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A new controller discretisation approach, the generalised bilinear transformation (GBT), is proposed in Zhang, G.,
Chen, T., and Chen X. (2007a). Given an analog controller K, GBT generates a class of digital controllers Kgbt

parameterised by a real number �2 (�1,1). A geometric interpretation of GBT is first presented. Second, when
the original analog feedback system is stable, two methods are proposed to find the value of the parameter � which
provides an upper bound of sampling periods guaranteeing closed-loop stability of the resulting sampled-data
system. Finally, several examples, namely, an IIR digital filter, an example studied in Rattan, K.S. (1984),
‘Digitization of Existing Continuous Control Systems,’ IEEE Transactions on Automatic Control, 29, 282–306, and
Keller, J.P., and Anderson, B.D.O. (1992), ‘A New Approach to the Discretisation of Continuous-time
Controllers,’ IEEE Transaction on Automatic Control, 37, 214–223, and an H1 control problem investigated in
Chen, T., and Francis, B. (1995), Optimal Sampled-Data Control Systems, London: Springer, are used to
demonstrate the strength of our discretisation approach. These examples show that GBT is able to retain the
simplicity of the emulation methods such as the Tustin method, and simultaneously sustain closed-loop
performance even at slow sampling.

Keywords: controller discretisation; generalised bilinear transformation (GBT); closed-loop stability;
optimisation

1. Introduction

The methods of designing digital controllers can be
roughly classified into four categories. The first cate-
gory is the so-called discrete design, where a digital
controller is designed for the discrete-time counterpart
of the original analogue plant. Therefore, inter-sample
ripple may be a problem in this design method
(Chen and Francis 1995). The intent to cope with
inter-sample behaviour motivates the other extreme
(the second category): the sampled-data (SD) design,
namely, design based on continuous-time specifica-
tions. Although this design method can deal with
inter-sample behaviour perfectly, its inherent design
complexity hinders its practical applicability
(Wittenmark, Åström and Årzén 2002). The third
category, the emulation method, can be regarded as
a method in between the two methods aforementioned.
The emulation method consists of two steps. The first
step is to design a (fictitious) continuous-time con-
troller: we call this step the design step. The second step
is to discretise the continuous-time controller to obtain
a discrete-time controller. We call this step the
implementation step. There are lots of methods
supporting controller design in the continuous-time
domain. However, there are merely several controller

discretisation approaches in the implementation step,

the Tustin’s method, ZOH equivalent, the Euler

method and the matched pole-zero method being the

most popular ones (Kowalczuk 1993; Franklin, Powell

and E-Naeini 2002). Therefore, the emulation method

usually goes like this: first design in the continuous-time

domain, then try several controller discretisation

approaches such as those listed above. If the closed-

loop performance is satisfactory, the job is done;

otherwise, go back to redesign in the continuous-time

domain. In other words, the emulation method is

essentially an open-loop approach and only works well

at fast sampling. With the aim of improving

this situation, a new controller discretisation – the

generalised bilinear transformation (GBT) is proposed

and studied in Zhang, Chen and Chen (2007a) and

Zhang, Chen and Chen (2007b).
Generalised bilinear transformation provides a class

of controller approximations parameterised by

a parameter �2 (�1,1). With the aid of GBT, the

emulation method now works in the following way:

first, an analogue controller is designed in the contin-

uous-time domain to fulfill pre-specified performance

requirement; second, an optimisation problem is solved

over �2 (�1,1) and the sampling period h to find
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a desired digital controller by taking closed-loop
requirement into account. It is worthwhile to discuss
a bit about the choice of the sampling period h.
Hardware constraints will provide a lower bound on
h; nevertheless, the designer can still choose h in an
interval to guarantee the closed-loop requirements of
the control system such as bandwidth and phase
degradation. Given this, we assume in the article that
the sampling period will be chosen based on the closed-
loop requirement. Moreover, as is illustrated by
examples, a good choice of � can allow relatively slow
sampling while still sustaining acceptable closed-loop
performance. Clearly, this will reduce technical limita-
tions imposed on the sampling period; in other words,
when it is preferred to use slow sampling, our design
method will have an advantage. Nevertheless, if the
sampling period h is pre-specified, then the optimisation
problem reduces to an optimisation problem of only
one variable, namely �. Consequently, GBT is a closed-
loop digital redesign method. Because only two vari-
ables, namely � and h, are involved at most in the
associated optimisation problems, they can be very
easily solved via many standard methods (see the
discussion below Theorem 3.5 as well as Remark 4 in
x 3 for details). In this manner, the emulation method
becomes a systematic method and the search for an
optimal digital controller is made possible. One may
doubt if the resulting digital controller obtained via
GBT works satisfactorily. This article will show that
design via GBT is indeed effective in various contexts,
ranging from internal stability, digital filter design, to
H1 control, etc. It may even provide almost the same
control performance as the SD design. Therefore, it is
reasonable to say that GBT is able to retain the
simplicity of the emulation methods such as the
Tustin’s method, and simultaneously sustain closed-
loop performance even at slow sampling.

