 6= 0, the system (14.10) has a unique solution (x, y, z) given by

x =

∣

∣

∣

∣

∣

∣

k1 b1 c1
k2 b2 c2
k3 b3 c3

∣

∣

∣

∣

∣

∣

÷D, y =

∣

∣

∣

∣

∣

∣

a1 k1 c1
a2 k2 c2
a3 k3 c3

∣

∣

∣

∣

∣

∣

÷D, z =

∣

∣

∣

∣

∣

∣

a1 b1 k1
a2 b2 k2
a3 b3 k3

∣

∣

∣

∣

∣

∣

÷D.

These formulas are known as Cramer’s Rule.
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Similar to Theorem 14.1 on page 396, we have the following theorem for three linear
equations.

Theorem 14.3 Let D denote the determinant in (14.11).
• If D 6= 0, the system (14.10) has a unique solution given by Cramer’s rule.
• If D = 0, the system (14.10) has no solution or infinitely many solutions.
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Example 14.7 Solve the following linear system by Cramer’s Rule.







−2 x + 3 y − z = 1
x + 2 y − z = 4

−2 x − y + z = −3

Solution. We have D =

∣

∣

∣

∣

∣

∣

−2 3 −1
1 2 −1
−2 −1 1

∣

∣

∣

∣

∣

∣

= −2 6= 0. Therefore

x =

∣

∣

∣

∣

∣

∣

1 3 −1
4 2 −1
−3 −1 1

∣

∣

∣

∣

∣

∣

÷D =
−4
−2 = 2.

y =

∣

∣

∣

∣

∣

∣

−2 1 −1
1 4 −1
−2 −3 1

∣

∣

∣

∣

∣

∣

÷D =
−6
−2 = 3.

z =

∣

∣

∣

∣

∣

∣

−2 3 1
1 2 4
−2 −1 −3

∣

∣

∣

∣

∣

∣

÷D =
−8
−2 = 4.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page418-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page418-CoCalcJupyter.pdf


Page – 419

Cross Product as a determinant
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/CrossProduct.pdf

Volume of a parallelepiped, 3×3 determinant
See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page425b-CoCalcJupyter.pdf

To determine if three given points on the xy-plane are
collinear
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary12.pdf

See CoCalc https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary12-CoCalcJupyter.pdf

Homogeneous linear system

Definition 14.1 The linear system (14.10) is said to be homogeneous if the
numbers k1, k2, k3 on the RHS are zero. That is







a1 x + b1 y + c1 z = 0
a2 x + b2 y + c2 z = 0
a3 x + b3 y + c3 z = 0

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/CrossProduct.pdf
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page425b-CoCalcJupyter.pdf
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary12.pdf
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary12-CoCalcJupyter.pdf
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Theorem 14.4 If the






a1 x + b1 y + c1 z = 0
a2 x + b2 y + c2 z = 0
a3 x + b3 y + c3 z = 0

(14.12)

has a solution (x, y, z) 6= (0, 0, 0) then

D =

∣

∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (14.13)

Proof. Since (0, 0, 0) is obviously a solution, the existence of a solution
(x, y, z) 6= (0, 0, 0) implies that there are at least two solutions. Therefore by
Theorem 14.2, we must have D = 0.
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Example 14.8 Find the values of the constant λ for which the system of equations







x + 6z = 0
− y+λz = 0

x+ λy+ 2z = 0

has solutions (x, y, z) 6= (0, 0, 0).

Solution. By Theorem 14.4, we have

D =

∣

∣

∣

∣

∣

∣

∣

1 0 6

0 −1 λ

1 λ 2

∣

∣

∣

∣

∣

∣

∣

= 0.

which can be reduced to

λ2 = 4 and hence λ = ±2.
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Example 14.9 Find the values of the constant k for which the system of equations







x+ ky+ 2 = 0
2x+ y+ k = 0
2x+ ky+ 1 = 0

is consistent, i.e. it has at least one solution (x, y).

Solution. Let z = 1. Then (x, y, z) = (x, y, 1) 6= (0, 0, 0) satisfies the homogeneous

system. By Theorem 14.4, we must have D =

∣

∣

∣

∣

∣

∣

1 k 2
2 1 k
2 k 1

∣

∣

∣

∣

∣

∣

= 0 which can be reduced

to

(k + 3)(k − 1) = 0 and hence k = −3 or 1.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page422-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page422-CoCalcJupyter.pdf
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The determinants of order n (n = 1, 2, 3, . . .) can be defined using permutations.6

For simplicity, we just point out that:

■ A determinant of order n can be evaluated by expansion along any row or column.
■ All Properties 1 to 6 apply to determinants of order n.

6See for example, B. Kolman and D. Hill, Introductory Linear Algebra, 8th edition, 2005
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Example 14.10 Evaluate the determinant

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 3 3 1

1 4 1 3

3 2 3 1

2 1 4 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Solution 1. By expanding along the first column,

D = 2

∣

∣

∣

∣

∣

∣

∣

∣

4 1 3

2 3 1

1 4 2

∣

∣

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

∣

∣

3 3 1

2 3 1

1 4 2

∣

∣

∣

∣

∣

∣

∣

∣

+ 3

∣

∣

∣

∣

∣

∣

∣

∣

3 3 1

4 1 3

1 4 2

∣

∣

∣

∣

∣

∣

∣

∣

− 2

∣

∣

∣

∣

∣

∣

∣

∣

3 3 1

4 1 3

2 3 1

∣

∣

∣

∣

∣

∣

∣

∣

= 2(20)− 2 + 3(−30)− 2(−8) = −36.
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Solution 2. Here we simplify the determinant using the properties 1 to 6.

D =

∣

∣

∣

∣

∣

∣

∣

∣

2 3 3 1
1 4 1 3
3 2 3 1
2 1 4 2

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

0 −5 1 −5
1 4 1 3
0 −10 0 −8
0 −7 2 −4

∣

∣

∣

∣

∣

∣

∣

∣

(R1 − 2R2, R3 − 3R2, R4 − 2R2)

= −

∣

∣

∣

∣

∣

∣

−5 1 −5
−10 0 −8
−7 2 −4

∣

∣

∣

∣

∣

∣

(Expansion along C1)

= 2

∣

∣

∣

∣

∣

∣

∣

∣

5 −1 5

5 0 4

7 −2 4

∣

∣

∣

∣

∣

∣

∣

∣

= 2(−28− 50 + 40 + 20) = −36.
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A matrix is a rectangular array of scalars of the form











a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn











. (15.1)

This matrix is called an m× n matrix . It consists of m rows and n columns, the i-th
row (or simply row i) being the 1× n matrix [ai1 ai2 · · · ain] and the j-th
column (or column j) the m× 1 matrix











a1j
a2j
...

anj











.

