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Quantum Higher Order Singular Value Decomposition

Lejia Gu Xiaoqiang Wang Guofeng Zhang

Abstract— Higher order singular value decomposition
(HOSVD) is an important tool for analyzing big data in
multilinear algebra and machine learning. In this paper, we
present a quantum algorithm for higher order singular value
decomposition. Our method allows one to decompose a tensor
into a core tensor containing tensor singular values and some
unitary matrices by quantum computers. Compared to the
classical HOSVD algorithm, our quantum algorithm provides
an exponential speedup.

Index Terms— Quantum algorithm, Quantum machine learn-
ing, Higher order singular value decomposition (HOSVD),
Tensor

I. INTRODUCTION

Matrix computations are vital to many optimization and

machine learning problems. Nowadays, due to the rise of

neural networks in machine learning methods, the elements

of a network are usually described by tensors which can

have more than two indices. Tensors (or hypermatrices),

as a higher order generalization of matrices, have found

widespread applications in scientific and engineering fields.

Tensor decomposition expresses a tensor as a sequence of

elementary operations acting on other, often simpler ten-

sors. Usually, key information can be extracted from the

decomposed tensor, and less space is needed to store the

original tensor. Tensor networks, as a countable collection

of tensors connected by contractions, have been widely

employed in training machine learning models. A quantum

state has a tensor representation. Hence, a quantum network,

namely a multipartite system, can be represented by a tensor

network. Indeed, quantum circuits are a special class of

tensor networks, where the arrangement of the tensors and

their types are restricted [4], [7], [12].

Quantum computers are devices that perform calculations

by utilizing quantum mechanical features including super-

position and entanglement. Although large-scale quantum

computers are not built yet, theoretical research on quantum

algorithms has been conducted for several years. In 1994,

Shor’s algorithm [23], is proved to be able to solve integer-

factorization problem with polymonial time on a quantum

computer, while it is NP in classical computing. In 1996,

Grover’s search algorithm [9] is able to find an entry from

an unstructured database quadratically faster than the cor-

responding classical algorithm. In 2009, Harrow, Hassidim
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and Lloyd put forward a quantum algorithm for solving linear

systems of equations, which is famous as the HHL Algorithm

[10]. Base on this algorithm, many quantum version of

classical machine learning methods are designed, such as

quantum least-squares linear regression [26] and support

vector machines [20]. The runtimes of such algorithms

are polylogarithmic in the dimensions of the matrix, so

that they provide exponential speedups over their classical

counterparts.

There are several types of tensor decompositions, such as

canonical polyadic (CP) decomposition [5], [11], tensor-train

(TT) decomposition [17], Tucker decompostion [24], and etc.

However, currently there are no quantum tensor decomposi-

tion algorithms. In this paper, we propose a quantum higher

order singular value decomposition (Q-HOSVD). HOSVD

is a specific orthogonal Tucker decomposition, and can be

considered as an extension of SVD from matrices to tensors.

Our method is based upon the quantum matrix singular

value decomposition algorithm [19] and several quantum

computing techniques. The input can be a tensor of any order

and dimension.

Classical HOSVD has been well studied, see, e.g., De

Lathauwer, De Moor, and Vandewalle in 2000 [6], and it

has been successfully applied to signal processing [16] and

pattern recognition [25] problems. Furthermore, HOSVD has

shown its strong power in quantum chemistry, especially in

the second order Møller Plesset perturbation theory calcula-

tions [2]. And HOSVD is used in [27] to derive the output

m photon state of a quantum linear passive system which

is driven by an m photon input state; more specifically, the

wave function of the output is expressed in terms of the

HOSVD of the input wave function.

Since HOSVD deals with high dimensional data, it has

been put into practice in some machine learning methods. In

[21], HOSVD representation for neural networks is proposed.

By applying the HOSVD the parameter-varying system can

be expressed in a tensor product form by locally tuned

neural network models. And in [13], HOSVD is applied for

compressing convolutional neural networks (CNN).