Clearly, GBT belongs to the fourth category of
discretisation methods: optimisation-based controller
discretisation techniques which have been extensively
investigated in the literature (e.g. Keller and Anderson
1992; Markazi and Hori 1995; Rafee, Chen and Malik
1997; Shieh, Wang and Tsai 1998; Anderson,
Chongsrid, Limebeer and Hara 1999; Rosenvasser,
Polyakov and Lampe 1999; Rosenwasser, Polyakov and
Lampe 1999; Rosenwasser and Lampe 2000; Hwang,
Chang and Hwang 2003). In each of these approaches,
given an analogue controller, an optimisation problem
is solved to produce a digital controller which is optimal
in a certain sense such as H2 or H1. These methods
normally give good performance, but are at the cost of a
large computational load. More importantly, in each
case, only one controller is obtained. Since every control
system operates undoubtedly under a variety of
uncertainties, it is often desirable to adjust control law

to cope with real situations if necessary (Jelali 2006),
i.e. it is better to have an adaptive controller.
The parameter � in GBT adds an extra degree of
freedom to the control system concerned, therefore
making the closed-loop system indeed adaptive. Hence,
the real-time adjustment of � possibly leads to better
control. The authors believe this will be one of themajor
advantages of GBT in the discretisation of analogue
controllers. Another advantage of GBT is that it allows
slow sampling. It has been shown in Chen and Francis
(1995), Rabbath, Hori and Lechevin (2004), and Zhang
et al. (2007a) that as the sampling period h goes to zero,
the performance of sampled-data systems converges to
that of the original continuous-time systems. However,
instead of concentrating on the behaviour as h! 0, in
practice it is more desirable to express system perfor-
mance as a function of h. To the best knowledge of the
authors, except the plant-input mapping (PIM) hybrid-
type closed-loop discretisation approach which can
guarantee closed-loop stability for almost all non-
pathological sampling periods (Markazi and Hori
1995, 2003), the reference Keller and Anderson (1992)
is the only source where an upper bound of h is derived
rigourously to guarantee closed-loop stability. A well-
known example was employed to illustrate that the
proposed approach guarantees closed-loop stability at
relatively slow sampling. This example is re-studied in
Example 4.2 which shows that our method gives a better
upper bound than that given in Keller and Anderson
(1992). Clearly, in order to make full use of GBT, two
problems should be solved: one is a complete sampled-
data control theory for GBT; the other is the associated
optimisation over � and h. This article focusses on the
first problem. The second problem, which is a one (or at
most two)-dimensional optimisation problem, can be
easily solved by many existing techniques (this problem
is briefly discussed below the proof of Theorem 3.5).

Several techniques similar to GBT have already
been proposed in the literature. A new approximation
of an integral is discussed in Al-Alaoui (1993) which is
a special case of GBT when �¼ 1/8. A technique based
on compensated integration is investigated in Chen and
Liu (2001) which contains a parameter n. When n¼1,
the bilinear transformation is recovered. A study closely
related to Chen and Liu (2001) can be found in Liu,
Shou and Chen (2006). In Liu and Chen (2005)
a modified bilinear integrations algorithm (Equation
(9)) is proposed based on the modulated sine function.
The proposed method is equivalent to GBT when � is
restricted to the interval [0.5,1). A technique identical
to that in Zhang et al. (2007a) is studied in Sekara (2006)
where the parameter is restricted to the interval [0, 1].
However, it is shown by Examples 4.1–4.3 that, by
allowing �2 (�1,1), better performance could be
achieved. Moreover, although all these papers
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demonstrated the effectiveness of their methods via
numerical examples, none of them ever studied analy-
tically the problem of closed-loop stability, which is
a very important problem in any control system.
The main purpose of this article is to establish several
analytical results for closed-loop stability of the resulting
sampled-data control system when GBT is applied.
Therefore, the results in this article can also provide
some theoretic ground for all these related methods.
The remaining parts of this article are organised as
follows. x 2 introduces the GBT from a geometrical
point of view. x 3 investigates the stability of sampled-
data systems designed based on GBT. Assume that the
original analogue feedback system is stable, two
methods are proposed sequentially to find the suitable
parameter � which gives upper bound of the sampling
periods guaranteeing the closed-loop stability of the
resulting sampled-data system. x 4 contains applications
of GBT. Three examples are discussed, the first being an
IIR digital filter design, the second being a re-study of
an example investigated in Rattan (1984), Keller and
Anderson 1992), and the third being an H1 control of
a system studied extensively in Chen and Francis (1995).
By comparing GBT with existing methods via these
examples, effectiveness of GBT is demonstrated. x 5
consists of some concluding remarks.

Throughout this article the following notations are
adopted. The norm symbol k � k represents the
Euclidean norm if it is on a vector or its largest
singular value if on a matrix; k � k‘p is the ‘p norm if
applied to a vector and ‘p-induced norm if applied to
a system. Following the convention, for a continuous-
time controller K, K(s) is used to denote its transfer
function. A state-space realisation of K is denoted
(AK,BK,CK,DK) and we also define

AK BK

CK DK

" #
:¼ DK þ CKðsI� AKÞ

�1BK:

The discrete-time case can be treated in a similar way.

2. The generalised bilinear transformation

The (traditional) bilinear transformation is motivated
by considering the trapezoidal approximation of an
integrator. Given an integrator 1/s with input u and
output y, the trapezoidal approximation of

yðkhþ hÞ ¼ yðkhÞ þ

Z khþh

kh

uð�Þd� ð1Þ

is

y khþ hð Þ ¼ y khð Þ þ h
u khþ hð Þ þ u khð Þ

2
,

that is, the integral is approximated using the average
value of u(khþ h) and u(kh). Now we approximate the

integral in Equation (1) using some other combination

of u(khþ h) and u(kh). More specifically, consider

y khþ hð Þ ¼ y khð Þ þ h �u khþ hð Þ þ ð1� �Þu khð Þ½ �,

ð2Þ

where the real number �2 (�1,1). The transfer

function of Equation (2) is (in z transform)

y zð Þ

u zð Þ
¼ h

�zþ 1� �ð Þ

z� 1
:

This motivates us to introduce the following GBT

1

s
¼ h

�zþ 1� �ð Þ

z� 1
,

that is,

s ¼
1

h

z� 1

�zþ 1� �ð Þ
: ð3Þ

Therefore, under the GBT, a finite-dimensional linear

time-invariant (FDLTI) continuous-time transfer

function K(s) is mapped to an FDLTI discrete-time

transfer function Kgbt(z), where

KgbtðzÞ :¼ K
1

h

z� 1

�zþ 1� �ð Þ

� �
ð4Þ

with �2 (�1,1). In terms of state-space data, bring

in a minimal realisation of K(s), namely,

(AK,BK,CK,DK), it is straightforward to derive that

Kgbt(z) has a state-space model (AKgbt
,BKgbt

,CKgbt
,DKgbt

),

where

AKgbt
¼ I� �hAKð Þ

�1
½Iþ ð1� �ÞhAK�,

BKgbt
¼ I� �hAð Þ

�1hBK,

CKgbt
¼ CK I� �hAKð Þ

�1, DKgbt
¼ DK þ �CKBKgbt

:

ð5Þ

Remark 1: When �¼ 0, 1/2 and 1, Kgbt(z) is the

forward difference (Euler method), the Tustin’s

method and backward difference approximations of

K(s), respectively. These approximations are illustrated

geometrically in Figure 1. In each case, the integral

equals the area enclosed by the curve, the two vertical

dotted lines and the horizontal axis. In (a), (b) and (c),

the approximations equal the area enclosed by the

three dotted lines and the horizontal axis. However, in

(d), the approximation equals the difference between

the positive area (above the horizontal axis) and the

negative area (under the horizontal axis).

Remark 2: The parameter � is restricted to be in the

interval [0, 1] in Zhang et al. (2007a). It will be shown

that performance could be improved significantly by

allowing �2 (�1,1).

International Journal of Control 743
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3. Stability

The purpose of this section is to study the stability of

sampled-data systems implemented via GBT. Two

methods are proposed sequentially to find the suitable

parameter � which yields an upper bound of sampling

periods that guarantee the closed-loop stability of the

resulting sampled-data system.

3.1 Basic set-up

Consider the continuous-time feedback control system

�1 as shown in Figure 2. Suppose that both the plant G

and the controller K are FDLTI. Furthermore, assume

that G is strictly proper and K is proper. Bring in

minimal state-space realisations:

GðsÞ ¼
AG BG

CG 0

� �
, KðsÞ ¼

AK BK

CK DK

� �
: ð6Þ

Let the state variables of G and K be xG and xK,

respectively. Moreover, define their compound

xG,K :¼ ½xTGx
T
K�

T, where the superscript T is the matrix

transpose operation. The state xG,K is called internally

stable if for every initial time t0 and initial state

xG,K(t0), we have

xG,KðtÞ ! 0, as t!1:

Under the assumption of minimal realisation, it is well

known that internal stability is equivalent to the

stability of the closed-loop A-matrix

Acl ¼
AG þ BGDKCG BGCK

BKCG AK

� �
,

that is, all its eigenvalues have negative real parts.

From now on we identify internal stability of �1 with

that of matrix Acl. Clearly, that Acl is stable is also

equivalent to that system �1 is input–output stable in

the sense of Lp induced norm for every p2 [1,1]

(interested readers can refer to the reference Chen and

Francis (1995)).
Now digitise the analogue system �1 by replacing K

with HKgbtS, where H is a zero-order hold, Kgbt is an

approximation of K via GBT for some �2 (�1,1)

and S is an ideal sampler. Denote the resulting

sampled-data system by �2 as shown in Figure 3.

In what follows we will investigate internal stability of

system �2. To do so, internal stability of a certain

discrete-time system should be discussed first. Let

Gzoh¼SGH, i.e. Gzoh is the zero-order hold equivalent

of G. Then the closed-loop A-matrix of the discrete-

time system consisting of Gzoh and Kgbt is given by

Acl,d ¼
AGzoh

þ BGzoh
DKgbt

CG BGzoh
CKgbt

BKgbt
CG AKgbt

" #
: ð7Þ

(a) (b)

(c) (d)

+

−

Figure 1. (a): Forward difference (Euler), (b): Backward
difference, (c): Tustin’s, (d): GBT with �41.

K

G

Figure 2. Analog system �1.

Kgbt

G

H S

Figure 3. Sampled-data system �2.
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For convenience, denote this discrete-time system

by �2d. Clearly, the internal stability of �2d is

equivalent to the stability of the matrix Acl,d.

3.2 The first approach

In this section, we formulate an optimisation problem

whose solution provides an upper bound of sampling

periods which guarantee closed-loop stability of

sampled-data systems when analogue controllers are

implemented via GBT.
The following result is used in the proof of

Theorem 3.2:

Proposition 3.1: Let A2C
n�n and �40 be given. Then

there is a consistent matrix norm k � ksp such that

Iþ hAk ksp� � Iþ hAð Þ þ �h, ð8Þ

where h is an arbitrary positive real number.

Proof: This result is a variant of Lemma 5.6.10 in

Horn and Johnson (1986) (p. 297, chap. 5). According

to the Schur triangularisation theorem (Theorem 2.3.1,

Horn and Johnson 1986), there exists a unitary

matrix U and an upper triangular matrix � such that

A¼U* �U. Define Qt :¼diag(t, t2, . . . , tn). It is easy to

show that

Consequently, for t40 large enough, the sum of

all the absolute values of the off-diagonal entries

of Qt�Q�1t is less than the pre-specified scalar �.
As a result,

Iþ hQt�Q�1t

�� ��
1
� � Iþ hAð Þ þ �h ð9Þ

for any h40. In view of this, define a matrix norm

k � ksp by

Vk ksp:¼ QtUVU�Q�1t

�� ��
1
¼ QtUð ÞV QtUð Þ

�1
�� ��

1
ð10Þ

for any V2C
n�n. Then, it can be readily shown that

Iþ hAk ksp ¼ Iþ hQtUU��UU�Q�1t

�� ��
1

¼ Iþ hQt�Q�1t

�� ��
1
� � Iþ hAð Þ þ �h:

Recall that a matrix norm k � k defined on C
n�n is

said to be consistent if the inequality

ABk k � Ak k � Bk k ð11Þ

holds for all pairs of matrices A2C
n�n and B2C

n�n.
Next, we show that k � ksp is a consistent matrix norm.
Note that for any two matrices V1, V22C

n�n,

V1V2k ksp ¼ QtUð ÞV1V2 QtUð Þ
�1

�� ��
1

¼ QtUð ÞV1 QtUð Þ
�1 QtUð ÞV2 QtUð Þ

�1
�� ��

1

� QtUð ÞV1 QtUð Þ
�1

�� ��
1

QtUð ÞV2 QtUð Þ
�1

�� ��
1

¼ V1k ksp V1k ksp:

Consequently, k � ksp is a consistent matrix norm. œ

We are ready to establish a result concerning an
upper bound of sampling periods for the discrete-time
system �2d.