The entry aij which belongs to row i and column j is called the (i, j)-entry of the
matrix. The matrix (15.1) can be written in abbreviated forms such as [aij ]m×n or
[aij ] or [A] or simply A. The 1× 1 matrix [α] is just the scalar α.
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Example 15.1 The following are examples of matrices.

A =

[

4.5 1.4
2.3 5.9

]

, B =





5 1
2 −9
3 2



 , c =





2
6
5



 .

The first, denoted by A, is a 2× 2 matrix. The second, denoted by B, is a 3× 2
matrix. The third, denoted by c is a 3× 1 matrix. If the entries of the matrix A
above are denoted by aij , then a11 = 4.5, a12 = 1.4, a21 = 2.3, a22 = 5.9.
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If A = [aij ] is m× n, then its transpose is the n×m matrix, denoted by AT ,
obtained by interchanging the rows and columns of A, i.e.

AT = [bij ] where bij = aji

for all i = 1, . . . , n; j = 1, . . . ,m.

Example 15.2 If A,B and c are the matrices given in the previous example, then

AT =

[

4.5 2.3
1.4 5.9

]

, BT =

[

5 2 3
1 −9 2

]

, c
T = [ 2 6 5 ].
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An m× 1 matrix is called a column m-vector or an m-vector or a column-vector or
simply a vector . Column-vectors are denoted by bold-faced lower-case letters like a,
x in printed form and is hand-written as a∼, x∼, etc.
A 1× n matrix is called a row-vector . As row-vectors are transposes of
column-vectors, they are denoted by a

T , xT , etc. and are written as a∼
T , x∼

T , etc.
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Two m× n matrices A and B are said to be equal , written A = B, if aij = bij for
all i = 1, . . . ,m; j = 1, . . . , n.

Example 15.3 If E =

[

4 2
1 5

]

and F =

[

4 1
2 5

]

, then E 6= F but E = FT .
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We can add two m× n matrices. The sum, denoted by A+B is an m× n matrix
C = [cij ] such that cij = aij + bij for all i, j. Similarly, the difference, denoted by
A− B is an m× n matrix D = [dij ] such that dij = aij − bij for all i, j.

Example 15.4

[

4 2
3 5

]

+

[

−2 1
2 −2

]

=

[

4− 2 2 + 1
3 + 2 5− 2

]

=

[

2 3
5 3

]

.

[

4 2
3 5

]

−
[

−2 1
2 −2

]

=

[

4 + 2 2− 1
3− 2 5 + 2

]

=

[

6 1
1 7

]

.
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If k is a scalar (real or complex), then kA is the matrix C = [cij ] such that
cij = kaij for all i, j.

Example 15.5

3

[

4 2
3 −5

]

=

[

12 6
9 −15

]

, k

[

−2 1
3 4

]

=

[

−2k k
3k 4k

]

.
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This is a matrix all whose entries are 0. Zero matrices are denoted by O. However,
zero vectors are usually denoted by 0.

Example 15.6

O =

[

0 0
0 0

]

, O =





0 0 0
0 0 0
0 0 0



 , 0 =





0
0
0



 .
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If a row n-vector is multiplied by a column n-vector on the right, then the product is
a scalar which is equal to the sum of the products of the corresponding entries in the
two vectors. Using symbols, if

a
T = [a1 a2 · · · an] and b =











b1
b2
...
bn











then

a
T
b = a1b1 + a2b2 + · · ·+ anbn.

Example 15.7

[

3 −2 1
]





2
4
−3



 = 3× 2 + (−2)× 4 + 1× (−3) = −5.
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If A = [aij ] is m× n, B = [bij ] is n× p then the product AB is the m× p matrix
C = [cij ] such that

cij = ai1b1j + ai2b2j + · · ·+ ainbnj

for all i, j, i.e. the entry cij is equal to row i of A right-multiplied by column j of B.
The product AB is well-defined only when the number of columns of A is equal to
the number of rows of B.
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Example 15.8 If A =

[

5 1 2 3
2 2 −1 3

]

and B =









1 2 3
−2 3 −1
3 −3 −1
−4 2 2









then

AB =

[

c11 c12 c13
c21 c22 c23

]

=

[

−3 13 18
−17 19 11

]

where the entries cij are computed as follows:

c11 = 5× 1 + 1× (−2) + 2× 3 + 3× (−4) = −3.
c12 = 5× 2 + 1× 3 + 2× (−3) + 3× 2 = 13.

c13 = 5× 3 + 1× (−1) + 2× (−1) + 3× 2 = 18.

c21 = 2× 1 + 2× (−2) + (−1)× 3 + 3× (−4) = −17.
c22 = 2× 2 + 2× 3 + (−1)× (−3) + 3× 2 = 19.

c23 = 2× 3 + 2× (−1) + (−1)× (−1) + 3× 2 = 11.

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page437-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page437-CoCalcJupyter.pdf


Properties

Page – 438

If the sums are well-defined, we have:

1. A+B = B +A
2. (A+B) + C = A+ (B + C)
3. A+O = A
4. A+ (−A) = O where −A = (−1)A
5. (AT )T = A
6. (A+B)T = AT +BT

If the products are well-defined, then

7. A(BC) = (AB)C
8. A(B + C) = AB +AC, (A+B)C = AC +BC
9. (AB)T = BTAT

10. There are examples of A and B for which AB 6= BA.



Square matrices

Page – 439

An n× n matrix is a square matrix . Its order is n. Note that a square matrix of
order 1 is just a number.

Example 15.9 The following matrices A, B, C are square matrices.

A =

[

5 2
1 3

]

, B =





2 0 3
4 1 0
7 2 4



 , C =





2 0 0
0 1 0
0 0 4




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If A = [aij ] is a square matrix of order n, then the entries a11, a22, . . . , ann are the
diagonal elements of A. For example, the diagonal elements of the matrix

A =





2 5 −3
3 −1 7
2 0 4





are 2,−1, 4.



Diagonal matrix
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A diagonal matrix is a square matrix whose entries are all zero except possibly the
diagonal elements.

Example 15.10 The matrices

A =





2 0 0
0 −1 0
0 0 4



 and B =





2 0 0
0 1 0
0 0 0





are diagonal matrices.

