THE HONG KONG POLYTECHNIC UNIVERSITY

Department of Applied Mathematics

Subject Code:	AMA1007 / AMA1120	Subject Title: Calculus and Linear Algebra
Session:	Semester 1, 2022/2023	Assessment: Final Exam
Date:	05 Dec 2022,	Time: 12:30-14:30
This set of question has 5 pages (including this cover page).		

Instructions: Attempt ALL questions in this paper.

1. (a) Consider the function $v=f(u)=\ln (1+u)$ where $-1<u<1$. Obtain the first five terms (up to degree 4) of the Maclaurin expansion of $f(u)$ (i.e., Taylor Series expansion of $f(u)$ at $u=0)$.
(b) Obtain the inverse function $u=f^{-1}(v)$, and state its domain.
(c) Obtain the first five terms (up to degree 4) of the Maclaurin expansion of $f^{-1}(v)$.
[6 points]
(d) Consider the following expression of y in terms of x only:

$$
y=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}
$$

where $|x|<1$. Use the results obtained in the previous parts of the question to show that the inverse of this expression (that is, the expression of x in terms of y only) is given by

$$
x=y+\frac{y^{2}}{2!}+\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+\ldots=\sum_{n=1}^{\infty} \frac{y^{n}}{n!}
$$

for $-\infty<y<\ln (2)$.
[6 points]
2. Consider the graph of $y=\tan ^{-1}(x)$ where $0 \leq x \leq \sqrt{3}$:

(a) Find the area of region A by evaluating the integral $\int_{0}^{\sqrt{3}} \tan ^{-1}(x) d x$. Hint: Let $u=\tan ^{-1}(x)$ and let $v=x$, then, use integration by parts.
[10 points]
(b) Show that $\frac{d}{d u} \ln (\sec (u))=\tan (u)$, for $-\frac{\pi}{2}<u<\frac{\pi}{2}$.
[5 points]
(c) Using part (b), find the area of region B by evaluating the integral $\int_{0}^{\pi / 3} \tan (y) d y$.
[5 points]
3. In this question, we are looking into a simplified version of Page Rank (web page ranking algorithm adopted by Google). Suppose there are only 4 web pages in the world-wide-web, and they are linked to each other by URL in the following way:

- Page 1 has links to Page 2 and Page 4.
- Page 2 has links to Page 1 and Page 3.
- Page 3 has links to Page 1, Page 2, and Page 4.
- Page 4 has links to Page 1 and Page 3.

Thus, a transition matrix can then be written down as $\boldsymbol{A}=\left[\begin{array}{cccc}0 & 1 / 2 & 1 / 3 & 1 / 2 \\ 1 / 2 & 0 & 1 / 3 & 0 \\ 0 & 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 0 & 1 / 3 & 0\end{array}\right]$.
Note that all 4 column sums of \boldsymbol{A} are 1 .
Initially, suppose visitors are evenly distributed among the 4 web pages, that is to say, $\boldsymbol{v}^{\mathbf{0}}=\left[\begin{array}{l}1 / 4 \\ 1 / 4 \\ 1 / 4 \\ 1 / 4\end{array}\right]$, and suppose all the visitors simultaneously click on one of the link provided on the visiting page, then, after the click, we have a new distribution of visitors over the 4 web pages $\boldsymbol{v}^{\mathbf{1}}=\boldsymbol{A} \boldsymbol{v}^{0}=\left[\begin{array}{c}1 / 3 \\ 5 / 24 \\ 1 / 4 \\ 5 / 24\end{array}\right]$, and after two clicks, then, we have $\boldsymbol{v}^{\mathbf{2}}=\boldsymbol{A} \boldsymbol{v}^{\mathbf{1}}=\boldsymbol{A}^{2} \boldsymbol{v}^{\mathbf{0}}=$ $\left[\begin{array}{c}7 / 24 \\ 1 / 4 \\ 5 / 24 \\ 1 / 4\end{array}\right]$, after three clicks $\boldsymbol{v}^{\mathbf{3}}=\boldsymbol{A}^{3} \boldsymbol{v}^{\mathbf{0}}=\left[\begin{array}{c}23 / 72 \\ 31 / 144 \\ 1 / 4 \\ 31 / 144\end{array}\right]$, etc. With a sufficiently large amount of clicks, the distribution will be settled at an equilibrium $\boldsymbol{v}=\lim _{n \rightarrow \infty} \boldsymbol{A}^{n} \boldsymbol{v}^{\mathbf{0}}$. Moreover, at equilibrium, any clicks afterwards is not changing the distribution, that is to say, $\boldsymbol{v}=\boldsymbol{A} \boldsymbol{v}$. Note that this equilibrium vector \boldsymbol{v} is the Page Rank of the four web pages, and it is also the eigenvector of \boldsymbol{A} associated with eigenvalue 1, and with non-negative entries, and with column sum 1.
(a) Consider the CoCalc output giving the factorized characteristic polynomial of \boldsymbol{A} (that is, $\operatorname{det}(\boldsymbol{A}-x \boldsymbol{I}))$:

```
In [1]: A=matrix([[0,1/2,1/3,1/2],[1/2,0,1/3,0],[0,1/2,0,1/2],[1/2,0,1/3,0]])
In [2]: show(A.charpoly().factor())
Out[2]:}(x-1)\cdotx\cdot(\mp@subsup{x}{}{2}+x+\frac{1}{6}
```