Theorem 3.2: Suppose that the original continuous-
time system �1 is internally stable. Then for every
h2 (0, �), there exists a real number � such that system
�2d is internally stable too, where the positive scalar � is
given in (19) which is to be made explicit in the proof
below.

Proof: Define

� :¼ max Reð�Þ
�� �� : � is an eigenvalue of Acl

� 	
:

Then according to Proposition 3.1, for every

h2 (0, 1/�) and any �40 independent of h, there

exists a consistent matrix norm k � ksp such that

kIþ hAclksp � �ðIþ hAclÞ þ �h:

In what follows, we confine � to be "2 (0,�/4).
Define a positive scalar � as

� :¼ min Reð�Þ
�� �� : � is an eigenvalue of Acl

� 	
:

Let aiþ jbi be any eigenvalue of Acl where j ¼
ffiffiffiffiffiffiffi
�1
p

.

Then there is a number �240 such that

ai þ h a2i þ b2i
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ haið Þ

2
þ hbið Þ

2
q þ

3

4
�5 0, 8h 2 0, �2ð Þ: ð12Þ

Qt�Q�1t ¼

�1 t�1d12 t�2d13 � � � t�ðn�2Þd1ðn�1Þ t�ðn�1Þd1n

0 �2 t�1d23 � � � t�ðn�3Þd2ðn�1Þ t�ðn�2Þd2n

0 0 �3 � � � t�ðn�4Þd3ðn�1Þ t�ðn�3Þd3n

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 0 �n�1 t�1dðn�1Þn

0 0 0 0 0 �n

2
6666666664

3
7777777775
:

International Journal of Control 745
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Next we find the maximal �2 such that

3

4
�5

�a� h a2 þ b2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hað Þ

2
þ hbð Þ2

q : ð13Þ

First of all, it is required that

�a� h a2 þ b2
� �

4 0,

that is,

h5
�a

a2 þ b2
: ð14Þ

Under (14), inequality (13) reduces to

9

16
�2 1þ hað Þ

2
þ hbð Þ2


 �
5 a2 þ 2a a2 þ b2

� �
h

þ a2 þ b2
� �2

h2,

that is,

a2 þ b2
� �

a2 þ b2 �
9

16
�2

� �
h2 þ 2a a2 þ b2 �

9

16
�2

� �
h

þ a2 �
9

16
�2 4 0:

Notice that

� :¼ 2a a2 þ b2 �
9

16
�2

� �� �2

� 4 a2 þ b2
� �

a2 þ b2 �
9

16
�2

� �
a2 �

9

16
�2

� �

¼ 4 a2 þ b2 �
9

16
�2

� �"
a2
�
a2 þ b2 �

9

16
�2

�

� a2 þ b2
� �

a2 �
9

16
�2

� �#

¼ 4 a2 þ b2 �
9

16
�2

� �
9

16
b2�2

4 0:

As a result,

h5
�2a

�
a2 þ b2 �

9

16
�2

�
h�

ffiffiffiffi
�
p

2 a2 þ b2ð Þ

�
a2 þ b2 �

9

16
�2

� ¼ �a

a2 þ b2

�
3 bj j�

4 a2 þ b2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 �

9

16
�2

r ð15Þ

Combining (14) and (15) yields

h5
�a

a2 þ b2
�

3 bj j�

4 a2 þ b2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 �

9

16
�2

r :

Consequently, the maximal �2 is

�2 ¼ min
aiþjbi2Acl

�ai

a2i þ b2i
�

3 bij j�

4 a2i þ b2i
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2i þ b2i �
9

16
�2

r
8>><
>>:

9>>=
>>;:
ð16Þ

Observe that

Acl,d ¼ Iþ hAcl þ h2� h,�ð Þ:

Thus

� h,�ð Þ ¼
1

h2
Acl,d � I� hAcl

� �
:

Define

�3 :¼ min �2,
1

�

� �
,

and

� �ð Þ :¼ max
h2 0,�3ð Þ

� h,�ð Þ
�� ��

sp
:

Then

� h,�ð Þ
�� ��

sp
� � �ð Þ:

Minimise �(�) to find an optimal �*, namely,

�� ¼ min
�
� �ð Þ ¼ min

�
max
h2 0,�3ð Þ

� h,�ð Þ
�� ��

sp
: ð17Þ

Denote

�� ¼ � ��ð Þ, ð18Þ

and define

� :¼ min
�

4��
, �3

� �
: ð19Þ

We are now ready to show that when �* is used as the

parameter in GBT, then for every h2 (0, �), the system
�2d is internally stable, i.e. the matrix Acl,d is stable.