We use diag(a11, . . . , ann) to denote the diagonal matrix of order n whose diagonal
elements are a11, . . . , ann. For example, the matrix B above can be represented by
diag(2, 1, 0).
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A diagonal matrix whose diagonal elements are all unity is called an identity matrix .
It is denoted by In if the specification of its order n is necessary. Usually we denote it
simply by I.

Example 15.11 The matrices

I2 =

[

1 0
0 1

]

, I3 =





1 0 0
0 1 0
0 0 1



 ,

are identity matrices.

Theorem 15.1 If A is a square matrix of order n and I the identity matrix of the
same order then AI = IA = A.
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We have learned that a determinant is defined for numbers given in a square array.
Using matrix terminology, a determinant is defined for every square matrix. If A is a
square matrix, then the determinant formed this way is called the determinant of A
and is denoted by detA or det(A).
For example, let

A =





3 2 −1
2 −1 0
2 3 1



 . (15.2)

Then

detA =

∣

∣

∣

∣

∣

∣

3 2 −1
2 −1 0
2 3 1

∣

∣

∣

∣

∣

∣

= −15. (15.3)
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Theorem 15.2 For square matrices A, B of order n, we have

■ detAT = detA.
■ det(AB) = det(A) det(B).

The first equality is just Property 1 of determinants stated on page 409.
The second equality is a useful property of determinants. Its proof is quite involved
for matrices of general order n though we can verify the formula for small values of n.
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Example 15.12 Verify the formula det(AB) = det(A) det(B) using the matrices

A =

[

2 3
4 1

]

and B =

[

3 2
2 5

]

.

Solution.

detA =

∣

∣

∣

∣

2 3
4 1

∣

∣

∣

∣

= −10, detB =

∣

∣

∣

∣

3 2
2 5

∣

∣

∣

∣

= 11.

AB =

[

2 3
4 1

] [

3 2
2 5

]

=

[

12 19
14 13

]

∴ det(AB) =

∣

∣

∣

∣

12 19
14 13

∣

∣

∣

∣

= −110 = (−10)× 11 = det(A) det(B).
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Given a square matrix A of order n, there are n2 scalars which are the determinants
of order n− 1 obtained by deleting one row and one column of A. These scalars are
called the minors and will be denoted by Mij if row i and column j are deleted in the
computation. For examples, for the matrix

A =





3 2 −1
2 −1 0
2 3 1



 (15.4)

(the same A as in (15.2)), there are 9(= 3× 3) minors:

M11 =

∣

∣

∣

∣

−1 0
3 1

∣

∣

∣

∣

= −1, M12 =

∣

∣

∣

∣

2 0
2 1

∣

∣

∣

∣

= 2, M13 =

∣

∣

∣

∣

2 −1
2 3

∣

∣

∣

∣

= 8,

M21 =

∣

∣

∣

∣

2 −1
3 1

∣

∣

∣

∣

= 5, M22 =

∣

∣

∣

∣

3 −1
2 1

∣

∣

∣

∣

= 5, M23 =

∣

∣

∣

∣

3 2
2 3

∣

∣

∣

∣

= 5,

M31 =

∣

∣

∣

∣

2 −1
−1 0

∣

∣

∣

∣

= −1, M32 =

∣

∣

∣

∣

3 −1
2 0

∣

∣

∣

∣

= 2, M33 =

∣

∣

∣

∣

3 2
2 −1

∣

∣

∣

∣

= −7.
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The cofactors of a square matrix A are the numbers defined by

Aij = (−1)i+jMij , i, j = 1, 2, . . . , n.

For the matrix A in (15.4), by matching the above minors with the corresponding
signs in the following sign pattern





+ − +
− + −
+ − +





we obtain the following cofactors for the matrix A.

A11 = −1, A12 = −2, A13 = 8,

A21 = −5, A22 = 5, A23 = −5,
A31 = −1, A32 = −2, A33 = −7.
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The adjoint of an n× n matrix A is the transpose of the n× n matrix whose
(i, j)-entry is the cofactor Aij of A. The adjoint of A is denoted by adjA or adj(A).
For the matrix A in (15.4), we have found its cofactors and therefore we can put
down the adjoint at once as follows:

adjA =





−1 −2 8
−5 5 −5
−1 −2 −7





T

=





−1 −5 −1
−2 5 −2
8 −5 −7



 . (15.5)

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page448-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page448-CoCalcJupyter.pdf
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The following example demonstrates how to find the same adjoint from scratch.

Example 15.13 Given the matrix A =





3 2 −1
2 −1 0
2 3 1



, find adjA, showing all

intermediate steps.

Solution.

adjA =





















+

∣

∣

∣

∣

−1 0
3 1

∣

∣

∣

∣

−
∣

∣

∣

∣

2 0
2 1

∣

∣

∣

∣

+

∣

∣

∣

∣

2 −1
2 3

∣

∣

∣

∣

−
∣

∣

∣

∣

2 −1
3 1

∣

∣

∣

∣

+

∣

∣

∣

∣

3 −1
2 1

∣

∣

∣

∣

−
∣

∣

∣

∣

3 2
2 3

∣

∣

∣

∣

+

∣

∣

∣

∣

2−1
−1 0

∣

∣

∣

∣

−
∣

∣

∣

∣

3 −1
2 0

∣

∣

∣

∣

+

∣

∣

∣

∣

3 2
2 −1

∣

∣

∣

∣





















T

=





−1 −2 8
−5 5 −5
−1 −2 −7





T

=





−1 −5 −1
−2 5 −2
8 −5 −7



 .
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The inverse of a square matrix A, if exists, is the unique matrix, denoted by A−1,
such that

AA−1 = A−1A = I.

If A−1 exists, then A is said to be invertible.
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Theorem 15.3 If A and B are invertible matrices of the same order, then

■ (A−1)−1 = A.
■ (AB)−1 = B−1A−1.

The next theorem gives a formula for the inverse. This allows us to find the inverse
A−1 (if exists) of A when its order is small.

Theorem 15.4 If detA 6= 0,

A−1 =
adjA

detA
.

If detA = 0, the inverse of A does not exist.
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Example 15.14 Use the above theorem to find the inverse A−1 for the matrix A
given in (15.4).

Solution.

A−1 =
adjA

detA
(Theorem 15.4)

=
1

−15





−1 −5 −1
−2 5 −2
8 −5 −7



 (By (15.3) and (15.5))

=





1/15 1/3 1/15
2/15 −1/3 2/15
−8/15 1/3 7/15



 .

