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In the analysis of censored survival data, to avoid a biased inference of treatment
effects on the hazard function of the survival time, it is important to consider
the treatment heterogeneity. Without requiring any prior knowledge about the
subgroup structure, we propose a data driven subgroup analysis procedure for
the heterogeneous Cox model by constructing a pairwise fusion penalized par-
tial likelihood-based objective function. The proposed method can determine
the number of subgroups, identify the group structure, and estimate the treat-
ment effect simultaneously and automatically. A majorized alternating direction
method of multipliers algorithm is then developed to deal with the numerically
challenging high-dimensional problems. We also establish the oracle properties
and the model selection consistency for the proposed penalized estimator. Our
proposed method is evaluated by simulation studies and further illustrated by
the analysis of the breast cancer data.
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1 INTRODUCTION

In the study of survival analysis, one of the main purposes is to estimate the covariate effects on survival times. Various
important topics on classical Cox’s proportional hazards model have been widely discussed by specifying that the covari-
ates have log-linear effects on the hazard function of survival time. For example, Fan and Li,1 Zhang and Lu,2 and Zhao
et al3 developed variable selection approaches for the Cox model. Bradic et al,4 Huang et al,5 and Fang et al6 investigated
the asymptotic properties of the penalized partial likelihood estimators for high-dimensional Cox models. Chen et al,7
Qu et al,8 and Kong et al9 studied functional Cox regression models. All these studies are based on the assumption that
the covariate effects possess homogeneity.

In clinical medicine applications, treatment effects are usually heterogeneous, that is, the same treatment may result
in different effects over different groups of patients with similar characteristics. In these situations, the homogeneous
assumption in classical model would lead to biased estimates. Thus, identifying the group-specific treatment effect is the
key in the process of precision medicine treatment. Some subgroup analysis methods have been developed. Among others,
Kravitz et al,10 Rothwell,11 and Lagakos12 used descriptive statistics to analyze heterogeneous experimental data; Wei and
Kosorok,13 Shen and He,14 and Wu et al15 studied the problem of treatment heterogeneity based on the finite mixture
models, such as Gaussian mixture model, logistic-normal mixture model, and logistic-Cox mixture model. Recently, Ma
and Huang16 and Ma et al17 developed a kind of regularization method to identify the grouping structure and estimate the
treatment effect simultaneously based on a data driven process. Furthermore, Zhang et al18 extended the regularization
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method to the quantile regression model and proposed a robust subgroup identification method. Chen et al19 utilized this
method to analyze the zero-inflated Poisson regression model.

The works mentioned above focus on complete observation data except Wu et al.15 For censored survival data, the
incomplete data information and complexity of survival models bring challenges for subgroup analysis. In this article,
we consider the subgroup analysis in the heterogeneous Cox model under the assumption of sparsity subgroup structure.
Based on the objective function constructed through combining the negative logarithmic partial likelihood function and
a concave fusion penalty function, we can identify the subgroup structure and estimate treatment effects simultaneously
without any prior knowledge about the group structure. The likelihood-based regularization approaches make the sta-
tistical inference of identifying the subgroup structure and estimating treatment effects become an automated procedure
and so it is easy to implement.

To overcome the computational difficulties caused from the complicated nature of the likelihood-based objective func-
tion, we borrow the ideas of the majorized alternating direction method of multipliers (ADMM) algorithm.20 Compared
with the classical ADMM algorithm suggested by Ma and Huang,16 this algorithm is able to efficiently handle large-scale
problems to get more accurate solutions by transforming an objective function into a majorized convex function with a
pairwise fusion penalty. We take the ridge solution of the negative log-likelihood function as the initial solution of the
algorithm, and find that the initial solution performs well in identifying the subgroup structure in our simulation studies.

Using the oracle estimator as a bridge, we obtain the oracle property of the proposed estimator. Concretely, we obtain
the consistency and asymptotic normality of the oracle estimator at first. Then we show that the oracle estimator and the
proposed estimator are asymptotically equivalent. Thus, the latter is consistent and possesses the asymptotic normality.
This property also illustrates that the proposed method can identify the subgroup structure of the model as if we knew it
in advance.