By our Q-HOSVD method, it is possible to do singular

value decomposition on tensors exponentially faster than the

classical algorithms. It can be directly applied to quantum

machine learning algorithms, and may help solve computa-

tionally challenging problems arising in quantum mechanics

and chemistry.

The remainder of this paper is organized as follows. Some

preliminaries are given in Section II. The quantum higher

order singular value decomposition algorithm is presented in

Section III. In the last section, we summarize the results and
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compare the quantum HOSVD algorithm with the classical

counterpart.

II. PRELIMINARIES

First, we would like to add a comment on the notation that

is used. Different symbols are used to facilitate the distinc-

tion between scalars, vectors, matrices, and tensors. Scalars

are denoted by both lower-case letters (a, b, . . . ;α, β, . . .)
and capital letters (A,B, . . .). Bold-face lower-case letters

(a,b, . . .) represent vectors. Since the algorithm we present

is a quantum algorithm, vectors are represented as quantum

states in Section III, ket |·〉 denotes a column vector, and

bra 〈·| denotes a row vector. Bold-face capitals (A,B, . . .)
correspond to matrices or operators, and tensors are written

as calligraphic letters (A,B, . . .).
For a matrix M ∈ Cm×n, there exists a factorization called

singular value decomposition (SVD):

M = UΣV
†, (1)

where U is a complex m×m unitary matrix, Σ is a diagonal

m×n matrix with non-negative real numbers on the diagonal,

V is a complex n×n unitary matrix and V
† is the conjugate

transpose of V. The decomposition can also be written as

M =

r∑

i=1

σiuiv
†
i , (2)

where r is the rank of M, σi is the ith largest singular value,

and ui and vi are the corresponding left and right singular

vectors respectively.

Denote [m] ≡ {1, 2, · · · ,m}. An mth-order tensor A =
(ai1···im) is a multi-array of Πm

j=1Ij entries, where ij ∈ [Ij ]
for j = 1, 2, · · · ,m, (I1, I2, . . . , Im) is the dimension of A.

When I1 = I2 = · · · = Im = n, A is called an mth-order

n-dimensional tensor [18].

The k-mode tensor-matrix multiplication is defined by

(A×k B)i1i2...ik−1jkik+1...im

≡
Ik∑

ik=1

ai1i2...ik−1ikik+1...im bjkik , (3)

where matrix B ∈ C
Jk×Ik which produces another mth-

order tensor. The inner product of two tensors A,B ∈
CI1×I2×···×Im , denoted as A · B, is defined as

A · B ≡
I1∑

i1=1

I2∑

i2=1

· · ·
Im∑

im=1

a∗i1···imbi1···im . (4)

Similar to the matrix case, the induced norm
√
A · A is called

the Frobenius norm of A, denoted as ||A||F .

For tensor A ∈ CI1×I2×···×Im , if there exist matrices

Xk = [x
(k)
1 x

(k)
2 · · ·x

(k)
Ik

] ∈ CIk×Ik with ||x(k)
ik
|| = 1 for

k ∈ [m] and ik ∈ [Ik] such that

A = S ×1 X1 ×2 X2 · · · ×m Xm, (5)

then (5) is said to be a Tucker decomposition of A, and

S = (si1···im) is called the core tensor of A. Higher order

singular value decomposition is a specific orthogonal Tucker

decomposition. For A ∈ C
I1×I2×···×Im , the HOSVD [6] is

defined as

A = S ×1 U
(1) ×2 U

(2) · · · ×m U
(m), (6)

where the k-mode singular matrix U
(k) =[

u
(k)
1 u

(k)
2 · · ·u

(k)
Ik

]

is a complex unitary Ik × Ik matrix, the

core tensor S ∈ CI1×I2×···×Im and its subtensors Sik=α, of

which the kth index is fixed to α ∈ [Ik], have the properties

of

(i) all-orthogonality:

Two subtensors Sik=α and Sik=β are orthogonal for k =
1, 2, · · · ,m:

Sik=α · Sik=β = 0 when α 6= β, (7)

(ii) ordering:

Similar to the matrix case, the tensor singular values are

defined as the Frobenius norms of the (N − 1)th-order

subtensors of the core tensor S:

σ(k)
α = ||Sik=α||F , (8)

for k = 1, . . . ,m and α = 1, . . . , Ik. Furthermore, these

tensor singular values have the following ordering property

σ
(k)
1 ≥ σ(k)

2 ≥ · · · ≥ σ(k)
Ik
≥ 0 (9)

for k = 1, 2, · · · ,m. When m = 2, i.e. A is a matrix, the

HOSVD is degenerated to the well-known matrix SVD.