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page452-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page452-CoCalcJupyter.pdf
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Planes and Lines in 3D
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary09.pdf

Systems of n linear equations in n unknowns. We consider
the case when the number of unknowns is equal to the number of equations assuming
that the system has a unique solution. We learned Cramer’s rule for solving this kind
of equations. In this section, we introduce the method based on matrix inversion.

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary09.pdf
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Consider, for example, the system of linear equations







2x1 + 3x2 + x3 = 5,
x1 + 7x2 + 2x3 = 5,
2x1 + 5x2 − 3x3 = 15.

(15.6)

The system can be put in matrix form:





2 3 1
1 7 2
2 5 −3









x1

x2

x3



 =





5
5
15



 or in short

Ax = b (15.7)

where A =





2 3 1
1 7 2
2 5 −3



, x =





x1

x2

x3



,b =





5
5
15



 . The matrix A is called the coefficient

matrix , x the unknown vector and b the constant vector of the system. If x satisfies
the matrix equation, it is a solution of the matrix equation or the linear system.
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Another convenient way to display the system is the use of the augmented matrix :





2 3 1 5
1 7 2 5
2 5 −3 15







Solving by matrix inversion
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In this method, we first find the inverse of the coefficient matrix A. One way to do so
is to apply the formula

A−1 =
adjA

detA
.

Order 2 case: A =

[

a b
c d

]

. The adjoint is adjA =

[

d −b
−c a

]

. Therefore

A−1 =

[

d −b
−c a

]

÷
∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

.

Then the solution of Ax = b, i.e.

[

a b
c d

] [

x1

x2

]

=

[

b1
b2

]

is x = A−1
b or

[

x1

x2

]

=

[

a b
c d

]−1 [
b1
b2

]

=
1

ad− bc

[

d −b
−c a

] [

b1
b2

]

.
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Example 15.15 Solve by matrix inversion the linear system

[

2 3
1 5

] [

x1

x2

]

=

[

12
13

]

Solution.

[

2 3
1 5

]−1

=

[

5 −3
−1 2

]

÷
∣

∣

∣

∣

2 3
1 5

∣

∣

∣

∣

=
1

7

[

5 −3
−1 2

]

Therefore
[

x1

x2

]

=
1

7

[

5 −3
−1 2

] [

12
13

]

=
1

7

[

21
14

]

=

[

3
2

]

.
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Example 15.16 Solve the linear system by matrix inversion.





2 3 1
1 2 3
3 1 2









x1

x2

x3



 =





11
11
14





Solution Let A denote the coefficient matrix.

detA =

∣

∣

∣

∣

∣

∣

2 3 1
1 2 3
3 1 2

∣

∣

∣

∣

∣

∣

= 8 + 27 + 1− 6− 6− 6 = 18.

adjA =





















+

∣

∣

∣

∣

2 3
1 2

∣

∣

∣

∣

−
∣

∣

∣

∣

1 3
3 2

∣

∣

∣

∣

+

∣

∣

∣

∣

1 2
3 1

∣

∣

∣

∣

−
∣

∣

∣

∣

3 1
1 2

∣

∣

∣

∣

+

∣

∣

∣

∣

2 1
3 2

∣

∣

∣

∣

−
∣

∣

∣

∣

2 3
3 1

∣

∣

∣

∣

+

∣

∣

∣

∣

3 1
2 3

∣

∣

∣

∣

−
∣

∣

∣

∣

2 1
1 3

∣

∣

∣

∣

+

∣

∣

∣

∣

2 3
1 2

∣

∣

∣

∣





















T

=





1 7 −5
−5 1 7
7 −5 1





T

=





1 −5 7
7 1 −5
−5 7 1



 .
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Therefore A−1 = 1
18





1 −5 7
7 1 −5
−5 7 1



 and





x1

x2

x3



 =
1

18





1 −5 7
7 1 −5
−5 7 1









11
11
14



 =
1

18





54
18
36



 =





3
1
2



 .

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page458-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page458-CoCalcJupyter.pdf
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The general system, with m equations and n unknowns and in the form of an
augmented matrix, can be solved systematically in two steps.

■ The first is to reduce (by elimination) the original system to a new equivalent
system of the so-called echelon form from which we can see right away whether
the system has a solution.

■ In the second step, we solve by back-substitution this equivalent system by
assuming known parameter values to some of the unknowns if the system has a
solution.



Systems of Linear Equations
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Consider a system of m linear equations in n unknowns x1, x2, . . . , xn:



















a11x1 + a12x2 + . . .+ a1nxn = b1
a21x1 + a22x2 + . . .+ a2nxn = b2
...

...
...

...
am1x1 + am2x2 + . . .+ amnxn = bm

This linear system can be conveniently written in matrix form as Ax = b by putting

A = [aij ] =







a11 . . . a1n
...

...
am1 . . . amn






, x =







x1

...
xn






and b =







b1
...
bm






.

■ v is a solution if Av = b.
■ System is consistent if such a v exist.
■ Inconsistent if no such v exist.
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The system
{

x1 − 2x2 = −1
−x1 + 3x2 = 3

is consistent

since x =

[

3
2

]

is a solution.

In fact, this is the unique solution.
Geometrically, it means two linear straight lines having a point of intersection.

On the other hand, the system
{

x1 − 2x2 = −1
−3x1 + 6x2 = 13

has no solution,

thus, is inconsistent.
Geometrically, it means two linear straight lines are not intersecting.
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Determine whether a given system of linear equations Ax = b is consistent, and find
all the solution in case it is consistent.

Definition Two systems of linear equations are said to be equivalent if their
solution sets are identical.

Operations giving equivalent systems

(i) interchange any 2 equations of a system of linear equations;
(ii) multiply both sides of any equation in a system by a nonzero scalar;
(iii) add a multiple of one equation to another equation within the system.
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The augmented matrix

Notation : [A|b] =





a11 a12 · · · a1n b1
.

.

.

.

.

.

.

.

.

.

.

.

am1 am2 · · · amn bm





.

(i) interchange any two rows of the augmented matrix [A |b] ;
(ii) multiply any row of the augmented matrix [A |b] by a nonzero scalar;
(iii) add a scalar multiple of one row of the augmented matrix [A |b] to another row.

These operations are called elementary row operations on matrices.
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The elimination steps are implemented using the following row operations which are
equivalent to operations on the equations themselves:

Row operations Meaning Purpose
Ri ∼ Rj Interchanging Row i and

Row j
Move the nonzero entry to an up-
per position if necessary.

kRi k times Row i Reduce the coefficients of the
equation to a simpler form, e.g.
multiply the common denominator
or divide by the common factor.