The rest of this article is organized as follows. In Section 2, we introduce the heterogeneous Cox model with right
censored data and propose a penalized estimation approach. Section 3 presents the majorized ADMM algorithm for com-
puting the proposed estimators. In Section 4, we establish the consistency and the asymptotic normality of the proposed
estimator. We then conduct simulation studies to demonstrate the performance of the proposed method in Section 5, and
use the method to analyze a real data example in Section 6. Section 7 provides some concluding remarks. The proofs of
the theoretical results are relegated to the Appendix.

2 HETEROGENEOUS COX MODEL AND ESTIMATION PROCEDURE

Consider a survival study containing n independent subjects. For subject i, let Ui and Ci denote the failure time and
the censoring time, respectively. Then the observed data consist of {(Ti,Δi) ∶ i = 1, … ,n}, where Ti =Ui ∧Ci and Δi =
1{Ui≤Ci}. Let Xi and Zi denote covariates with dimensions p and q, respectively. Let 𝜆(t|Xi,Zi) be the conditional hazard
rate function of U given Xi and Zi. Then the homogeneous Cox model is

𝜆(t|Xi,Zi) = 𝜆0(t) exp(ZT
i 𝜂 + XT

i 𝛽), i = 1, … ,n, (1)

where 𝜆0(t) is the baseline hazard function, 𝜂 and 𝛽 are unknown regression parameters denoting the average effects.
However, the homogeneous assumption about covariate effects is not satisfied when the effects of Xi are different among
subjects. To describe the treatment heterogeneity, we propose the heterogeneous Cox model as follows:

𝜆(t|Xi,Zi) = 𝜆0(t) exp(ZT
i 𝜂 + XT

i 𝛽i), i = 1, … ,n, (2)

where 𝛽i is subject-specific effect of Xi on the hazard function. We suppose that n subjects are divided into K potential
subgroups according to set = (1, … ,K), and 𝛽i ≡ 𝛼k for all i ∈ k, k= 1, … , K. For this model, we focus on identifying
the subgroup set  and estimating parameters {𝛼1, … , 𝛼K} and 𝜂.

For the coefficient of X , define 𝜶 = (𝛼T
1 , … , 𝛼T

K)
T and 𝜷 = (𝛽T

1 , … , 𝛽T
n )T . The negative partial log-likelihood function

is

𝓁n(𝜂, 𝜷) = −
n∑

i=1
Δi(ZT

i 𝜂 + XT
i 𝛽i) +

n∑
i=1

Δi log

( ∑
j∈R(Ti)

exp(ZT
j 𝜂 + XT

j 𝛽j)

)
, (3)
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where R(Ti)= {j : Tj ≥Ti} is the risk set. For the purpose of identifying the subgroup structure, we use a concave pairwise
penalty p𝛾 (||𝛽i − 𝛽j||, 𝜆) to shrink small value of ||𝛽i − 𝛽j|| to 0, where || ⋅ || is the L2-norm of a vector. Then the criterion
function is

Qn(𝜂, 𝜷) = 𝓁n(𝜂, 𝜷) +
∑
i<j

p𝛾 (||𝛽i − 𝛽j||, 𝜆), (4)

where 𝜆 ≥ 0 is a tuning parameter. Thus, we can obtain the estimator (𝜂̂(𝜆), 𝜷̂(𝜆)) by minimizing the objective func-
tion (4) with a given turning parameter 𝜆. Finally, the estimator for 𝜶 is the distinct value of 𝜷̂(𝜆), denoted by 𝜶̂(𝜆) =
(𝛼̂T

1 (𝜆), … , 𝛼̂T
K̂(𝜆))

T . The identified subgroup structure is ̂k(𝜆) = {i ∶ 𝛽 i(𝜆) = 𝛼̂k(𝜆), 1 ≤ i ≤ n}, where 1 ≤ k ≤ K̂(𝜆).
The penalty function can be naively chosen as the L1 penalty function p𝛾 (t, 𝜆) = 𝜆|t|, but L1 penalty tends to choose

too many subgroups. Following Ma and Huang,16 a better choice of the penalty function is the smoothly clipped absolute
deviation (SCAD)21 with

p𝛾 (t, 𝜆) = 𝜆∫
|t|

0
min{1, (𝛾 − x∕𝜆)+∕(𝛾 − 1)}dx,

or the minimax concave penalty (MCP)22 with

p𝛾 (t, 𝜆) = 𝜆∫
|t|

0
(1 − x∕(𝛾𝜆))+dx.

