THE HONG KONG POLYTECHNIC UNIVERSITY

Department of Applied Mathematics

Subject Code:	AMA1007 / AMA1120	Subject Title: Calculus and Linear Algebra
Session:	Semester 1, 2022/2023	Assessment: Final Exam
Date:	05 Dec 2022,	Time: 12:30-14:30
This set of question has 5 pages (including this cover page).		

Instructions: Attempt ALL questions in this paper.

DO NOT TURN OVER THE PAGE UNTIL YOU ARE TOLD TO DO SO.

- (a) Consider the function $v = f(u) = \ln(1+u)$ where -1 < u < 1. Obtain the first 1. five terms (up to degree 4) of the Maclaurin expansion of f(u) (i.e., Taylor Series expansion of f(u) at u = 0). [6 points]
 - (b) Obtain the inverse function $u = f^{-1}(v)$, and state its domain. [2 points]
 - (c) Obtain the first five terms (up to degree 4) of the Maclaurin expansion of $f^{-1}(v)$. [6 points]
 - (d) Consider the following expression of y in terms of x only:

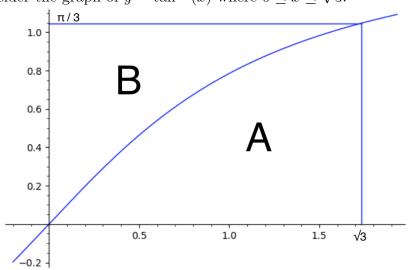
$$y = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$$

where |x| < 1. Use the results obtained in the previous parts of the question to show that the *inverse* of this expression (that is, the expression of x in terms of y only) is given by

$$x = y + \frac{y^2}{2!} + \frac{y^3}{3!} + \frac{y^4}{4!} + \dots = \sum_{n=1}^{\infty} \frac{y^n}{n!}$$

for $-\infty < y < \ln(2)$.

2. Consider the graph of $y = \tan^{-1}(x)$ where $0 \le x \le \sqrt{3}$:



(a) Find the area of region A by evaluating the integral $\int_{0}^{\sqrt{3}} \tan^{-1}(x) dx$. Hint: Let $u = \tan^{-1}(x)$ and let v = x, then, use integration by parts. [10 points] (b) Show that $\frac{d}{du} \ln(\sec(u)) = \tan(u)$, for $-\frac{\pi}{2} < u < \frac{\pi}{2}$. [5 points] (c) Using part (b), find the area of region B by evaluating the integral $\int_0^{\pi/3} \tan(y) \, dy$.

[5 points]

[6 points]

- 3. In this question, we are looking into a simplified version of Page Rank (web page ranking algorithm adopted by Google). Suppose there are only 4 web pages in the world-wide-web, and they are linked to each other by URL in the following way:
 - Page 1 has links to Page 2 and Page 4.
 - Page 2 has links to Page 1 and Page 3.
 - Page 3 has links to Page 1, Page 2, and Page 4.
 - Page 4 has links to Page 1 and Page 3.

Thus, a transition matrix can then be written down as $\mathbf{A} = \begin{bmatrix} 0 & 1/2 & 1/3 & 1/2 \\ 1/2 & 0 & 1/3 & 0 \\ 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 \end{bmatrix}$.

Note that all 4 column sums of \boldsymbol{A} are 1.

Initially, suppose visitors are evenly distributed among the 4 web pages, that is to say,

 $\boldsymbol{v}^{\mathbf{0}} = \begin{vmatrix} 1/4 \\ 1/4 \end{vmatrix}$, and suppose all the visitors simultaneously *click* on one of the link provided

on the visiting page, then, after the click, we have a new distribution of visitors over the 4

web pages $\boldsymbol{v}^{1} = \boldsymbol{A}\boldsymbol{v}^{0} = \begin{bmatrix} 1/3\\ 5/24\\ 1/4\\ 5/24 \end{bmatrix}$, and after two *clicks*, then, we have $\boldsymbol{v}^{2} = \boldsymbol{A}\boldsymbol{v}^{1} = \boldsymbol{A}^{2}\boldsymbol{v}^{0} = \begin{bmatrix} 7/24\\ 1/4\\ 5/24\\ 1/4 \end{bmatrix}$, after three *clicks* $\boldsymbol{v}^{3} = \boldsymbol{A}^{3}\boldsymbol{v}^{0} = \begin{bmatrix} 23/72\\ 31/144\\ 1/4\\ 31/144 \end{bmatrix}$, etc. With a sufficiently large amount

of *clicks*, the distribution will be settled at an equilibrium $\boldsymbol{v} = \lim_{n \to \infty} \boldsymbol{A}^n \boldsymbol{v}^0$. Moreover, at equilibrium, any *clicks* afterwards is not changing the distribution, that is to say, v = Av. Note that this equilibrium vector \boldsymbol{v} is the Page Rank of the four web pages, and it is also the eigenvector of \boldsymbol{A} associated with eigenvalue 1, and with non-negative entries, and with column sum 1.