Clearly, it suffices to show that

�ðAcl,dÞ5 kAcl,dksp � Iþ hAclk kspþ h2 � h,��ð Þ
�� ��

sp
� 1:

ð20Þ

Notice that

IþhAclk kspþh
2 �k ksp

� � IþhAclð Þþ �hþh2��, 8h2 ð0,�Þ:

As a result, it is sufficient to show that

� Iþ hAclð Þ þ �hþ h2�� � 1, h 2 ð0, �Þ: ð21Þ

In what follows we show thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ haið Þ

2
þ hbið Þ

2

q
þ �hþ h2�� � 1, h 2 ð0,�Þ: ð22Þ
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Define a function

gi hð Þ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ haið Þ

2
þ hbið Þ

2

q
þ �hþ h2��, h 2 ½0, �Þ:

Clearly, gi (0)¼ 1. It is straightforward to show that the

derivative of gi(h) with respect to h satisfies

dgi hð Þ

dh
¼ �þ 2h�� þ

ai þ h a2i þ b2i
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ haið Þ

2
þ hbið Þ

2
q

�
�

4
þ 2��

�

4��
þ

ai þ h a2i þ b2i
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ haið Þ

2
þ hbið Þ

2
q

¼
3�

4
þ

ai þ h a2i þ b2i
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ haið Þ

2
þ hbið Þ

2
q :

Combining this and inequality (12) yields

dgi hð Þ

dh
5 0, h 2 ð0, �Þ:

As a result, inequality (22) holds. Inequalities (21) and

(20) are thereby established. œ

Remark 1: The min–max optimisation problem

defined in (17) should be solved in order to get

a good upper bound �. Fortunately, since only two

variables are involved, it is not difficult to solve this

optimisation problem.
Armed with Theorem 3.2, we are ready to establish

a result concerning the upper bound of sampling

periods for the internal stability of the sampled-data

system �2. Notice that �2 is a hybrid system, so the

first problem is to define its state. We adopt the

definition in Chen and Francis (1995, section 11.1).

Let xKgbt
be the state of the discrete-time system Kgbt.

Define

xsdðtÞ :¼
xG

xKgbt

" #
, kh � t5 ðkþ 1Þh: ð23Þ

After defining the state of �2, we are able to define its

internal stability. We will adopt the definition in

Chen and Francis (1995, section 11.1), that is, the

sampled-data system �2 is said to be internally stable if

for every initial t0, 0� t05h, and initial state xsd(t0), we

have xsd(t)! 0 as t!1.
We have the following result concerning the

internal stability of �2.

Theorem 3.3: Suppose that the original continuous-

time system �1 is internally stable. Then for every

h2 (0, �), there exists a real number � such that system

�2 is internally stable, where the positive scalar � is given
in Equation (19).

Proof: Suppose that the original continuous-time

system �1 is internally stable. Then according to

Theorem 3.2, for every h2 (0, �), there exists a real

number � such that system �2d is internally stable too,

where the positive scalar � is given in (19).

Consequently, by Theorem 11.1 in Chen and Francis

(1995), the sampled-data system �2 is internally

stable too. œ

Remark 2: The upper bound of h obtained in this way

might be somewhat conservative, as illustrated by the

following example.

Example 3.4: Consider the following system com-

posed of G and K given below:

GðsÞ ¼
1

s
¼

0 1
1 0

� �
, KðsÞ ¼

�1

sþ a
¼
�a 1
�1 0

� �
:

Via positive feedback, one has

Acl ¼
0 �1

1 �a

� �
: ð24Þ

Applying the step-invariant transformation to G and

GBT to K, respectively, yields

GzohðzÞ ¼
1 h
1 0

� �
, KgbtðzÞ ¼

1�
ha

1þ�ha

h

1þ�ha
�1

1þ�ha

��h

1þ�ha

2
664

3
775:

Therefore, the closed-loop A-matrix is

Acl,d ¼

1�
�h2

1þ �ha
�

h

1þ �ha
h

1þ �ha
1�

ha

1þ �ha

2
664

3
775:

It is easy to show that

Acl,d � Iþ hAclð Þ ¼
�h2

1þ �ha

�1 a

�a a2

� �
:

Therefore,

� h,�ð Þ ¼
1

h2
Acl,d � I� hAcl

� �
¼
��

1þ �ha

1 a

�a a2

� �
:

ð25Þ

Next, fix a ¼
ffiffiffi
2
p

. Then by Equation (24), the

closed-loop poles of the original continuous-time

system are

s1,2 ¼
�

ffiffiffi
2
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
p� �2
�4

q
2

¼
�

ffiffiffi
2
p
� j

ffiffiffi
2
p

2
:
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Thus,

� ¼ � ¼

ffiffiffi
2
p

2
,

�ai

a2i þ b2i
¼

ffiffiffi
2
p

2
,

3 bij j�

4 a2i þ b2i
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2i þ b2i �
9

16
�2

r ¼

3�

ffiffiffi
2
p

2
�

ffiffiffi
2
p

2

4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

9

16
�

ffiffiffi
2
p

2

 !2
vuut

¼
3
ffiffiffi
2
p

2
ffiffiffiffiffi
23
p :

According to (16),

�2 ¼

ffiffiffi
2
p

2
�

3
ffiffiffi
2
p

2
ffiffiffiffiffi
23
p ¼

ffiffiffi
2
p

2
1�

3ffiffiffiffiffi
23
p

� �
	 0:2648:

This bound is rather conservative. In fact, when
�¼ 0.75, for any h2 (0, 4.565), the closed loop is
internally stable.

3.3 The second approach

Example 3.4 reveals the conservativeness of
Theorem 1. In this section we will propose a more
general result.

As previously discussed, the stability of the closed-

loop system is equivalent to

� Iþ hAcl þ h2�
� �

5 1: ð26Þ

Let xþ jy be any eigenvalue of the matrix Aclþ h�.
Then closed-loop stability requires that

1þ h xþ jyð Þ
�� ��5 1,

that is,

1þ hxð Þ
2
þ hyð Þ2 5 1,

h5
�2x

x2 þ y2
: ð27Þ

Therefore, the problem of closed-loop stability reduces
to an optimisation problem:

max
h,�

min
xþjy2� Aclþh�ð Þ

�2x

x2 þ y2
: ð28Þ

Remark 3: In this formulation, Iþ hAcl may not be
stable necessarily.