3 MAJORIZED ADMM ALGORITHM

In this section, we present the algorithm to find the solution path (𝜂̂(𝜆), 𝜷̂(𝜆)). Introducing a new set of parameters uij =
𝛽i − 𝛽j, we can reformulate the criterion function Qn(𝜂, 𝜷) as

Qn(𝜂, 𝜷,u) = 𝓁n(𝜂, 𝜷) +
∑
i<j

p𝛾 (||uij||, 𝜆)
subject to 𝛽i − 𝛽j − uij = 0, where u = (uT

ij , i < j)T . Following Ma et al,17 we can solve this minimization problem using the
standard ADMM algorithm by approximating 𝓁n(𝜂, 𝜷) as the quadratic function

𝓁n(𝜂, 𝜷) ≈ 𝓁n(𝜂(m−1), 𝜷(m−1)) + ∇𝓁n(𝜂(m−1), 𝜷(m−1))T ((𝜂, 𝜷) − (𝜂(m−1), 𝜷(m−1))
)

+
(
(𝜂, 𝜷)T − (𝜂(m−1), 𝜷 (m−1))T)∇2𝓁n(𝜂(m−1), 𝜷(m−1))

(
(𝜂, 𝜷) − (𝜂(m−1), 𝜷(m−1))

)
,

where (𝜂(m−1), 𝜷(m−1)) is the value of parameter in the mth iteration step. However, the quadratic approximation is only
accurate when (𝜂, 𝜷) is close to (𝜂(m−1), 𝜷(m−1)), and the calculation of the second-order derivative ∇2𝓁n(𝜂, 𝜷) is time
consuming. Hence, it motivates us to utilize the idea of the majorized ADMM algorithm.20

Introduce another set of parameters Yi = ZT
i 𝜂 + XT

i 𝛽i, and let Y= (Y 1, … , Y n)T . The negative log partial-likelihood
function ln(𝜂, 𝜷) can be rewritten as

g(Y) = −
n∑

i=1
ΔiYi +

n∑
i=1

Δi log

( ∑
j∈R(Ti)

exp(Yj)

)
.

Then we need to minimize

Qn(𝜂, 𝜷,u,Y) = g(Y) +
∑
i<j

p𝛾 (||uij||, 𝜆) (5)

subject to 𝛽i − 𝛽j − uij = 0 and Yi = ZT
i 𝜂 + XT

i 𝛽i. Since ∇2g(Y) ≼ G̃ for G̃ = 1
2
diag{g̃1, … , g̃n} and g̃j =

∑n
i=1 ΔiIj∈R(Ti), we

have

g(Y) ≤ g̃(Y;Y′) ∶= g(Y′) + ⟨Y − Y′,∇g(Y′)⟩ + 1
2
||Y − Y′||2

G̃
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for any Y and Y′ with ||x||2
G̃
= ⟨x, G̃x⟩. The objective function (5) is then transformed to the majorized augmented

Lagrangian function as follows

Q′
n(𝜂, 𝜷,Y,u;w, v,Y′) = g̃(Y;Y′) +

∑
i<j

p𝛾 (||uij||, 𝜆) + n∑
i=1
⟨wi,Yi − ZT

i 𝜂 − XT
i 𝛽i⟩

+
∑
i<j
⟨vij, 𝛽i − 𝛽j − uij⟩ + 𝜗

2

n∑
i=1

(Yi − ZT
i 𝜂 − XT

i 𝛽i)2 + 𝜗

2
∑
i<j
||𝛽i − 𝛽j − uij||2,

where the dual variables w= (wi, i= 1, … , n)T and v = (vT
ij , i < j)T are the Lagrange multipliers, and 𝜗 is the penalty

parameter. We then compute the estimators 𝜷̂ and 𝜂̂ through the following majorized ADMM algorithm.
At the mth iteration, for a given value of parameter (𝜂(m−1), 𝛽(m−1),Y(m−1),u(m−1);w(m−1), v(m−1),Y′(m−1)), cluster size

K(m− 1), and subgroup set (m−1), the iteration goes as follows:

Step 1. Update (𝜂(m), 𝜷(m)) by minimizing

Q′
n(𝜂, 𝜷,Y(m−1),u(m−1);w(m−1), v(m−1),Y′(m−1));