For an mth-order tensor A ∈ CI1×I2×...×Im , the matrix

unfolding A
(k) ∈ CIk×(Πj 6=kIj) contains the element ai1···im

at the position with row number ik and column number

(ik+1 − 1)Ik+2Ik+3 · · · ImI1I2 · · · Ik−1

+(ik+2 − 1)Ik+3Ik+4 · · · ImI1I2 · · · Ik−1 + · · ·
+(im − 1)I1I2 · · · Ik−1 + (i1 − 1)I2I3 · · · Ik−1

+(i2 − 1)I3I4 · · · Ik−1 + · · ·+ ik−1.

By the above construction, the rank of A
(k) is at most Ik.

Clearly, the elements of tensor A and matrix A
(k) have a

one-to-one correspondence to each other.

In HOSVD, the columns of U
(k) have been sorted such

that the jth column u
(k)
j corresponds to the jth largest

nonzero singular value of A
(k). Then, we can similarly

define the truncated HOSVD. For k ∈ [m], we take the first

rk columns of U(k), then U
(k) ∈ CIk×rk . Finally, the core

tensor S is now of size r1 × r2 × · · · × rm.

In quantum computing, suppose we have a bipartite sys-

tem, whose state is described by a density operator ρ. The

reduced density operator for the first subsystem is defined

by

ρ1 ≡ tr2(ρ), (10)

where tr2 is a map of operators known as the partial trace

[15] over the second subsystem. The partial trace is defined

by

tr2 (|a1〉 〈a2| ⊗ |b1〉 〈b2|) ≡ |a1〉 〈a2| tr(|b1〉 〈b2|)
= 〈b2|b1〉 |a1〉 〈a2| , (11)



where |a1〉 and |a2〉 are two states in the first subsystem,

|b1〉 and |b2〉 are two states in the second subsystem.

III. Q-HOSVD ALGORITHM

In this section, we first present our Q-HOSVD algorithm.

Algorithm 1 Quantum Higher Order Singular Value Decom-

position (Q-HOSVD)

Input: A, ǫ, |b〉 , |00 · · · 0〉
Output: S,U(1),U(2), . . . ,U(m)

Step 1. Load A and ancilla |b〉 |00 · · · 0〉 into the quantum

register

Step 2. Unfold tensor A to matrix A
(k)

Step 3. Extend A
(k) to Hermitian matrix Ã

(k)

Step 4. Apply phase estimation to obtain |ψ〉
Step 5. Perform measurement on |λ̃j/N〉 and extract u

(k)
j

to compose U
(k)

Repeat Steps 2-5 for k = 1, . . . ,m
Step 6. S ← A×1 U

(1)† ×2 U
(2)† · · · ×m U

(m)†

Return S,U(1),U(2), . . . ,U(m)

In the following we explain the implementation of Algo-

rithm 1. For simplicity, we assume I1 = I2 = · · · = Im = n,

then A is an mth-order n-dimensional tensor.

A. Step 1.

A matrix A = (aij) can be loaded into a quantum

register by an oracle named quantum random access memory

(qRAM) [8]:

|i j〉 |00 · · ·0〉 7→ |i j〉 |aij〉 . (12)

Similarly tensor A = (ai1i2···im) can be accessed by the

following operation

|i1i2 · · · im〉 |00 · · · 0︸ ︷︷ ︸

ℓ

〉 7→ |i1i2 · · · im〉 |ai1i2···im〉 , (13)

where ik ∈ [n] for k = 1, 2, . . . ,m. This procedure can

be achieved using m logn+ ℓ qubits and TA = O(logm n)
operations.