Ri −mRj Row i minus m times Row
j to replace Row i

Change a nonzero entry in Row
i to zero so that an unknown in
equation i is eliminated.
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Definition
A matrix is said to be in reduced row-echelon form if it has the following properties :

(1) If a row does not consist entirely of zeros, then the 1st non-zero entry of this
row is equal to 1 (known as the leading 1’s);

(2) All the rows that consist entirely of zeros are grouped together at the bottom of
the matrix;

(3) If the leading 1 of i-th row occurs at the p-th column and if the leading 1 of
row (i+ 1) occurs at the q-th column, then p < q;

(4) Each column that contains a leading 1 has zeros elsewhere.

A matrix that satisfies (1), (2) and (3) but not necessarily (4) is said to be in
row-echelon form.



Example
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



1 0 0 4
0 1 0 −2
0 0 1 −9



 and





0 1 −2 0 15
0 0 0 1 3
0 0 0 0 0



 are in reduced row-echelon form, while





1 4 3 7
0 1 6 2
0 0 1 5



 and





0 1 2 6 0
0 0 1 −1 18
0 0 0 0 1



 are in row-echelon form.

Theorem Every matrix A can be reduced to a matrix in reduced row-echelon form

by applying to A a sequence of elementary row operations.
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Consider the system of linear equations






x1 − 2x2 + x3 = 0
2x2 − 8x3 = 6

−4x1 + 5x2 + 9x3 = −9
The augmented matrix is given by





1 −2 1 0
0 2 −8 6
−4 5 9 −9





The elimination process goes as follows:

4× (1) + (3)→





1 −2 1 0
0 2 −8 6
0 −3 13 −9





1

2
× (2)→





1 −2 1 0
0 1 −4 3
0 −3 13 −9




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3× (2) + (3)→





1 −2 1 0
0 1 −4 3
0 0 1 0





−1× (3) + (1)→
4× (3) + (2)→





1 −2 0 0
0 1 0 3
0 0 1 0





2× (2) + (1)→





1 0 0 6
0 1 0 3
0 0 1 0



 .

Thus the given linear system is consistent and has [6 3 0]T as its (unique) solution.

Recall that a system of linear equations is either inconsistent (no solution) or
consistent (exactly one solution or infinitely many solutions).
See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page468-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page468-CoCalcJupyter.pdf
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Definition Two matrices are row equivalent if there is a sequence of row
operations that can transform one matrix into the other.

For example, the matrices





1 2 3

4 5 6

7 8 9



 and





1 2 3

0 1 2

0 0 0



 are row equivalent.
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Consider the system







x2 − 4x3 = 8
2x1 − 3x2 + 2x3 = 1
5x1 − 8x2 + 7x3 = 1

.

Solution





0 1 −4 8
2 −3 2 1
5 −8 7 1



→





2 −3 2 1
0 1 −4 8
5 −8 7 1





→





2 −3 2 1
0 1 −4 8
0 −1/2 2 −3/2



→





2 −3 2 1
0 1 −4 8
0 0 0 5/2



 .

This corresponds to the inconsistent system






2x1 − 3x2 + 2x3 = 1
0x1 + x2 − 4x3 = 8
0x1 + 0x2 + 0x3 = 5

2 ←−
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Definition If certain variables in a system of linear equations can be expressed in
terms of the remaining variables, then the former are called basic variables while the
latter are known as free variables.

Example Consider the system
{

x1 − 5x3 = 1
x2 + x3 = 4

, we see that x1 and x2 are basic variables while x3 is a free variable.

Let x3 = t, we obtain x1 = 1 + 5t and x2 = 4− t. Thus

x =





1 + 5t
4− t
t



 =





1
4
0



+ t





5
−1
1



 .

Geometrically, this solution set is a straight line in space.
See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page472-CoCalcJyputer.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page472-CoCalcJyputer.pdf
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Example 2.6 Solve the system






x1 + x2 + 2x3 = 9
2x1 + 4x2 − 3x3 = 1
3x1 + 6x2 − 5x3 = 0

Solution:




1 1 2 9
2 4 −3 1
3 6 −5 0



→





1 1 2 9
0 2 −7 −17
1 2 −2 −1





→





1 1 2 9
0 1 −7/2 −17/2
0 1 −4 −10



→





1 1 2 9
0 1 −7/2 −17/2
0 0 −1/2 −3/2





→





1 1 2 9
0 1 −7/2 −17/2
0 0 1 3



→





1 0 11/2 35/2
0 1 −7/2 −17/2
0 0 1 3



 .

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page473-CoCalcJupyter.pdf

See CoCalc https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page491-stepbystepsolve-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page473-CoCalcJupyter.pdf
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page491-stepbystepsolve-CoCalcJupyter.pdf
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





x1 + 11
2 x3 = 35

2
x2 − 7

2x3 = − 17
2

x3 = 3
, which implies

x3 = 3,

x2 =
7

2
× 3− 17

2
= 2 and

x1 =
−11
2
× 3 +

35

2
= 1.

Thus x =





1
2
3



 is the only solution of the original linear system.

Another Example
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/to_get_to_reduced_row_echelon_form.pdf

Another Example
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/to_get_to_reduced_row_echelon_form_2.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/to_get_to_reduced_row_echelon_form.pdf
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/to_get_to_reduced_row_echelon_form_2.pdf
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Consider














x1 + 3x2 − 2x3 + 2x5 = 0
2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = −1

5x3 + 10x4 + 15x6 = 5
2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6

.

The augmented matrix can be row reduced to









1 3 0 4 2 0 0
0 0 1 2 0 0 0
0 0 0 0 0 1 1

3
0 0 0 0 0 0 0









.

The corresponding system of equations is given by







x1 + 3x2 + 4x4 + 2x5 = 0
x3 + 2x4 = 0

x6 = 1
3

.
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Thus the solutions are
x1 = −3x2 − 4x4 − 2x5,
x3 = −2x4

x6 = 1/3
and x2, x4 and x5 are free variables which may take arbitrary values. The solution set
thus consists of all vectors of the form

x =



















−3α− 4β − 2γ

α

−2β
β

γ

1/3



















, where α, β and γ are arbitrary scalars

(known as parameters).
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Theorem Suppose the augmented matrix [A|b] of the linear system Ax = b is
reduced to [R|c] by elementary row operations, where R is an m× n matrix in
reduced row-echelon form (or in row-echelon form) and c = [c1 c2 . . . cm]T . If
R has r non-zero rows, then the system Ax = b is consistent if and only if cj = 0
for r < j ≤ m.

