AMA1007 2013/2014 Semester 2 Examination

(Numerical Answers and Hints)

1. Answer: $\frac{1}{2} x^{2}+x+\frac{4}{3} \ln |x-2|+\frac{5}{3} \ln |x+1|+C$
(Hint: Use partial fractions.)
2. (a) Answer: π, (b) Answer: $\lim _{b \rightarrow \infty} 2 \pi \ln (b)$ Hence, it has an infinite surface area. (Hint: For each of (a) and (b), integrate an appropriate integrand from 1 to b and take the limit of $b \rightarrow \infty$.)
3. (a) Hint: Show that $\operatorname{det}(A-\lambda I)=-(\lambda-1)^{2}(\lambda-10)$.
(b) Answer: The required line in parametric form is $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=s\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$
(Hint: Consider $\lambda=10$.)
(c) Answer: The required plane in parametric form is $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=s\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{c}-1 / 2 \\ 0 \\ 1\end{array}\right]$
(Hint: Consider $\lambda=1$.)
4. (a) Answer: $\sinh (x) ; \sinh (x)$ (same)
(b) Answer: $\cosh (x)=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}$
(c) Answer: $\frac{e-1 / e}{2}$
(Hint: Substitute $y=\cosh (x)=\frac{e^{x}+e^{-x}}{2}$ into the integral $\left.\int_{0}^{1} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x.\right)$
5. Answer: The radius of convergence about $x_{0}=-1$ is 2 . (Hint: Use the ratio test.)
6. (a) Answer: No. Give a counter example.
(b) Answer: Yes. Give an explanation.
7. Answer: $\int_{0}^{\sqrt[n]{a}} x^{n} d x=\frac{a^{1+\frac{1}{n}}}{n+1}$

$$
\int_{0}^{a} \sqrt[n]{x} d x=a \sqrt[n]{a}-\frac{a^{1+\frac{1}{n}}}{n+1}
$$

Hint for the second integral:
$\int_{0}^{a} \sqrt[n]{x} d x=\int_{y=0}^{y=a} \sqrt[n]{y} d y$
Consider the region: $0 \leq x \leq \sqrt[n]{a}, 0 \leq y \leq a$ and the curve $y=x^{n}$.
8. Let x, y, and z be the prices of a cow, a sheep and a pig respectively.

Answer: $x=1200, y=500, z=300$

