(Numerical Answers and Hints)

1. $\boldsymbol{P}_{0} \boldsymbol{P}_{1}, \boldsymbol{P}_{1} \boldsymbol{P}_{2}, \boldsymbol{P}_{2} \boldsymbol{P}_{3}, \ldots$, form a geometric sequence. What is the first term? What is the common ratio? Hence, each of the 3 sums required is a geometric series.

The 3 sums are $\frac{a \sin \theta}{1-\cos \theta}, a \csc \theta$, and $a \cot \theta$ respectively.
2. (a) divergent, (b) divergent

Hint: For each of (a) and (b), compare the given integral with an appropriate integral that is divergent by p-test.
3. $(\mathrm{c}) \approx 0.7475$
4. $c= \pm \frac{1}{\sqrt[4]{5}}$
5. (a) Hint: Apply the product rule of differentiation and the identity $\sin ^{2} \theta+\cos ^{2} \theta=1$
(b) Hint: Show that arc length is given by $L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta$ and hence obtain the required expression.
(c) The required arc length is 8. (Hint: Find $r^{\prime}(\theta)$. Substitute $\alpha=0$ and $\beta=2 \pi$ into the expression in (b) and simplify the integrand to ease integration with the given hint.)
6. Let x, y, and z be the measures of the first, second and third classes of corn.

Answer: $x=\frac{37}{4}, y=\frac{17}{4}, z=\frac{11}{4}$
7. The inverse is $\left[\begin{array}{ccccc}1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$ (Hint: Example 4.6 page-491)
8. Hint: Show that the scalar triple product $\overrightarrow{A B} \cdot(\overrightarrow{A C} \times \overrightarrow{A D})=0$, and hence the four given points lie on the same plane.
9. The eigenvalues are $\lambda=1, \lambda=-2, \lambda=-1$.

For $\lambda=1,\left[\begin{array}{l}2 \\ 3 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$
For $\lambda=-2,\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right]$
For $\lambda=-1,\left[\begin{array}{c}-2 \\ 1 \\ 1 \\ 0\end{array}\right]$
10. Answer: π (Hint: Evaluate the integral $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$.)

