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1. Consider the graph of the equation ax2 + 2bxy + cy2 = 1 where c > 0 and ac − b2 > 0.

Find the area of the region enclosed by this graph by forming and computing the required

definite integral (integrating with respect to x), and indicate clearly the upper and lower

limits in the process (no marks will be given if you are using some other techniques). Use

the integral formula:

∫ √
r2 − u2du =

u

2

√
r2 − u2 +

r2

2
sin−1

(u
r

)
+ C. [15 points]
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2. Consider the equation ax2 + 2bxy + cy2 = 1 where a > 0 and ac − b2 > 0. Note that

the equation can be written as
[
x y

] [a b

b c

][
x

y

]
= 1. Consider an invertible linear map

between (x, y) and (u, v) given by

[
x

y

]
=

[
1 e

0 1

][
u

v

]
.

(a) Choose a value for e (in terms of a, b and c), so that the given equation on the (u, v)

plane becomes
[
u v

] [ 1
A2 0

0 1
B2

][
u

v

]
= 1, and find A and B (in terms of a, b and c).

[9 points]

(b) Briefly explain why the linear map between (x, y) and (u, v) is area preserving, that

is, a region mapped from the (x, y) plane to the (u, v) plane would have the same

area. [1 points]
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3. Consider the integral

∫
1

1 + x9
dx, where 1 + x9 6= 0.

(a) Evaluate the integral as a power series, and specify the radius of convergence.

[5 points]

(b) Use the first 4 terms of the result in (a) to approximate

∫ 1/2

0

1

1 + x9
dx, keep your

answer as a sum of the 4 rational numbers (marks will not be given for decimals).

[5 points]
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4. Consider the function f(x) =
x

x2 − 5x+ 6
=

A

x− 2
+

B

x− 3
for some constants A and B,

x 6= 2 and x 6= 3. Suppose f(x) is expressed as a power series
∞∑
n=0

an(x− c)n. Without

finding the power series itself, find the interval of convergence when

(a) c = 0. [10 points]

(b) c = 5. [5 points]
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5. This is the original version of the question, with the first paragraph about the

background of this question. The paragraph was removed in the final version

after moderation. The HA Employees Alliance (醫管局員工陣線), a relatively new

union formed last December, has successfully staged a large scale strike for which several

thousands of medical staff have participated in early February. The union demanded a

complete closure of Hong Kong’s border with the Chinese mainland due to the outbreak of

a highly contagious and deadly coronavirus disease spreading wildly in China at the time

(the disease was later controversially named COVID 19 by the WHO, and nonetheless, it

was being called the Chinese virus by the President of USA publicly afterwards). How-

ever, the HKSAR government refused to lay a complete travel ban on the inbounds from

that clear outbreak source, despite the very painful and hard-to-forget experience of the

deadly SARS in 2003 that was brought to Hong Kong recklessly from the same source (by

a Chinese mainlander Liu Jianlun 劉劍倫(廣州中山大學第二附屬醫院退休內科教授)).

This was what sparked the strike. The union vice-chairman Ivan Law Cheuk-yiu (羅卓

堯), a former External Vice-President of The Hong Kong Polytechnic University Student

Union (前理工大學學生會外務副會長) and a former Vice-Chairman of the Representa-

tive Council of The Hong Kong Federation of Students (前學聯代表會副主席) said, just

within the first week of the outbreak, new members joining the union has jumped to 22.5

thousands, showing the strong and clear view among medical staff.

Consider a simple infectious disease model. Let S(t) ≥ 0 be the number of susceptible at

time t (individuals whom possible to be infected but not (or not yet) infected with the

disease at t), I(k) ≥ 0 be the number of infective at time t (those who are infected and

be able to transmit the disease), R(t) ≥ 0 be the number of the recovered or deceased at

time t (and those recovered are assumed immuned and not transmitting anymore). The

dynamics of the model (i.e., the rate of change of S, I, and R with respect to time) is

given by:

dS

dt
= −βI(t)S(t) + µ1,

dI

dt
= βI(t)S(t)− γI(t) + µ2

dR

dt
= γI(t).

where β > 0, γ > 0 are constants, and µ1 is the rate of imported susceptible, and µ2 is the

rate of imported infective. Suppose β = 1
1000

, and γ = 51
50

, and at a particular time t > 0,

if S = 1000, I = 3, and R = 0.

This question is written by the Subject Lecturer Dr. Joseph Lee. It does not

represent the political position of The Department of Applied Mathematics.
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(a) Suppose travel bans are imposed, i.e., µ1 = 0 and µ2 = 0 . Explain each of S, I and

R if they are increasing, decreasing, or stationary at time t. [5 points]

(b) Suppose travel bans are not imposed on travellers from regions with the outbreak, say,

µ1 = 12
5

and µ2 = 6
5

. Explain each of S, I and R if they are increasing, decreasing,

or stationary at time t. [5 points]
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6. Let A and B be two n × n matrices. They are said to be similar if there exists a non-

singular matrix P such that B = P−1AP . Moreover, similar matrices have the following

three properties:

(i) Tr(A) = Tr(B), [i.e. sum of all the diagonal elements of A and sum of all the

diagonal elements of B are the same],

(ii) det(A) = det(B),

(iii) A and B have the same characteristic polynomials.

Given two similar matrices, A =

−4 −10 0

a a+ 2 0

3 6 1

 and B =

1 0 0

0 1 0

0 0 b

 where a and b are

some real constants. Use the three properties of similar matrices stated above to find a

and b, and all the eigenvalues of A. [15 points]
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7. Consider the linear system x1 + x2 − 2x3 + 3x4 = 0

2x1 + x2 − 6x3 + 4x4 = −1

3x1 + 2x2 + px3 + 7x4 = −1

x1 − x2 − 6x3 − x4 = t.

Find the conditions (on t and p) that the system is consistent, and inconsistent. If the

system is consistent, find all the possible solutions (including stating the dimension of the

solution space(s) and describe the solution space(s) in parametric form). [15 points]
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8. Evaluate

∫ 1

−1

d

dx

(
1

1 + 21/x

)
dx, note that

d

dx

(
1

1 + 21/x

)
is not continuous at x = 0.

[10 points]

*** END ***
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