Example 2.8 Consider the linear system

Ax = b where A =





1 2 3
4 5 6
7 8 9



 and b =





b1
b2
b3



 .

The augmented matrix of the system can be row reduced as follows:




1 2 3 b1
4 5 6 b2
7 8 9 b3



→





1 2 3 b1
0 −3 −6 b2 − 4b1
0 −6 −12 b3 − 7b1



→






1 2 3 b1

0 1 2
4

3
b1 −

1

3
b2

0 0 0 b3 − 2b2 + b1






. The matrix R =





1 2 3
0 1 2
0 0 0



 is in row-echelon

with has 2 nonzero rows. Therefore, the system Ax = b is consistent if and only if
b3 − 2b2 + b1 = 0.
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Example 15.17 Solve the linear system







2x + y − z = 1
4x − y − 3z = 0
6x − 4z = 3 .

Solution. Step 1. Applying elimination steps to the system to eliminate the
unknowns x1, x2, successively, we obtain:





2 1 −1 1
4 −1 −3 0
6 0 −4 3





R2−2R1−−−−−→
R3−3R1





2 1 −1 1
0 −3 −1 −2
0 −3 −1 0





R3−R2−−−−−→





2 1 −1 1
0 −3 −1 −2
0 0 0 2



 .

The last augmented matrix is in echelon form (or row-echelon form) because the
number of leading zeros (counting from left to right) in a row is increasing from one
row to the next row. In this example, the numbers of leading zeros are 0,1,3 and
hence the matrix is in echelon form7.
From the last augmented matrix, we see that the last equation is 0 = 2 which is
absurd. Therefore the given system has no solution and Step 2 is not applicable.

7Some authors require the first nonzero entry in each row of an echelon matrix be unity. We do
not impose this requirement in this book.
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Example 15.18 Solve the linear system







x + 2y + z − w = 1
x + 2y + 5z + w = 2
x + 2y − 3z − 3w = 0 .

Solution
Step 1.





1 2 1 −1 1
1 2 5 1 2
1 2 −3 −3 0





R2−R1−−−−−→
R3−R1





1 2 1 −1 1
0 0 4 2 1
0 0 −4 −2 −1





R3+R2−−−−−→





1 2 1 −1 1
0 0 4 2 1
0 0 0 0 0



 .

The last system is in echelon form and is consistent (which means that there exists at
least one solution).
Step 2. Transposing the unknowns y and w to the right-hand side, we obtain

{

x + z = −2y +w + 1
4z = −2w + 1 .

By assuming y = λ and w = µ (both are parameters which are considered fixed at
the moment), the above can be regarded as a triangular system with two unknowns x
and z.
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By back-substitution, we obtain

{

z = − 1
2µ + 1

4

x = −2λ + 3
2µ + 3

4 .
. Therefore the solution of

the given system is















x = −2λ + 3
2µ + 3

4
y = λ
z = − 1

2µ + 1
4

w = µ

which can be put into vector form as









x
y
z
w









= λ









−2
1
0
0









+ µ









3/2
0
−1/2
1









+









3/4
0
1/4
0









.

Since λ and µ can be arbitrarily assigned, we see that the given system has infinitely
many solutions.
See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page479-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page479-CoCalcJupyter.pdf
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Remark 15.1 rule0pt0pt

■ The above solution in vector form represents all solutions of the linear system.
■ Right at the beginning of Step 2, we can transpose the unknowns x, z or x,w or

y, z to the right-hand side to get other triangular systems. Solving these we get
solutions in terms of parameters representing unknowns other than y and w.
Solutions in vector form obtained these ways look quite differently from one
another but they all represent the same solution set of the linear system.

Find the linear map matrix in 2-D
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary08.pdf

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary08_CoCalcJupyter.pdf

To find the closest points between 2 lines in 3D
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary02.pdf

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary02_CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary08.pdf
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary08_CoCalcJupyter.pdf
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary02.pdf
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary02_CoCalcJupyter.pdf


Systems of Homogeneous Equations

Page – 482

Ax = 0,

The solution set either has only the trivial solution, or infinitely many solutions.

Theorem If A is an m× n matrix where m < n, then the homogeneous system
Ax = 0 always has non-trivial solutions. In other words, if the number of equations
is less than the number of unknowns, then the system has non-trivial solutions.

Example Solve the homogeneous system





1 2 3
4 5 6
7 8 9









x1

x2

x3



 =





0
0
0



 .

Solution The augmented matrix of the linear system may be simplified by
elementary row operations as follows:





1 2 3 0
4 5 6 0
7 8 9 0



→





1 2 3 0
0 −3 -6 0
0 −6 −12 0



→





1 2 3 0
0 1 2 0
0 −6 −12 0





→





1 0 −1 0
0 1 2 0
0 0 0 0



 .
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The last matrix





1 0 −1 0
0 1 2 0
0 0 0 0



 is the augmented matrix of the linear system

{

x1 −x3 = 0
x2 + 2x3 = 0

.

By putting the free variable x3 = t, we conclude that solutions of the linear system
are given by

x =





t
−2t

t



 =





0
0
0



+ t





1
−2
1



 where t is any scalar.
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Definition A square matrix A is said to be nonsingular (or invertible) if there is a
square matrix B such that AB = I and BA = I. The matrix B is called an inverse
of A, denoted by the symbol A−1.

Example

Since

[

3 2
7 5

] [

5 −2
−7 3

]

= I and

[

5 −2
−7 3

] [

3 2
7 5

]

= I, we conclude that the matrix

[

3 2
7 5

]

is nonsingular, with

[

5 −2
−7 3

]

as its inverse.

Example Let A =





0 a b
0 c d
0 e f



.

If B is any 3× 3 matrix, then the first column of the product BA consists entirely of
zeros. Therefore BA 6= I and thus A has no inverse.

Property If A, B and C are n× n matrices such that AC = I and BA = I, then
B = C.
Proof: B = BI = B(AC) = (BA)C = IC = C.
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Property 4.2 If A and B are nonsingular matrices of the same order, then AB is
nonsingular and (AB)

−1
= B

−1
A

−1.

Proof: By the associativity of matrix multiplication, we have

AB(B−1
A

−1) = A(B(B
−1

A
−1)) = A((BB

−1)A−1)

= A(IA−1) = AA
−1 = I and

(B−1
A

−1)AB = B
−1(A−1(AB)) = B

−1(A−1
A)B

= B
−1(IB) = B

−1
B = I.

