1. (a) Observe that

$$
\theta=\angle P O Q=\angle P O R-\angle Q O S
$$

Consider the right angle triangle $P O R$:

$$
\tan (\angle P O R)=\frac{x}{a} \quad \Longrightarrow \quad \angle P O R=\tan ^{-1}\left(\frac{x}{a}\right)
$$

Consider the right angle triangle $Q O S$:

$$
\tan (\angle Q O S)=\frac{x}{a+b} \quad \Longrightarrow \quad \angle Q O S=\tan ^{-1}\left(\frac{x}{a+b}\right)
$$

Therefore,

$$
\begin{aligned}
\theta=\angle P O Q & =\angle P O R-\angle Q O S=\tan ^{-1}\left(\frac{x}{a}\right)-\tan ^{-1}\left(\frac{x}{a+b}\right) \\
& =\tan ^{-1}\left(\frac{x}{10}\right)-\tan ^{-1}\left(\frac{x}{40}\right) .
\end{aligned}
$$

(b) Finding the maximum of $\theta(x)$ where

$$
\theta(x)=\tan ^{-1}\left(\frac{x}{10}\right)-\tan ^{-1}\left(\frac{x}{40}\right)
$$

By differentiating $\theta(x)$ with respect to x, we have

$$
\begin{aligned}
\theta^{\prime}(x)=\frac{d \theta(x)}{d x} & =\frac{d}{d x}\left[\tan ^{-1}\left(\frac{x}{10}\right)-\tan ^{-1}\left(\frac{x}{40}\right)\right] \\
& =\left[\frac{1}{1+\left(\frac{x}{10}\right)^{2}}\right] \cdot \frac{d}{d x}\left[\frac{x}{10}\right]-\left[\frac{1}{1+\left(\frac{x}{40}\right)^{2}}\right] \cdot \frac{d}{d x}\left[\frac{x}{40}\right] \\
& =\frac{\frac{1}{10}}{1+\left(\frac{x}{10}\right)^{2}}-\frac{\frac{1}{40}}{1+\left(\frac{x}{40}\right)^{2}}=\frac{\frac{1}{10}}{\frac{100+x^{2}}{100}}-\frac{\frac{1}{40}}{\frac{1600+x^{2}}{1600}} \\
& =\frac{10}{100+x^{2}}-\frac{40}{1600+x^{2}}=\frac{16000+10 x^{2}-4000-40 x^{2}}{\left(100+x^{2}\right)\left(1600+x^{2}\right)} \\
& =\frac{12000-30 x^{2}}{\left(100+x^{2}\right)\left(1600+x^{2}\right)}=\frac{30\left(400-x^{2}\right)}{\left(100+x^{2}\right)\left(1600+x^{2}\right)} .
\end{aligned}
$$

The maximum occurs at x where x satisfies the 1st order necessary condition of optimality $\frac{d}{d x}[\theta(x)]=0$, thus we have

$$
\begin{aligned}
\left(400-x^{2}\right) & =0 \\
\Longrightarrow \quad x^{2} & =400 \\
\Longrightarrow \quad x & =20 \quad(\text { reject } \quad x=-20)
\end{aligned}
$$

x should be non-negative, otherwise the flying camera will fly pass the banner. Observe that $\theta^{\prime}(x)>0$ when $0 \leq x<20$, and $\theta^{\prime}(x)<0$ when $x>20$, we can conclude that $x=20$ is global maximum for all $x \geq 0$.