Note that

Acl,d ¼ Iþ hAcl þ h2�,

that is,

Acl þ h� ¼
1

h
Acl,d � I
� �

:

Therefore, (28) is equivalent to

max
h,�

min
xþjy2� 1

h Acl,d�Ið Þð Þ

�2x

x2 þ y2
,

that is,

max
h,�

min
xþjy2� Acl,d�Ið Þ

�2hx

x2 þ y2
: ð29Þ

However,

xþ jy 2 � Acl,d � I
� �

is equivalent to

1þ xð Þ þ jy 2 � Acl,d

� �
;

so, (29) is equivalent to

max
h,�

min
xþjy2� Acl,dð Þ

f h,�ð Þ ¼ 2h
1� xð Þ

1� xð Þ
2
þy2

: ð30Þ

Theorem 3.5: Suppose that the preceding optimisation

is optimal at (h*,�*). If

h�5 f h�,��ð Þ, ð31Þ

then system �2 is stable for the sampling period h* when

�* is adopted.

Proof: When inequality (31) holds, for any eigenvalue

xþ jy of Acl,d,

h�5 2h�
1� xð Þ

1� xð Þ
2
þy2

: ð32Þ

Hence, one has

1� xð Þ

1� xð Þ
2
þy2

4 1
2 , ð33Þ

which is equivalent to

x2 þ y2 5 1:

Therefore, the closed-loop system is stable. When �* is

adopted, h* guarantees closed-loop stability. œ

The optimisation problem defined in Equation (30)

is a two-dimensional optimisation problem. In what

follows we will discuss how to solve it. First, we discuss

the sampling period h. On the one hand, hardware

constraints provide a lower bound on h; on the

other hand, to guarantee satisfactory closed-loop

control performance, we cannot sample too slowly.

Therefore, we can assume that h is in the interval ½h, �h�.
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Second, numerical experience tells us that when � is

too big or too small, closed-loop performance is

usually bad. As a result, we confine � to the interval

½�, ���. Third, according to Equations (7) and (5), we

must guarantee that the matrix I� �hAK is invertible to

make the matrix Acl,d in Equation (7) properly defined.

Because AK is fixed, the following equation

�hAK ¼ I

will divide the a� h plane into several pieces. Clearly,

the number of pieces is at most the dimension of AK.

Therefore, the rectangle ½h, �h� � ½�, ��� will contain

several subsets. Within each subset a two-dimensional

optimisation problem (30) is to be solved. Since only

two variables, � and h, are involved, many standard

optimisation methods (e.g., the differential

evolution algorithms (Storn and Price 1997; Hwang

et al. 2003)) can be employed to find optimal � and h.

After finding all of them over all subsets, the global

one can be obtained. In what follows, we formalise the

procedure:

Step 1. Determine the rectangle ½h, �h� � ½�, ���.

Step 2. Find all eigenvalues �i of matrix AK. Divide the

rectangle ½h, �h� � ½�, ��� using the curves �h ¼ ��1i if �i is
real. Denote the obtained subsets by �j.

Step 3. Within each �j, solve the two-dimensional

optimisation problem (30) to obtain optimal (�j, hj).
Differential evolution algorithms (Storn and Price

1997) can be employed to get ‘global’ optimal solution

in each �j with fair good probability. (Theorem 3.2

ensures the existence of at least one such (�j, hj).)

Step 4. Find the global optimal (�*, h*) over all (�j, hj).

Remark 4: The above procedure is to find the upper

bound of the sampling period h within which the closed

loop is internally stable. The procedure can be easily

extended to other performance specifications such as

optimal H2 and H1 performance. In each of these

cases, an optimal analogue controller K is first

designed, then GBT is applied to obtain a digital

controller Kgbt which contains parameters h and �.
After that lifting technique can be used to convert the

resulting sampled-data system to an equivalent dis-

crete-time system, and finally the optimal h and � can

be found by solving an optimisation problem of two

variables. In fact, Example 4.3 is studied following this

procedure.
Next we re-study the preceding example under

this new framework. We will show that when

a ¼
ffiffiffi
2
p

, � ¼ ð3=4Þ, an upper bound of h can be

found to be 4.5523, which is quite close to the optimal

value 4.565.

According to (24) and (25),

hAcl þ h2� ¼ Acl,d � I ¼
h

1þ �ha

��h �1

1 �a

� �
:

Accordingly,

Acl þ h� ¼
1

1þ �ha

��h �1

1 �a

� �
:

It is easy to show the eigenvalues of Aclþ h� are

1

1þ �ha

� �hþ að Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h� að Þ

2
�4

q
2

: ð34Þ

In what follows we discuss two cases.

Case 3.6: (�h� a)2� 450, i.e.

� 2� að Þ5�h5 2þ a: ð35Þ

Hence, the real part x and the imaginary part y of an

eigenvalue xþ jy are

x ¼
� �hþ að Þ

2 1þ �hað Þ
, y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� �h� að Þ

2
q
2 1þ �hað Þ

,

respectively. Therefore,

x2 þ y2 ¼
�hþ að Þ

2
þ4� �h� að Þ

2

4 1þ �hað Þ
2

¼
4�haþ 4

4 1þ �hað Þ
2
¼

1

1þ �ha
,

and

�2x

x2 þ y2
¼

�2
� �hþ að Þ

2 1þ �hað Þ

1

1þ �ha

¼ �hþ a: ð36Þ

Define

	 ¼ �h:

Then (35) and (36) become

� 2� að Þ5	5 2þ a: ð37Þ

�2x

x2 þ y2
¼ 	þ a:

Consequently, the maximal value is achieved by

solving (37) and

h � 	þ a ¼ �hþ a: ð38Þ

When a40, �41, (38) is satisfied for all h. And (37)

yields

h5
2þ a

�
:

When a40, �50, (38) gives

h5
a

1� �
:
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And (37) yields

h5
� 2� að Þ

�
:

When a40, 05�51, (37) yields

� 2� að Þ

�
5 h5

2þ a

�
:

Equation (38) gives

h5
a

1� �
:

In particular, when a ¼
ffiffiffi
2
p

, � ¼ ð3=4Þ, the minimal h is

min
2þ a

�
,

a

1� �

� �
	 4:5523, ð39Þ

which is quite close to the value given in Example 1.