Step 2. Update (Y(m), u(m)) by minimizing

Q′
n(𝜂(m), 𝜷(m),Y,u;w(m−1), v(m−1),Y′(m−1))

and update

Y ′(m)
i = ZT

i 𝜂
(m) + XT

i 𝛽
(m)
i (6)

for i= 1, … , n;
Step 3. Update w(m) and v(m) by

w(m)
i = w(m−1)

i + 𝜚𝜗(Y (m)
i − ZT

i 𝜂
(m) − XT

i 𝛽
(m)
i ),

v(m)
ij = v(m−1)

ij + 𝜚𝜗(𝛽(m)
i − 𝛽

(m)
j − u(m)

ij ), (7)

where the constant 𝜚 ∈ (0, (1 +
√

5)∕2);
Step 4. Update K(m) and (m) by clustering 𝜷 (m).

At Step 1, for fixed (Y, u, w, v, Y′), it suffices to minimize the following objective function in order to update 𝜷 and 𝜂:

n∑
i=1
⟨wi,Yi − ZT

i 𝜂 − XT
i 𝛽i⟩ +∑

i<j
⟨vij, 𝛽i − 𝛽j − uij⟩ + 𝜗

2

n∑
i=1

(Yi − ZT
i 𝜂 − XT

i 𝛽i)2 + 𝜗

2
∑
i<j
||𝛽i − 𝛽j − uij||2. (8)

Define Z= (Z1, … , Zn)T , X = diag(XT
1 , … ,XT

n ) and A=D⊗ Ip, where D = {(ei − ej), i < j}T with ei being an n× 1
vector whose ith entry is 1 and the remaining ones are 0, Ip is a p× p identity matrix, and ⊗ is a Kronecker product. For
given K and , let W = {𝜔ik} be an n×K matrix, where the entry 𝜔ik takes 1 if i ∈ k and 0 otherwise. In addition, we
define W̃ = W ⊗ Ip, X̃ = XW̃, and Ã = AW̃. Thus, after removing the terms irrelevant to 𝜷 and 𝜂, the minimal point
of (8) is obtained equivalently by minimizing

1
2
||Y − Z𝜂 − X̃𝜶 + w

𝜗
||2 + 1

2
||Ã𝜶 − u + v

𝜗
||2.

At the mth iteration, the parameters 𝜷 and 𝜂 are updated through the following equations

𝜶(m) = H−1 S(m−1)
 ,
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𝜷(m) = W̃𝜶(m),

𝜂(m) = (ZTZ)−1ZT(Y(m−1) − X𝜷 (m) + 𝜗−1w(m−1)), (9)

where H = X̃
T

QZX̃ + ÃTÃ, and S(m−1)
 = X̃

T
QZ(Y(m−1) + 𝜗−1w(m−1)) + ÃT(u(m−1) − 𝜗−1v(m−1)) with Qz = In − Z

(ZTZ)−1ZT . It deserves to note that the updated solution of parameter 𝜷(m) includes the integrated information of 𝜶(m),
(m−1) and K(m− 1).

At Step 2, for fixed (𝜂, 𝛽,w, v,Y′), we need to get the minimal points

arg min
Y
⟨Y,∇g(Y′)⟩ + 1

2
||Y − Y′||2

G̃
(10)

+
n∑

i=1
⟨wi,Yi − ZT

i 𝜂 − XT
i 𝛽i⟩ + 𝜗

2

n∑
i=1

(Yi − ZT
i 𝜂 − XT

i 𝛽i)2,

arg min
uij

1
2
‖‖‖𝛽i − 𝛽j +

vij

𝜗
− uij

‖‖‖2
+ 1

𝜗
p𝛾 (||uij||, 𝜆). (11)

At the mth iteration, for (10), it can be solved that for i= 1, … , n,

Y (m)
i = (g̃i + 𝜗)−1

[
−∇ig(Y′(m−1)) + g̃iY

′(m−1)
i − w(m−1)

i + 𝜗(ZT
i 𝜂

(m) + XT
i 𝛽

(m)
i )
]
. (12)

For (11), we can get the closed form of u(m)
ij for some commonly used penalties, such as group MCP and group SCAD.

