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1. Consider the two non-intersecting parabolas:

y = f(x) = x2 − 4x+ 4

y = g(x) = −x2 − 12x− 37

Let u be the x-coordinate of a point on f , and v be the x-coordinate of a point on g.

(a) For any given x-coordinate u on parabola f , there exist a unique v on parabola g, so

that the tangent line on f at u, and the tangent line on g at v, are parallel. (Similarly,

we have the inverse, that for any given v, there is a unique u, so that the two tangent

lines are parallel). Express v as a function of u under this condition. [4 points]

(b) Let D be the square of the distance between two points, one on each of the two

parabolas, (u, f(u)) and (v, g(v)), and the tangent line at u on f and the tangent line

at v on g are parallel. Use the result obtained in (a) to express D as a function of u

only, i.e. D(u). [5 points]

(c) Consider the following CoCalc work:

Use this result, or otherwise, find the minimum of D(u). Include a second derivative

test to confirm it is indeed a minimum. [5 points]

(d) State the minimum location u∗ obtained in (c), and the associated v∗ according to the

parallel condition obtained in (a). Hence, list the points (u∗, f(u∗)) and (v∗, g(v∗)).

[4 points]

(e) Briefly explain why the two points listed in (d) are the closest points between the

two parabolas. Sketch a diagram if necessary. [2 points]
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2. Recently, a pop song in Mandarin with the title Fragile has gone phenomenally viral over

the internet world-wide. It is a duet, performed by a Malaysian hip-hop artist Namewee

and an Australian singer Kimberley Chen. The music video of the song was premiered on

15 Oct 2021 on Youtube, and it has over 12 million views just after the first week, and

over 20 million views after the second. Inspired by the song, this question aims to find the

volume of a heart-shaped solid (or apple-shaped solid) made by fragile glass.

Consider the upper half of the well-known curve Cardioid given in polar coordinates

r(θ) = 1− cos(θ) where 0 ≤ θ ≤ π.

The Cardioid can also be expressed in Cartesian coordinates in parametric form

x(θ) = r(θ) cos(θ) = (1− cos(θ)) cos(θ),

y(θ) = r(θ) sin(θ) = (1− cos(θ)) sin(θ).

(a) Explain why b can be found by solving
d

dθ
x(θ) = 0.

Show that x = b = 1
4
when θ = π

3
(or when cos(θ) = 1

2
). [3 points]

(b) Define f(θ) = (y(θ))2 · d

dθ
x(θ). Show that

f(θ) = sin2(θ)(1− cos(θ))2 · (− sin(θ) + 2 cos(θ) sin(θ))

[3 points]
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(c) Consider a heart-shaped solid of fragile glass generated by rotating the Cardioid

about the x-axis. Explain why the volume of the fragile glass solid is given by

V =

∫ x=0

x=−2

π y2 dx +

∫ x=b

x=0

π y2upper dx−
∫ x=b

x=0

π y2lower dx

=

∫ θ=π/2

θ=π

πf(θ) dθ +

∫ θ=π/3

θ=π/2

πf(θ) dθ −
∫ θ=π/3

0

πf(θ) dθ

=

∫ θ=π/2

θ=π

πf(θ) dθ +

∫ θ=π/3

θ=π/2

πf(θ) dθ +

∫ θ=0

π/3

πf(θ) dθ

=

∫ θ=0

θ=π

πf(θ) dθ.

[7 points]

(d) Note that the expression of f(θ) given in (b) can be reduced for the sake of integra-

tion. Consider the CoCalc reduction:

Using this, or otherwise, show that the volume obtained in (c) is given by V =
8

3
π.

Keep your workings and answers in terms of π and simplified rational numbers only.

Hint:

∫ 0

π

sin(kx)dx = 0 when k = 2, 4, 6, 8... [7 points]

3. Consider the rational function f(x) =
x− 100

x2 − 15x− 250
.

In your answers to this question below, keep those values in exact and simplified rational

number format only.

(a) Express f(x) in partial fractions, i.e.,
a

x− α
+

b

x− β
. [6 points]

(b) Apart from using Taylor/Maclaurin series expansion, power series of g(x) =
d

x− γ
at

x = 0 can be obtained by letting
d

x− γ
=

∞∑
n=0

cn x
n first. Then, multiply both sides

by x− γ to get

d = (x− γ)(c0 + c1x+ c2x
2 + c3x

3 . . . ) = −γc0 +
∞∑
n=1

(cn−1 − γcn)x
n.

By comparing coefficients, we can get c0 = − d
γ
, and cn = cn−1

γ
for n = 1, 2, .... The
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radius of convergence is given by lim
n→∞

cn
cn+1

= |γ|.

Find the coefficients of the first three terms (i.e., x0, x1, and x2) of the power series of

each of the two partial fractions obtained in (a) at x = 0, and state the corresponding

radius of convergence of each one. [8 points]

(c) Use the above, or otherwise, find the coefficients of the first three terms of the power

series of f(x) at x = 0, and state the radius of convergence. [6 points]

4. Consider the following system of linear equations:

x+ y +
1

2
z = 1997

166y + 247z = 1984

x+
1

2
y + 7z = 2020

Use Gaussian-Jordan method only to solve the system, and state x, y, and z. Keep your

workings and answers in simplified rational numbers format.

Hint: the answer x, y, and z are positive integers. [20 points]

5. Consider the function f(x) = x tan−1(x).

(a) Show that f ′(x) =
x

x2 + 1
+ tan−1(x), and f ′′(x) =

2

(x2 + 1)2
.

Hint:
d

dx
tan−1(x) =

1

x2 + 1
. [3 points]

(b) Show that f ′(x) ≤ 2 tan−1(x) for x > 0.

That means, show that
x

x2 + 1
< tan−1(x) < x for x > 0.

Hint: Consider using the Mean Value Theorem for tan−1(x) on (0, x),

and note that tan−1(0) = 0. [3 points]

(c) Note that f ′(x) = 0 at x = 0. Explain why x = 0 is the only solution for f ′(x) = 0.

Hint: Consider that fact that f ′′(x) is strictly positive. [2 points]

(d) Explain why there is only one extremum, at x = 0, and it is a global minimum point.

[2 points]

(e) Evaluate the indefinite integral

∫
f(x) dx.

Hint: Use Integration by Parts. [6 points]

(f) Use (e), or otherwise, evaluate

∫ 1

0

f(x) dx. Keep your answer in terms of π and

simplified rational numbers.

Hint: Note that tan−1(1) =
π

4
. [4 points]

*** END ***
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