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1. Consider f(x) =
1

3
(x− 3)

√
x for x ≥ 0.

Suppose a student was using CoCalc to find
√

1 + (f ′(x))2 and obtaind the results:

Use these CoCalc outputs, or otherwise, find the arc-length of f(x) from x = 0 to x = 3.

Keep your answer in surd form only. [20 points]

2. Problem 35 of the first chapter of the ancient Chinese text The Nine Chapters of Math-

ematical Art ( 九章算術) was equating the area of a flat-based-crescent shape (or bow

shape) field ( 弧田) by the area of a trapezium (with the same base, same height, and the

top side the same length as the height). It was not very specific about the crescent shape

(bow shape), but many believed that it was referring to a circular segment. If the text

was indeed referring to a circular segment, then the answer provided therein would not be

correct (it implies that the text was incorrectly taking the value of π as 3). What if the

text was not referring to a circular segment? Can we consider some other shapes other

than the circular segment but matching the trapezium area exactly? Consider half of the

field as shown in the diagram.
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Suppose 0 < v < c. The four vertices of the trapezium are given by (0, 0), (v
2
, 0), (c, v)

and (0, v). Now, consider the graph of

y = f(x) = v
(x
c

)α
for x ∈ [0, c], , and α > 1.

Note that the graph y = f(x) starts from (0, 0) and ends at (c, v).

(a) Show briefly that the area of the trapezium is given by
2cv + v2

4
. [2 points]

(b) By integrating x = f−1(y) with respect to y, find the area of the region bounded by

y = v and the graph of f where x ∈ [0, c]. Express your answer in terms of v, c and

α only. [13 points]

(c) Suppose the two areas obtained in (a) and (b) are the same, find α in terms of v

and c. [5 points]

3. Consider the rational function y =
x+ 1

x2 + 1
. The function has three inflection points. A

student was trying to use CoCalc to get y′′(x), and obtained the output:

(a) From the output, or otherwise, find all inflection points of the given rational function,

list them one by one by their xy-coordinates.

Keep your answers in surd form. [6 points]
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(b) Given three points (x0, y0), (x1, y1), (x2, y2) in the Cartesian plane, they are collinear

(contained in one straight line) if the determinant∣∣∣∣∣∣∣
1 1 1

x0 x1 x2

y0 y1 y2

∣∣∣∣∣∣∣ is zero. By computing the value of this determinant, determine if the

three inflection points are collinear or not. [14 points]

4. Consider the rational function f(x) =
x+ 2

x2 − 2x− 3
. Suppose the power series of f(x) at

x = 0 is given by f(x) =
∞∑
n=0

anx
n. We can obtain an by the usual Taylor/Maclaurin Series

expansion, that is, by computing
f (n)(0)

n!
. However, we can also obtain an by an alternative

and simpler approach as shown in lecture. Consider the expression we are constructing
x+ 2

x2 − 2x− 3
=
∞∑
n=0

anx
n. By rearranging it, we have

2 + x =
(
x2 − 2x− 3

) ∞∑
n=0

anx
n =

∞∑
n=0

anx
n+2 − 2

∞∑
n=0

anx
n+1 − 3

∞∑
n=0

anx
n

=
∞∑
n=2

an−2x
n − 2

∞∑
n=1

an−1x
n − 3

∞∑
n=0

anx
n

=
∞∑
n=2

an−2x
n − 2

(
a0x+

∞∑
n=2

an−1x
n

)
− 3

(
a0 + a1x+

∞∑
n=2

anx
n

)

= −3a0 − (2a0 + 3a1)x+
∞∑
n=2

(an−2 − 2an−1 − 3an)xn.

(a) By comparing the undetermined coefficients of x0 and x1 of the right hand side to

the left hand side, show that a0 = −2
3

and a1 = 1
9
. [2 points]

(b) From the left hand of the equation, clearly there are no xn terms for n ≥ 2. For

n ≥ 2, obtain the linear equation of an in terms of an−1 and an−2. Moreover, use this

equation and the results obtained in (a) to find a2, a3, a4, a5. Express your answers

as rational numbers only. [8 points]

(c) Suppose L = lim
n→∞

an
an−1

exist and non-zero. Note that
1

L
= lim

n→∞

an−2
an−1

. From the

linear equation obtained in (b), divide it by an−1, and then take limit for n → ∞,

and form a quadratic equation of L. Then, find the two possible values of L (note

that one is positive, and one is negative). Then, by observing values of a0, a1, a2, a3,

a4 obtained above, determine if L is positive or negative, and conclude which is the

value of L. [5 points]

(d) Find the radius of convergence of the power series. [5 points]
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5. Recall that the sum of the geometric progression is given by

1 + x+ x2 + x3 + ...+ xn =
1− xn+1

1− x
= (1− x)−1(1− xn+1) for (1− x) 6= 0.

This can be easily verified by multiplying both sides with 1−x. Now, consider the matrix

version of the sum:

I + A + A2 + A3 + · · ·+ An = (I −A)−1(I −An+1).

where I −A is invertible.

(a) Explain why this matrix version of the sum holds. [2 points]

(b) Consider A =

[
1
4

2

0 1
2

]
. By evaluating det(I −A), show that I −A is invertible.

[2 points]

(c) Consider the CoCalc output:

Use the results of the output to evaluate the sum I + A + A2 + A3 + A4.

Keep your answers in rational numbers only. [6 points]

(d) Obtain the characteristic polynomial of A.

Then, use it to find all the eigenvalues of A. [5 points]

(e) If |λi| < 1 for every eigenvalue λi of a matrix B, then lim
n→∞

Bn = O.

Use this result, find the sum
∞∑
n=1

An = I + A + A2 + A3 + . . .. [5 points]

*** END ***
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