For the group SCAD penalty with parameter 𝛾 , that is,

p′
𝛾 (||uij||, 𝜆) = 𝜆I(||uij|| ≤ 𝜆) +

(𝛾𝜆 − ||uij||)+
𝛾 − 1

I(||uij|| > 𝜆),

we have

u(m)
ij =

⎧⎪⎪⎨⎪⎪⎩
S(c(m−1)

ij ; 𝜆∕𝜗), ||c(m−1)
ij || ≤ 𝜆 + 𝜆∕𝜗,(

𝜗(𝛾−1)−𝜆𝛾∕||c(m−1)
ij ||)c(m−1)

ij

𝜗𝛾−𝜗−1
, 𝜆 + 𝜆∕𝜗 < ||c(m−1)

ij || ≤ 𝜆𝛾,

c(m−1)
ij , ||c(m−1)

ij || > 𝜆𝛾,

(13)

where c(m−1)
ij = 𝛽

(m)
i − 𝛽

(m)
j +

v(m−1)
ij

𝜗
and S(c; 𝜆) = (1 − 𝜆∕||c||)+c. For group MCP penalty with parameter 𝛾 , that is,

p′
𝛾 (||uij||, 𝜆) = (𝛾𝜆 − ||uij||)+

𝛾
,

we have

u(m)
ij =

⎧⎪⎨⎪⎩
S
(

𝜗c(m−1)
ij

𝜗−1∕𝛾
; 𝜆

𝜗−1∕𝛾

)
, ||c(m−1)

ij || ≤ 𝜆𝛾,

c(m−1)
ij , ||c(m−1)

ij || > 𝜆𝛾.

(14)

At Step 4, we first solve the following optimization problem

ũ(m)
ij = arg min

ũij

1
2
||𝛽(m)

i − 𝛽
(m)
j − ũij||2 + p𝛾 (||ũij||, 𝜆), (15)

and then update K(m) and (m) by clustering individuals i and j into the same group if ũij = 0. This step is critical to
clustering analysis of the regression coefficient 𝜷 so that Step 1 can be carried out smoothly in the recursive process. The
performance of the algorithm depends on the choice of the penalty function and the tuning parameter 𝜆.
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The initial points in the algorithm are taken as follows. Since covariate Z has no subgroup effect, we simply take the
estimator 𝜂̂ as 𝜂(0) by treating the hazard function as a homogeneous effect model. As a reasonable initial point of param-
eter 𝜷, it should reflect not only the form of the assumed hazard function but also the subgroup relation among different
individuals. So we consider the ridge solution of the negative log-likelihood function as 𝜷 (0). Concretely, we define

𝜷 (0) = arg min
𝜷

ln(𝜂(0), 𝜷) +
𝜆∗

2
∑
i<j
||𝛽i − 𝛽j||2,

where tuning parameter 𝜆∗ is taken as 0.001 in our simulation studies, and utilize a majorized algorithm to find the solu-
tion of 𝜷 (0) through (5). We take K(0) = ⌊√n⌋ to ensure that there are enough groups at the beginning of the iteration. A
cluster analysis method can then be applied to𝜷(0) for determining(0) = ((0)

1 , … ,(0)
K(0) ). Take Y(0) = Y′(0) = Z𝜂(0) + X𝜷(0),

u(0) = A𝜷 (0) and w(0) = v(0) = 0.
Denote the primal residual as

r(m) =
n∑

i=1
(y(m)

i − zT
i 𝜂

(m) − xT
i 𝛽

(m)
i )2 +

∑
i<j
||𝛽(m)

i − 𝛽
(m)
j − u(m)

ij ||2. (16)

We stop the iteration when r(m) is small enough.
We summarize the above descriptions in Algorithm 1.

Algorithm 1. Majorized ADMM algorithm

Initialize (𝜂(0), 𝛽(0),Y(0),u(0);w(0), v(0),Y′(0)), K(0), and (0)

for m = 1, 2, · · · do
Update (𝜷(m), 𝜂(m)) using (9)
Update (Y(m),u(m)) using (12) (13), and (14)
Update Y′(m) using (6)
Update (w(m), v(m)) using (7)
Compute ũ(m)

ij using (15), and update (K(m),(m)) according to ũ(m)
ij

Compute r(m) using (16)
if r(m) is small enough then

Stop and denote the last interaction by (𝜷̂, 𝜂̂)
end if

end for

4 ASYMPTOTIC RESULTS

Let Ni(t) = 1(Ti≤t,Δi=1), Yi(t) = 1(Ti≥t), and 𝜏 be the end time of study. Suppose that ∫ 𝜏

0 𝜆0(t)dt < ∞. The negative partial
log-likelihood function can be rewritten as

𝓁n(𝜂, 𝜷) = −
n∑

i=1
∫

𝜏

0

[
(ZT

i 𝜂 + XT
i 𝛽i) − log

{ n∑
j=1

Yj(t) exp(ZT
j 𝜂 + XT

j 𝛽j)

}]
dNi(t).