(a) Consider the CoCalc output giving the factorized characteristic polynomial of A (that is, $det(\boldsymbol{A} - x\boldsymbol{I})$):

In [1]: A=matrix([[0,1/2,1/3,1/2],[1/2,0,1/3,0],[0,1/2,0,1/2],[1/2,0,1/3,0]])
In [2]: show(A.charpoly().factor())
Out[2]:
$$(x-1) \cdot x \cdot (x^2 + x + \frac{1}{6})$$

Using the CoCalc output, or otherwise, confirm that there is an eigenvalue 1 of A. [5 points]

(b) Consider the Cocalc work:

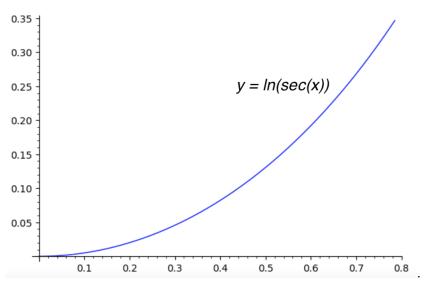
In [3]:	<pre>lamb=1 B=A-lamb*matrix.identity(4) c=matrix([0,0,0,0]).transpose() Bc=B.augment(c) show(Bc)</pre>
Out[3]:	$\left(\begin{array}{ccccc} -1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{2} & 0 \\ \frac{1}{2} & -1 & \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{2} & -1 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & \frac{1}{3} & -1 & 0 \end{array}\right)$
In [4]:	<pre>show(Bc.rref())</pre>
Out[4]:	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Note that the output in Cell [4] is showing the **reduced row echelon form** (.**rref**()) of eliminating the augmented matrix $[\mathbf{A} - \mathbf{I} \mid \mathbf{0}]$ by the Gauss-Jordan method. Use the result of the CoCalc output, or otherwise, find the Page Rank, that is, find the eigenvector \mathbf{v} associated with the eigenvalue 1 with only non-negative entries, and with column sum 1. [14 points]

- (c) Among the four web pages, which page has the highest ranking? [1 point]
- 4. (a) Suppose $u = \tan(x) + \sec(x)$. Find $\frac{du}{dx}$. [5 point]

(b) Show that
$$\int \sec(x)dx = \ln(\sec(x) + \tan(x)) + C$$
 for $0 \le x < \frac{\pi}{4}$.
Hint: Rewrite $\sec(x)$ as $\frac{\sec(x)(\sec(x) + \tan(x))}{(\sec(x) + \tan(x))} = \frac{\sec^2(x) + \sec(x)\tan(x)}{\sec(x) + \tan(x)}$.
[7 point]

(c) Consider the graph of $y = \ln(\sec(x))$ for $0 \le x \le \frac{\pi}{4}$.



Make use of the above results, or otherwise, show that, the arc length of the graph is given by $\ln(\sqrt{2} + 1)$. Hint: $\tan^2(x) + 1 = \sec^2(x)$. [8 point]

- 5. Consider $y = \tan^{-1}(x)$ in the neighbourhood of x = 0. Observe that, y is an odd function of x. Moreover, note that $\frac{dy}{dx} = \frac{1}{1+x^2}$. Thus, we have $(1+x^2)\frac{dy}{dx} = 1$.
 - (a) Show that, $(1 + x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$, where $y_k = \frac{d^k y}{dx^k}$. Hint 1: Differentiate n + 1 times the expression $(1 + x^2)\frac{dy}{dx} = 1$ using Leibniz Rule. Hint 2: The third and all higher derivatives of $(1 + x^2)$ are zeros. [5 point]

(b) When x = 0, the result in Part (a) becomes $y_{n+2} + n(n+1)y_n = 0$. Moreover, at x = 0, $y_0 = \tan^{-1}(0) = 0$, and $y_1 = \frac{1}{1+0} = 1$. Show that, at x = 0, $y_{2m} = 0$, and $y_{2m+1} = (-1)^m (2m)!$ for all positive integer m. [5 point]

- (c) Use the above result only to state the Maclaurin expansion of $\tan^{-1}(x)$. [3 point]
- (d) Differentiate the Maclaurin expansion of $\tan^{-1}(x)$ obtained in Part (c) term-by-term to obtain the power series of $\frac{1}{1+x^2}$ in the neighbourhood of x = 0. [4 point]
- (e) Consider the geometric series $\frac{1}{1+u} = 1 u + u^2 u^3 + u^4 \dots$ where |u| < 1. Use this to confirm the power series of $\frac{1}{1+x^2}$ obtained above in the neighbourhood of x = 0. [3 point]