B. Step 2.

The quantum unfolding matrix A
(k) = (a

′(k)
ikjk

) can be

directly processed in the following way

n−1∑

i1,i2,...,im=0

|ikik+1 · · · imi1 · · · ik−1〉 |aikik+1···imi1···ik−1
〉

→
n−1∑

ik=0

nm−1−1∑

jk=0

|ikjk〉 |a′(k)ikjk
〉 , (14)

where |jk〉 = |ik+1 · · · imi1 · · · ik−1〉. For example, for a 2×
2 × 2 tensor A, the mode-1 unfolding A

(1) corresponds to

A by

|000〉 |a000〉 → |00〉 |a′(1)00 〉
|001〉 |a001〉 → |01〉 |a′(1)01 〉

...

|111〉 |a111〉 → |13〉 |a′(1)13 〉 .

After unfolding, in Step 3 below we show how to use the

quantum singular value decomposition for matrices [19] to

find the singular matrices of the original tensor A.

C. Step 3.

Since A
(k) is not a Hermitian matrix, we consider the

following extended matrix

Ã
(k) ≡

[
0 A

(k)

A
(k)† 0

]

, (15)

then Ã
(k) is an (n + nm−1) × (n + nm−1) Hermitian

matrix. For Hermitian matrices, the singular values are the

absolute value of eigenvalues, so that phase estimation [15]

can be used to apply the singular value decomposition. Since

rank(A(k)) ≤ n, rank(Ã(k)) ≤ 2n. In the following we use

A and Ã to represent A(k) and Ã
(k) respectively when k is

fixed and N = n+ nm−1 to represent the dimension of Ã.

D. Step 4.

Define a SWAP operator SÃ ∈ CN2×N2

:

SÃ =

N∑

j,k=1

Ãjk |k〉 〈j| ⊗ |j〉 〈k| . (16)

This SWAP matrix is one-sparse in a quadratically bigger

space, therefore, the matrix exponentiation e−iSÃ∆t is effi-

ciently simulatable [3].

We use quantum principal component analysis (qPCA)

[14] to implement Ã using SÃ. Let ρ1 and ρ2 be two distinct

density matrices. Performing SÃ for small ∆t on ρ1 ⊗ ρ2:

tr1{e−iSÃ∆tρ1 ⊗ ρ2eiSÃ∆t}
=tr1{(I− iSÃ∆t)ρ1 ⊗ ρ2(I+ iSÃ∆t)}+O(∆t2)

=ρ2 − i tr1{SÃρ1 ⊗ ρ2}∆t+ i tr1{ρ1 ⊗ ρ2SÃ}∆t+O(∆t2).
(17)

The term tr1{SÃρ1 ⊗ ρ2} in (17) can be rewritten as

tr1{SÃρ1 ⊗ ρ2}

=tr1







N−1∑

j,k=0

Ãjk |k〉 〈j| ρ1 ⊗ |j〉 〈k| ρ2







=

N∑

j,k=1

Ãjk 〈j| ρ1 |k〉 ⊗ |j〉 〈k| ρ2. (18)

If we choose ρ1 = |~1〉 〈~1|, with |~1〉 ≡ 1√
N

∑N−1
k=0 |k〉, i.e.

ρ1 =
1

N

N−1∑

j,k=0

|j〉 〈k| , (19)



then

tr1{SÃρ1 ⊗ ρ2} =
1

N

N−1∑

j,k=0

Ãjk |j〉 〈k| ρ2 =
Ã

N
ρ2. (20)

Similarly, the second O(∆t) term tr1{ρ1 ⊗ ρ2SÃ} in (17)

becomes

tr1{ρ1 ⊗ ρ2SÃ} = ρ2
Ã

N
. (21)

Therefore,

tr1{e−iSÃ∆tρ1 ⊗ ρ2eiSÃ∆t} = ρ2 − i
∆t

N
[Ã, ρ2] +O(∆t2)