Using the CoCalc output, or otherwise, confirm that there is an eigenvalue 1 of \boldsymbol{A}.
[5 points]
(b) Consider the Cocalc work:

In [3]: lamb=1
B=A-lamb*matrix.identity (4)
C=matrix([0,0,0,0]).transpose()
$\mathrm{BC}=\mathrm{B}$. augment (C)
show (Bc)
Out [3]: $\left(\begin{array}{rrrrr}-1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{2} & 0 \\ \frac{1}{2} & -1 & \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{2} & -1 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & \frac{1}{3} & -1 & 0\end{array}\right)$

In [4]: show(Bc.rref())
Out[4]: $\left(\begin{array}{rrrrr}1 & 0 & 0 & -\frac{4}{3} & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$
Note that the output in Cell [4] is showing the reduced row echelon form (.rref ()) of eliminating the augmented matrix $[\boldsymbol{A}-\boldsymbol{I} \mid \mathbf{0}]$ by the Gauss-Jordan method. Use the result of the CoCalc output, or otherwise, find the Page Rank, that is, find the eigenvector \boldsymbol{v} associated with the eigenvalue 1 with only non-negative entries, and with column sum 1.
(c) Among the four web pages, which page has the highest ranking?
4. (a) Suppose $u=\tan (x)+\sec (x)$. Find $\frac{d u}{d x}$.
[5 point]
(b) Show that $\int \sec (x) d x=\ln (\sec (x)+\tan (x))+C$ for $0 \leq x<\frac{\pi}{4}$.

Hint: Rewrite $\sec (x)$ as $\frac{\sec (x)(\sec (x)+\tan (x))}{(\sec (x)+\tan (x))}=\frac{\sec ^{2}(x)+\sec (x) \tan (x)}{\sec (x)+\tan (x)}$.
(c) Consider the graph of $y=\ln (\sec (x))$ for $0 \leq x \leq \frac{\pi}{4}$.

Make use of the above results, or otherwise, show that, the arc length of the graph is given by $\ln (\sqrt{2}+1)$.
Hint: $\tan ^{2}(x)+1=\sec ^{2}(x)$.
5. Consider $y=\tan ^{-1}(x)$ in the neighbourhood of $x=0$. Observe that, y is an odd function of x. Moreover, note that $\frac{d y}{d x}=\frac{1}{1+x^{2}}$. Thus, we have $\left(1+x^{2}\right) \frac{d y}{d x}=1$.
(a) Show that, $\left(1+x^{2}\right) y_{n+2}+2(n+1) x y_{n+1}+n(n+1) y_{n}=0$, where $y_{k}=\frac{d^{k} y}{d x^{k}}$.

Hint 1: Differentiate $n+1$ times the expression $\left(1+x^{2}\right) \frac{d y}{d x}=1$ using Leibniz Rule.
Hint 2: The third and all higher derivatives of $\left(1+x^{2}\right)$ are zeros.
[5 point]
(b) When $x=0$, the result in Part (a) becomes $y_{n+2}+n(n+1) y_{n}=0$.

Moreover, at $x=0, y_{0}=\tan ^{-1}(0)=0$, and $y_{1}=\frac{1}{1+0}=1$.
Show that, at $x=0, y_{2 m}=0$, and $y_{2 m+1}=(-1)^{m}(2 m)$! for all positive integer m.
[5 point]
(c) Use the above result only to state the Maclaurin expansion of $\tan ^{-1}(x)$. [3 point]
(d) Differentiate the Maclaurin expansion of $\tan ^{-1}(x)$ obtained in Part (c) term-by-term to obtain the power series of $\frac{1}{1+x^{2}}$ in the neighbourhood of $x=0$.
[4 point]
(e) Consider the geometric series $\frac{1}{1+u}=1-u+u^{2}-u^{3}+u^{4} \ldots$ where $|u|<1$.

Use this to confirm the power series of $\frac{1}{1+x^{2}}$ obtained above in the neighbourhood of $x=0$.