Case 3.7: (�h� a)2� 4
 0, i.e.

�h 
 2þ a or �h � �2þ a:

In this case, the imaginary part

y ¼ 0:

There are two real roots, which are

x1 ¼
1

1þ �ha

� �hþ að Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h� að Þ

2
�4

q
2

and

x2 ¼
1

1þ �ha

� �hþ að Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h� að Þ

2
�4

q
2

:

Equation (28) becomes

max
h,�

�2

x1
,
�2

x2

� �
: ð40Þ

We will not go into detail of this optimisation problem.

However, according to (39), it is clear that the upper

bound of h guaranteeing closed-loop stability is no less

than 4.5523.

3.4 A special case

When the analogue controller K is stable, we have the

following result:

Theorem 3.8: Assume that the continuous-time

controller K is stable. Let �h be a solution to the

following optimisation problem

max
h
� lim

�!1
AGzoh

þ BGzoh
DKgbt

CG

� �
subject to : � lim

�!1
AGzoh

þ BGzoh
DKgbt

CG

� �
5 1:

ð41Þ

Then for each h � �h, the closed-loop system �2 is stable

for sufficiently large �.

Proof: When the original continuous-time controller

K is stable, i.e. all the eigenvalues of AK reside on the

left half of the complex plane, it is easy to show that, as

�!þ1,

BGzoh
CKgbt

! 0,

and

BKgbt
CG ! 0:

Moreover, all the eigenvalues of AKgbt
approach the

point 1þ 0i on the complex plane from within the unit

circle. Clearly, this process is independent of h. Finally,

it is not hard to show that

AGzoh
þ BGzoh

DKgbt
CG

¼ eAGh þ

Z h

0

eAG�BGd�DKCG

þ �h

Z h

0

eAG�BGd�CK �h I� �hAKð Þ
�1


 �
BKCG:

It is easy to show that when �!1, the term

�h

Z h

0

eAG�BGd�CK �h I� �hAKð Þ
�1


 �
BKCG

approaches a constant matrix. For example, if AK is

given by

AK ¼

� 1 0 0

0 � 1 0

0 0 � 1

0 0 0 �

2
66664

3
77775,

then

�h I� �hAKð Þ
�1
¼

�h

1� �h�

�h

1� �h�ð Þ
2

�h

1� �h�ð Þ
3

�h

1� �h�ð Þ
4

0
�h

1� �h�

�h

1� �h�ð Þ
2

�h

1� �h�ð Þ
3

0 0
�h

1� �h�

�h

1� �h�ð Þ
2

0 0 0
�h

1� �h�

2
6666666666664

3
7777777777775
:

750 G. Zhang et al.

D
ow

nl
oa

de
d 

by
 [

H
on

g 
K

on
g 

Po
ly

te
ch

ni
c 

U
ni

ve
rs

ity
] 

at
 0

2:
09

 1
3 

Ja
nu

ar
y 

20
12

 



Consequently, as �!1,

�h I� �hAKð Þ
�1
!

�
1

�

�
1

�

�
1

�

�
1

�

2
66666666664

3
77777777775
,

which is a constant matrix. Therefore, closed-loop

stability can be studied based on the lower-order

matrix lim�!1 AGzoh
þBGzoh

DKgbt
CG. Clearly, if �h is

a solution to the optimisation problem (41), then for

each h � �h, the closed-loop system is stable. œ

Remark 5: If all the eigenvalues of K are outside the

unit circle, then a similar procedure can be developed

for �!�1.

4. Examples

It has been shown in Zhang et al. (2007b) that if the

original analogue system is step-tracking, when GBT is

applied to obtain a digital controller, the resulting

sampled-data is also step-tracking. In this section,

three examples are studied. The first is an IIR digital

filter design, the second is a re-study of an example

investigated in Rattan (1984) and Keller and Anderson

(1992), and the third is an H1 control of a system

studied in Chen and Francis (1995). By comparing

GBT with existing methods via these examples,

effectiveness of GBT is demonstrated.

Example 4.1: (IIR digital filter design, example 15.1

Rorabaugh 1993) Use the GBT to obtain an IIR filter

from a second-order Butterworth analogue filter

with a 3-dB cutoff frequency of 3KHz. The sampling

rate for the digital filter is 30,000 samples per second.

Clearly, the second-order analogue IIR filter is

given by

KðsÞ ¼
!2
c

s2 þ
ffiffiffi
2
p
!csþ !2

c

,

where !c¼ 6000
. Following Chen and Francis (1995)

(section 3.5), define error in the frequency domain:

errorð!Þ :¼ Kð j!Þ � rð j!ÞKgbt e
j!h

� ��� ��, ð42Þ

where

rð j!Þ ¼
1� ej!h

j!h
,

as defined in Equation (3.7) in Chen and Francis (1995).

We plot error(!), as shown in Figure 4. Clearly, when

�¼ 0.8, GBT is superior to the Tustin’s method

(�¼ 0.5). That is, GBT gives a better approximation

of the filter K(s) than the Tustin’s method.

Example 4.2: (Step-tracking, Rattan’s example,

Rattan (1984); Keller and Anderson (1992)) Consider

the analogue system as shown in Figure 5, where r is

a step input and the transfer functions of the plant G

and the controller K are given by:

GðsÞ ¼
10

s sþ 1ð Þ
, KðsÞ ¼

0:416sþ 1

0:139sþ 1
: ð43Þ

Discretising K using GBT yields a sampled-data system

as shown in Figure 6. It is proved in Zhang et al.