≈ e−i Ã
N

∆tρ2e
i Ã
N

∆t. (22)

Let ǫ0 be the trace norm of the error term O(∆t2). For s
steps, the resulting error is ǫ1 = sǫ0 ≤ 2s||A||2max∆t

2, where

||A||max = maxi1,...,im |ai1···im |. The proof is similar to that

in [19]. The simulated time is t = s∆t. Then,

ǫ1
s
≤ 2||A||2max

(
t

s

)2

. (23)

Thus,

s = O

(
t2

ǫ1
||A||2max

)

(24)

steps are required to simulate e−i Ã
N

∆t if ǫ1 and t are fixed.

Assume ||A||max = O(1), then s = O(t2/ǫ1). Applying the

output in Eq. (22) again in the second register, we obtain

tr1

{

e−iSÃ∆tρ1 ⊗
(

ρ2 − i
∆t

N
[Ã, ρ2] +O(∆t2)

)

eiSÃ∆t

}

=tr1{e−iSÃ∆tρ1 ⊗ ρ2eiSÃ∆t}

− i
∆t

N
tr1{e−iSÃ∆t(ρ1 ⊗ [Ã, ρ2])e

iSÃ∆t}+O(∆t2)

=ρ2 − i
∆t

N
[Ã, ρ2]− i

∆t

N
tr1{ρ1 ⊗ [Ã, ρ2]}+O(∆t2)

=ρ2 − i
2∆t

N
[Ã, ρ2] +O(∆t2). (25)

Thus, by continuously using k copies of ρ1 we can simulate

e−i(Ã/N)k∆t.

Next, we use the quantum phase estimation algorithm [15]

to estimate the eigenvalues of e−i(Ã/N)∆t. Given an initial

quantum state

|ψ〉 = |0 · · · 0
︸ ︷︷ ︸

d

〉 |~1〉 |b〉 (26)

with d = O(⌈log(1/ǫ2)⌉) control qubits, where |b〉 is the

superposition of eigenvectors |ũj〉 corresponding to λ̃j :

|b〉 =
N−1∑

j=0

βj |ũj〉 ,
N−1∑

j=0

|βj |2 = 1, (27)

ǫ2 is the accuracy for approximating the eigenvalues. Let

ρ2 = |b〉 〈b|. We first apply Hadamard gates to the first

register, then the state (26) becomes

1√
2d

2d−1∑

ℓ=0

|ℓ〉 |~1〉 |b〉 , (28)

whose density matrix has the following form

1

2d

2d−1∑

ℓ=0

|ℓ〉 〈ℓ| ⊗ ρ1 ⊗ ρ2. (29)

Then we multiply
∑2d−1

ℓ=0 |ℓ〉 〈ℓ| ⊗ (e−iSA∆t)ℓ and
∑2d−1

ℓ=0 |ℓ〉 〈ℓ| ⊗ (eiSA∆t)ℓ to both sides of (29) to obtain

2d−1∑

ℓ=0

|ℓ〉 〈ℓ| ⊗
(
(e−iSA∆t)ℓρ1 ⊗ ρ2(eiSA∆t)ℓ

)
. (30)

Next, we perform a partial trace to the second register using

(22) resulting in

2d−1∑

ℓ=0

|ℓ〉 〈ℓ| ⊗
(

(e−i Ã
N

∆t)ℓρ2(e
i Ã
N

∆t)ℓ
)

. (31)

After that, we apply the phase estimation to obtain the

eigenvalues of Ã/N , since

e−i Ã
N

∆t |b〉 =
N−1∑

j=0

βje
−i Ã

N
∆t |ũj〉

=

N−1∑

j=0

βje
−iλj(

Ã

N
)∆t |ũj〉 . (32)

At last, we implement the inverse quantum Fourier transform

[15] and remove the first register, the final state

|ψ〉 =
N−1∑

j=0

βj |λ̃j/N〉 |ũj〉 (33)

is obtained, where |λ̃j/N〉 is the eigenvalue of Ã/N encoded

in basis qubits. The corresponding eigenvector |ũj〉 is pro-

portional to (uj ;±vj) ∈ CN , where uj and vj are the left

and right singular vectors of Ã, the norm of each subvector

uj and vj is 1/
√
2, independent of their respective lengths

n and nm−1.