Therefore AB is nonsingular and (AB)−1 = B
−1

A
−1.

Property 4.3 If A is nonsingular and k is a nonzero scalar, then

(i) A
−1 is nonsingular and (A−1)−1 = A;

(ii) kA is nonsingular and (kA)−1 = ( 1k )A
−1.
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Theorem (4) Let A be an n× n nonsingular matrix. Then

(i) the homogeneous system Ax = 0 has only the trivial solution;
(ii) the system Ax = b has a unique solution for any b in Rn.

Proof

(i) if v in Rn is a solution of Ax = 0, then Av = 0 and therefore
v = Iv = (A−1

A)v = A
−1(Av) = A

−1
0 = 0.

(ii) Since A(A−1
b) = (AA

−1)b = Ib = b, A−1
b is a solution of the linear system

Ax = b. On the other hand, if v is a solution of Ax = b, then Av = b.

Hence v = Iv = (A−1
A)v = A

−1(Av) = A
−1

b.

The simplest nonsingular matrices are the so-called elementary matrices.
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Definition: An n× n matrix is called an elementary matrix if it can be obtained
from the n× n identity matrix I by performing a single elementary row operation.

Example 4.3

E =





1 0 0
0 3 0
0 0 1



 , F =





1 0 0
0 1 0
−2 0 1



 and G =





0 1 0
1 0 0
0 0 1



 are elementary.

(1) If E is the result from performing a certain elementary row operation on Im,
then the product EA is the matrix that results when this same elementary row
operation is performed on A.

(2) If an elementary row operation is applied to an identity matrix I to produce an
elementary matrix E, then there exists another elementary row operation which,
when applied to E, produces I.

(3) Every elementary matrix is nonsingular, and the inverse of an elementary matrix
is also an elementary matrix.
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Example: Consider E =





1 0 0
0 3 0
0 0 1



 , F =





1 0 0
0 1 0
−2 0 1



 and G =





0 1 0
1 0 0
0 0 1



.

(a) the inverse of E is





1 0 0
0 1

3 0
0 0 1



, which is the elementary matrix obtained from I

by multiplying its second row by 1
3 ;

(b) the inverse of F is





1 0 0
0 1 0
2 0 1



, which is the elementary matrix obtained from I by

adding 2 times the first row to the third row;

(c) the inverse of G is given by





0 1 0
1 0 0
0 0 1



, which is the elementary matrix obtained

from I by interchanging the first and second row.
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Theorem (5) The following statements are equivalent:

(i) A is nonsingular;
(ii) the homogeneous system Ax = 0 has only the trivial solution;
(iii) A can be reduced to I by a sequence of elementary row operations.

Proof: “(i) ⇒ (ii)”: Follows from Theorem (4).

“(ii) ⇒ (iii)”: Suppose R is the reduced row-echelon form of A. If R 6= I, then the
number of non-zero rows of R is less than n, thus, Ax = 0 has nontrivial solutions.
Therefore A can be reduced to I by elementary row operations.

“(iii) ⇒ (i)”: Suppose that there are elementary row operations ρ1, ρ2, . . . , ρk such
that

A
ρ1→ A1

ρ2→ A2
ρ3→ · · · ρk−1→ Ak−1

ρk→ Ak = I.
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If Ej is the elementary matrix obtained by applying ρj to I, i.e., I
ρj→ Ej , then by

“Fact (1)”, one has

A
ρ1→ E1A

ρ2→ E2E1A
ρ3→ · · · ρk→ Ek · · ·E2E1A = I.

We conclude that (Ek . . .E1)A = I.
Since E1,E2, . . . ,Ek are elementary matrices, they are also nonsingular. Therefore,
their product
Ek . . .E2E1 is nonsingular. Hence, A = (Ek . . .E1)

−1 is nonsingular, and
A

−1 = Ek . . .E2E1.

Remark

We shall describe a practical method to find A
−1. In fact, it is evident from the

proof of “(iii)⇒(i)” in Theorem (5) that if we find a sequence of elementary row
operations that reduce A to I, and then perform this same sequence of elementary
operations on I, we will be able to obtain A

−1. Symbolically, we have

[A |I] ρ1→ [A1|E1I]
ρ2→ [A2 |E2E1I]

ρ3→ . . . . . .
ρk→ [I |Ek · · ·E2E1I] = [I |A−1].
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Example 4.6 Find





1 −2 2
2 −3 6
1 1 7





−1

.

Solution




1 −2 2 1 0 0
2 −3 6 0 1 0
1 1 7 0 0 1



→





1 −2 2 1 0 0
0 1 2 −2 1 0
0 3 5 −1 0 1





→





1 −2 2 1 0 0
0 1 2 −2 1 0
0 0 1 −5 3 −1



→





1 −2 0 11 −6 2
0 1 0 8 −5 2
0 0 1 −5 3 −1





→





1 0 0 27 −16 6
0 1 0 8 −5 2
0 0 1 −5 3 −1



 .

See CoCalc https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page491-CoCalcJupyter.pdf

Another Example
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/to_get_to_reduced_row_echelon_form_3.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page491-CoCalcJupyter.pdf
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/to_get_to_reduced_row_echelon_form_3.pdf
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Another Application: Hill Cipher
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary07.pdf

See CoCalc https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary07_CoCalcJupyter.pdf

Theorem (6) Let A and B be n× n matrices. Then BA = I if and only if
AB = I.

Proof: Suppose that BA = I. Consider the homogeneous system Ax = 0. If v is
a solution of this system, then Av = 0 and

v = Iv = (BA)v = B(Av) = B0 = 0.

Therefore, the homogeneous system Ax = 0 has only the trivial solution, and
Theorem (5) implies that A is nonsingular, and B = A

−1. Thus AB = AA
−1 = I.

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary07.pdf
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary07_CoCalcJupyter.pdf
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Theorem (7)
For any n× n matrix A, the following statements are equivalent.

(i) A is nonsingular.
(ii) The system of homogeneous equations

Ax = 0 has only the trivial solution.
(iii) A can be reduced to I by a sequence of elementary row operations.
(iv) The non-homogeneous system Ax = b is consistent for every vector b in Rn.

Proof: Equivalence of (i), (ii) and (iii) follows from Theorem (5).

“(i) ⇒(iv)” is a consequence of Theorem (4). We only need to prove “(iv) ⇒(i)”.