(2007b) that step-tracking is preserved if the sampled-

data system in Figure 6 is stable. This example is first

studied in Rattan (1984). It is reported that common

digitisation methods yield either non-stabilising

controllers or systems with very poor closed-loop

performance. A digital re-design approach, first

proposed in Keller and Anderson (1992) and further

studied in Anderson et al. (1999) and Lechevin,

Rabbath and Dufour (2005), could produce controllers

guaranteeing satisfactory closed-loop performance

Figure 4. Errors in the frequency domain.

K G
r e y

−

Figure 5. Unity-feedback analogue system �3.

Kgbt G
r e y

S H
−

Figure 6. Sampled-data system �4 via GBT.

International Journal of Control 751

D
ow

nl
oa

de
d 

by
 [

H
on

g 
K

on
g 

Po
ly

te
ch

ni
c 

U
ni

ve
rs

ity
] 

at
 0

2:
09

 1
3 

Ja
nu

ar
y 

20
12

 



even when the sampling period h is large. In this part,

we will compare it with GBT to demonstrate the

strength of the latter.
Now we compare unit step response of three

discretisation approaches (Figure 7), where the under-

lying sampling period h¼ 0.157. In Figure 7, the solid

line is the continuous-time step response; the dashed

line is the step response using the method in Keller and

Anderson (1992); the dashdot line is the step response

using the Tustin’s method; the dotted line is the step

response using GBT with (�¼�0.2). Clearly, the

performance using the Tustin’s method is unaccepta-

ble, while GBT gives as good a performance as that

proposed in Keller and Anderson (1992). In Liu and

Chen (2005), a modified bilinear integrations algorithm

is proposed based on the modulated sine function.

The proposed method is equivalent to GBT when

�2 [0.5,1). This example shows that by extending the

range of �, better control performance can be

obtained.
When h40.42, the plant is not stabilisable via

controllers designed using the method proposed in

Keller and Anderson (1992). However, for

h2 (0, 0.578), it can be stabilised by controllers

designed via GBT. Moreover, controllers obtained

based on the method in Keller and Anderson (1992)

are of the second-order, while those via GBT are of the

first-order.

Example 4.3: (H1 control, Chen and Francis (1995))

In this example, a sampled-data H1 control problem

discussed in Chen and Francis (1995) is re-studied.

Consider the continuous-time system as shown in

Figure 8, where

GðsÞ ¼
20� s

ðsþ 0:01Þðsþ 20Þ
, FðsÞ ¼

1

ð0:5=
Þsþ 1
,

WðsÞ ¼
1

ð2:5=
Þsþ 1ð Þ
2
, k1 ¼ k2 ¼ 0:01:

This example was studied extensively in Chen and

Francis (1995). The following stabilising analogue

controller K is designed:

KðsÞ ¼

1:4261� 105ðsþ 20Þðsþ 6:2832Þ

�ðsþ 3:9436Þðsþ 0:01Þ

� �
ðsþ 631:69Þðsþ 159:56Þðsþ 39:230Þ

�ðsþ 1:3212Þðsþ 1:1876Þ

� � : ð44Þ

In fact, the analogue controller K given in Equation

(44) is obtained by minimising the H1 norm of the

transfer function

Tzw :
w1

w2

� �
7 �!

z1

z2

� �

and achieves kTzwk‘2 ¼ 0:0813 (Chen and Francis

1995; pp. 340–341). Implement the analogue controller

K digitally to get a sampled-data system as shown in

Figure 9. In what follows, we shall address the

following problems:

. Can controllers designed via GBT stabilise the

closed-loop control system in Figure 9 even

when the sampling period is large?
. Pertaining to Figure 9, define �optðhÞ :¼

inffkTzwk‘2 : Kd is stablisingg. Can we choose

values of � such that the sampled-data system

has a similar (even the same) value of �opt(h)
as that obtained via the SD design?

Note that k1 is set to be zero in Figure 9 to

guarantee finiteness of �opt(h), as explained in

Example 13.8.1 in Chen and Francis (1995).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time

y

Figure 7. Step response: Continuous (solid); Keller and
Anderson (dashed); GBT (dotted); Tustin (dashdot).

K G
e

F−

W k2k2

w2

w1

z2z1

y u

Figure 8. Analogue feedback system.

w1 e
F

−

z1 z2

y
S Kd H P

W k2

u

Figure 9. Sampled-data feedback system.
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Now we address the first problem. As has been

done before, let Acl,d be the A-matrix of the closed-loop
system in Figure 9. Define

dðAcl,dÞ :¼
1

h
ð�ðAcl,dÞ � 1Þ:

Then Acl,d is stable if and only if d(Acl,d)50. Next we

plot d(Acl,d) versus h. According to Figure 10, the
sampled-data system is stable for every h2 (0, 0.02)
when Kd is the zero-order hold equivalent of K; while it
is stable for every h2 (0, 0.45) when Kd is obtained via

the bilinear transformation. However, when �¼ 17,

Figure 11 shows that the sampled-data system is stable

for every h2 (0, 12.4), a much larger range. In fact,

because the controller K is stable, according to

Theorem 3.8, it can be shown that the closed-loop

system is stable even when h¼ 17.2. Therefore, when �
is appropriately chosen, a sampled-data control

obtained via GBT may still be stable even in very

slow sampling.
In what follows, we study the second problem. For

some values of h, we compare the corresponding values

of �opt(h) for Kd obtained via GBT and the SD design,

respectively. The result is outlined in Table 1.
Table 1 tells us the discrepancy between the

emulation method via GBT and the SD design is

very small. Hence, it is arguable that the emulation

method based on GBT can achieve quite similar

performance as that via the SD design.

5. Conclusions

In this article we have studied a new controller

discretisation approach, namely, the GBT. GBT

provides a class of digital approximations of an

analogue controller, thus optimal discretisation is

rendered possible. We have studied international

stability of sampled-data systems obtained via GBT.

Numerical examples demonstrate the effectiveness of

the controller re-design approach via GBT.
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