E. Step 5.

Since A is of size n × nm−1, A has at most n singular

values {σj}. As a result, Ã has at most 2n nonzero eigen-

values λ̃j ∈ {±σj}. Next, we measure the first register of

state (33) in the computational basis {|0〉 , · · · , |2d − 1〉}, all

eigenpairs |λ̃j/N〉 |ũj〉 are obtained with probability |βj |2.

Discarding the first register, and projecting |ũj〉 onto the uj

part by using projection operators Pu =
∑n−1

i=0 |i〉 〈i| and

Pv =
∑nm−1+n−1

i=n |i〉 〈i| results in |uj〉 with probability

〈ũj |uj , 0〉 = 1
2 . Then, the singular matrix U is calculated

by

U =

n∑

j=1

|uj〉 〈j| . (34)

Repeating measurements with the initial state |b〉 =
|0〉 , |1〉 , · · · , |n− 1〉 and applying amplitude amplification

[1], we can obtain all the singular vectors in TU = O(n3/2)
times with probability close to 1. Thus, the singular matrix

U
(k) is reconstructed.



F. Step 6.

After we get all U(k) for k = 1, 2, . . . ,m, in this step we

calculate the core tensor S:

S = A×1 U
(1)† ×2 U

(2)† · · · ×m U
(m)† . (35)

Similar to the quantum matrix multiplication algorithm by

swap test [22], we may calculate the tensor-matrix multipli-

cation A×k U
(k)† through the following state

1

||A||F ||U(k)||F

n−1∑

i1,...,ik−1,jk,ik+1,...,im=0

||U(k)
•jk ||2

||Ai1...ik−1•ik+1...im ||2〈Ai1...ik−1•ik+1...im |U
(k)
•jk 〉

|i1, . . . , ik−1, jk, ik+1, . . . , im〉 |0〉+ |0〉⊥ , (36)

where |Ai1...ik−1•ik+1...im〉 is an n-level quantum state (n-

entry vector) if i1, . . . , ik−1, ik+1, . . . , im are all fixed. Post-

selecting the state |0〉, we obtain the final state.

By (36), the success probability is

∑ ||U(k)
•jk ||22||Ai1...ik−1•ik+1...im ||22〈Ai1...ik−1•ik+1...im |U

(k)
•jk〉2

||A||2F ||U(k)||2F

=
||A ×k U

(k)† ||2F
||A||2F ||U(k)||2F

. (37)

After applying amplitude amplification [1], the final com-

putational complexity TM = Õ(||A||F ||U(k)||F /ǫ3||A ×k

U
(k)† ||F ) to accuracy ǫ3. Since unitary matrices preserve

norms,

||A||F = ||A ×k U
(k)† ||F .

Thus,

Tm = Õ

( ||U(k)||F
ǫ3

)

= Õ

(√
n

ǫ3

)

. (38)

Without loss of generality, we let ǫ1 = ǫ2 = ǫ3 = ǫ.

IV. SUMMARY AND DISCUSSION

We have described a quantum algorithm for higher order

singular value decomposition. The input can be a general

tensor of any order and dimension. The output is a core

tensor including tensor singular values and singular matrices

stored in the quantum register.

In our method, the computational complexity mainly

comes from matrix exponential simulation, data access,

phase estimation, quantum measurement, and tensor-matrix

multiplication. For an mth-order n-dimensional tensor, the

complexity of the classical HOSVD is O(mnm+1), while

the complexity of our quantum HOSVD is

msTUTA/ǫ+mTM = O(mn3/2 logm n/ǫ4) + Õ(m
√
n/ǫ),

(39)

where ǫ is the accuracy for matrix exponentiating, phase

estimation and tensor-matrix multiplication. Generally, 1/ǫ
can be considered as O(polylog(m,n)). In this sense, our

quantum HOSVD algorithm provides an exponential speedup

over the classical counterpart.