For 1 ≤ k ≤ n, let ek be the k-th column of the identity matrix I, i.e., ek is the
column vector whose k-th entry is equal to 1 while all other entries are zero. By the
hypothesis of (iv), the system of linear equation Ax = e

k has a solution (say c
k) for

every k.

We now construct a n× n matrix B whose k-th column is equal to c
k. It is then

clear from the definition of matrix multiplication that AB = I. Theorem (6) then
implies that A is nonsingular.
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Eigenvalue problem
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Let A be an n× n matrix.

Consider the system
Av = λv

for a non-zero vector v. Then, v is called the eigenvector and λ is its corresponding
eigenvalue.

Example: Let A =

[

3 0
8 −1

]

. The vector v =

[

1
2

]

is an eigenvector of A because

Av =

[

3 0
8 −1

] [

1
2

]

=

[

3
6

]

= 3v.

However, w =

[

1
0

]

is not an eigenvector of A, as Aw =

[

3
6

]

, which cannot be a

scalar multiple of w.
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It is clear that if v is an eigenvector of A corresponding to the eigenvalue λ, then tv
is also an eigenvector of A corresponding to the same eigenvalue λ, provided that
t 6= 0.

Let us rewrite Av = λv as Av − λv = 0, or (A− λI)v = 0. Thus to find an
eigenvector of A is equivalent to finding nontrivial solutions of the homogeneous
system (A− λI)v = 0.

The homogeneous system, (A− λI)v = 0 has nontrivial solutions if and only if
det(A− λI) = 0.

Theorem Let A be an n× n matrix with real entries. A real number λ is an
eigenvalue of A if and only if det(A− λI) = 0.

Once we obtain an eigenvalue of A, one can use Gaussian elimination to find the
corresponding eigenvector v since (A− λI)v = 0. As the homogeneous system has
infinitely many non-trivial solutions, we only need to find eigenvectors that are
linearly independent. All other eigenvectors may be expressed as linear combinations
of these linearly independent eigenvectors.
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Let f(λ) = det(A− λI) = det











a11 − λ a12 · · · a1n
a21 a22 − λ · · · a2n
...

... · · ·
...

an1 an2 · · · ann − λ











.

If follows by induction on n that f(λ) is a polynomial of degree n with leading
coefficient (−1)n. f(λ) is called the characteristic polynomial of A. Therefore,
eigenvalues of the matrix A are simply the real roots of the equation f(λ) = 0. A

has at most n eigenvalues.

Example

Find the eigenvalues and eigenvectors of A =

[

5 4
1 2

]

.

We have characteristic polynomial

f(λ) = det

([

5− λ 4
1 2− λ

])

= λ2 − 7λ+ 6 = 0.

Therefore, the eigenvalues of A are λ1 = 6, λ2 = 1.
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Case (i) : For λ1 = 6, the system of equations for (A− λ1I)v = 0 is

−v1 + 4v2 = 0
v1 − 4v2 = 0

}

⇒ v1 = 4v2.

We therefore obtain v =

[

4
1

]

as an eigenvector corresponding to λ2 = 6.

Case (ii) : For λ2 = 1, the system of equations for (A− λ2I)v = 0 is

4v1 + 4v2 = 0
v1 + v2 = 0

}

⇒ v1 = −v2.

We thus obtain v =

[

1
−1

]

as an eigenvector corresponding to λ2 = 1.
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Example 7.3

If A =





0 1 0
0 0 1
6 −11 6



, then the characteristic equation is given by

f(λ) = det(A− λI) =

∣

∣

∣

∣

∣

∣

−λ 1 0
0 −λ 1
6 −11 6− λ

∣

∣

∣

∣

∣

∣

= −(λ− 1)(λ− 2)(λ− 3) = 0.

Therefore, λ1 = 1, λ2 = 2, λ3 = 3.

For λ1 = 1, using Gaussian elimination on

(A− λ1I)v = 0, i.e.





−1 1 0
0 −1 1
6 −11 5









v1
v2
v3



 = 0

we obtain v = [1 1 1]T as an eigenvector of A
corresponding to the eigenvalue λ1 = 1.
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For λ2 = 2, using Gaussian elimination on

(A− λ1I)v = 0, i.e.,





−2 1 0
0 −2 1
6 −11 4









v1
v2
v3



 = 0

we obtain v = [1 2 4]T .

For λ3 = 3, using Gaussian elimination on

(A− λ3I)v = 0, i.e.,





−3 1 0
0 −3 1
6 −11 3









v1
v2
v3



 = 0

we obtain v = [1 3 9]T .
See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page499-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page499-CoCalcJupyter.pdf
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Example 7.4

Let A =





3 −2 0
−2 3 0
0 0 5



. It then follows that

f(λ) =

∣

∣

∣

∣

∣

∣

3− λ −2 0
−2 3− λ 0
0 0 5− λ

∣

∣

∣

∣

∣

∣

= (5− λ)2(1− λ).

Therefore the eigenvalues are λ1 = 1, λ2 = λ3 = 5.

For λ1 = 1, solving (A− λ1I)v = 0,

i.e.,





2 −2 0
−2 2 0
0 0 4









v1
v2
v3



 = 0

we obtain v = [1 1 0]T .
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For λ2 = 5, solving (A− λ2I)v = 0,

i.e.,





−2 −2 0
−2 −2 0
0 0 0









v1
v2
v3



 = 0 we obtain

v1 = t, v2 = −t and v3 = s, where t and s are
arbitrary scalars. By taking t = 1, s = 0 and t = 0, s = 1 respectively, we obtain two
linearly independent eigenvectors [1 − 1 0]T and [0 0 1]T .

Example 7.5

Let A =





1 1 −1
−1 3 −1
−1 2 0



. Then f(λ) =

∣

∣

∣

∣

∣

∣

1− λ 1 −1
−1 3− λ −1
−1 2 −λ

∣

∣

∣

∣

∣

∣

= (2− λ)(1− λ)2.

Therefore the eigenvalues are λ1 = 2, λ2 = λ3 = 1.

Solving the linear systems (A− λI)v = 0 for λ = 2 and λ = 1 (multiplicity 2), we
obtain respectively two linearly independent eigenvectors v1 = [0 1 1]T and
v
2 = [1 1 1]T .

See CoCalc
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page502-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/page502-CoCalcJupyter.pdf
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Geometric Progression in matrix form
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary11.pdf

See CoCalc https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary11-CoCalcJupyter.pdf

https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary11.pdf
https://www.polyu.edu.hk/ama/profile/hwlee/AMA1007/supplementary11-CoCalcJupyter.pdf
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