REFERENCES

[1] A. Ambainis, “Variable time amplitude amplification and quantum
algorithms for linear algebra problems,” in 29th International Sym-
posium on Theoretical Aspects of Computer Science (STACS 2012),
Dagstuhl, Germany, 2012, vol. 14, pp. 636-647.

[2] F. Bell, D. S. Lambrecht, and M. Head-Gordon, “Higher order singular
value decomposition in quantum chemistry,” Molecular Physics, vol.
108, no. 19-20, pp. 2759-2773, Oct. 2010.

[3] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders, “Efficient
Quantum Algorithms for Simulating Sparse Hamiltonians,” Commun.
Math. Phys., vol. 270, no. 2, pp. 359-371, Mar. 2007.

[4] J. Biamonte and V. Bergholm, “Tensor Networks in a Nutshell,”
arXiv:1708.00006 [quant-ph], Jul. 2017.

[5] J. D. Carroll and J.-J. Chang, “Analysis of individual differences
in multidimensional scaling via an n-way generalization of ‘Eckart-
Young’ decomposition,” Psychometrika, vol. 35, no. 3, pp. 283-319,
Sep. 1970.

[6] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A Multilinear
Singular Value Decomposition,” SIAM J. Matrix Anal. Appl., vol. 21,
no. 4, pp. 1253-1278, Jan. 2000.

[7] V. Dunjko and H. J. Briegel, “Machine learning & artificial intelligence
in the quantum domain: a review of recent progress,” Rep. Prog. Phys.,
vol. 81, no. 7, p. 074001, Jun. 2018.

[8] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum Random Access
Memory,” Phys. Rev. Lett., vol. 100, no. 16, p. 160501, Apr. 2008.

[9] L. K. Grover, “A Fast Quantum Mechanical Algorithm for Database
Search,” in Proceedings of the Twenty-eighth Annual ACM Sympo-
sium on Theory of Computing, New York, NY, USA, 1996, pp. 212-
219.

[10] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum Algorithm for
Linear Systems of Equations,” Phys. Rev. Lett., vol. 103, no. 15, p.
150502, Oct. 2009.

[11] R. A. Harshman, “Foundations of the PARAFAC procedure: Models
and conditions for an ‘explanatory’ multi-modal factor analysis,”
UCLA Working Papers in Phonetics, vol. 16, 1970.

[12] W. Huggins, P. Patil, B. Mitchell, K. B. Whaley, and E. M. Stouden-
mire, “Towards quantum machine learning with tensor networks,”
Quantum Sci. Technol., vol. 4, no. 2, p. 024001, Jan. 2019.

[13] M. Kholiavchenko, “Iterative Low-Rank Approximation for CNN
Compression,” arXiv:1803.08995 [cs], Mar. 2018.

[14] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal com-
ponent analysis,” Nature Physics, vol. 10, no. 9, pp. 631-633, Sep.
2014.

[15] M. A. Nielsen and I. Chuang. Quantum computation and quantum
information. Cambridge University Press, 2000.

[16] L. Omberg, G. H. Golub, and O. Alter, “A tensor higher-order singular
value decomposition for integrative analysis of DNA microarray data
from different studies,” Proc. Natl. Acad. Sci. U.S.A., vol. 104, no. 47,
pp. 18371-18376, Nov. 2007.

[17] I. Oseledets, “Tensor-Train Decomposition,” SIAM J. Sci. Comput.,
vol. 33, no. 5, pp. 2295-2317, Jan. 2011.

[18] L. Qi and Z. Luo, Tensor analysis: spectral theory and special tensors.
SIAM, 2017.

[19] P. Rebentrost, A. Steffens, I. Marvian, and S. Lloyd, “Quantum
singular-value decomposition of nonsparse low-rank matrices,” Phys.
Rev. A, vol. 97, no. 1, p. 012327, Jan. 2018.

[20] P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum Support Vector
Machine for Big Data Classification,” Phys. Rev. Lett., vol. 113, no.
13, p. 130503, Sep. 2014.
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