The objective function is Qn(𝜂, 𝜷) = 𝓁n(𝜂, 𝜷) + Pn(𝜷), where Pn(𝜷) =
∑

i<jp𝛾 (||𝛽i − 𝛽j||, 𝜆). Denote the true subgroup set
as 0 = (0,1, … ,0,K0). Define W̃0 = W0 ⊗ Ip, X̃0 = XW̃0 , B = (Z, X̃0), and let Bi be the ith column of BT . Let 𝜽 =
(𝜂T ,𝜶T)T , and S(0)(𝜽,B, t) = n−1∑n

i=1 Yi(t) exp(BT
i 𝜽). Thus, with the prior information of 0, we write the negative partial

log-likelihood function as

𝓁̃n(𝜽) = −
n∑

i=1
∫

𝜏

0
[BT

i 𝜽 − log[nS(0)(𝜽,B, t)]]dNi(t).

Then the oracle estimator 𝜽̂or = (𝜂̂or, 𝜶̂or) is the minimizer of 𝓁̃n(𝜽).
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Now we present the asymptotic results of the proposed estimators.

Theorem 1. Suppose that Conditions (C1) to (C3) given in the Appendix hold. Let 𝜽0 be the true value of parameter 𝜽.
Then (i) 𝜽̂or p

→𝜽0; (ii)
√

n(𝜽̂or − 𝜽0) converges in distribution to the multivariate normal distribution with zero mean and
covariance matrix Σ−1(𝜽0), where Σ(𝜽0) is given in the Appendix.

Theorem 1 shows that when the grouping structure is known, the oracle estimator is consistent and asymptotically
normal. Next, when the true subgroup set 0 is known, we define the oracle parameter space of 𝜷 as

0 = {𝜷 ∈ Rnp ∶ 𝛽i = 𝛽j = 𝛼k, for any i, j ∈ 0,k, 1 ≤ k ≤ K0}.

Define (𝜂̂or, 𝜷̂
or) as the minimizer of 𝓁n(𝜂, 𝜷) with subject to 𝜷 ∈ 0 . Set 𝜷0 and 𝜶0 to be the true parameter. We first

consider the case of K0 ≥ 2 and have the following result.

Theorem 2. Suppose that Conditions (C1) to (C4) given in the Appendix hold. Let b = mini∈0,k ,j∈0,k′ ,k≠k′ ||𝛽0i − 𝛽0j|| =
mink≠k′ ||𝛼0k − 𝛼0k′ ||. Assume that b > a𝜆 for constant a in Condition (C4). Then there exists a local minimizer (𝜂̂(𝜆), 𝜷̂(𝜆))
of the objective function Qn(𝜂, 𝜷; 𝜆) satisfying P

(
(𝜂̂(𝜆), 𝜷̂(𝜆)) = (𝜂̂or, 𝜷̂

or)
)
→ 1.

Next, we consider the case of a homogeneous model in which K0 = 1 and 𝛽01 = … = 𝛽0n ≡ 𝜶0.

Theorem 3. Suppose that Conditions (C1) to (C4) given in the Appendix hold. When there is only one group, we define
the oracle parameter space of 𝜷 as  = {𝜷 ∈ Rnp ∶ 𝛽i ≡ 𝜶, i = 1, … ,n}, and the oracle estimator (𝜂̂or, 𝜷̂

or) as the mini-
mizer of 𝓁n(𝜂, 𝜷) with 𝜷 ∈ . Then there exists a local minimizer (𝜂̂(𝜆), 𝜷̂(𝜆)) of the objective function Qn(𝜂, 𝜷; 𝜆) satisfying
P
(
(𝜂̂(𝜆), 𝜷̂(𝜆)) = (𝜂̂or, 𝜷̂

or)
)
→ 1.

Let 𝜶̂(𝜆) be the distinct value of 𝜷̂(𝜆) and 𝜶̂or be the distinct value of 𝜷̂or. By Theorems 1 to 3, we conclude that
n1∕2(𝜽̂(𝜆) − 𝜽0) converges in distribution to the multivariate normal distribution with mean 0 and covariance matrix
Σ−1(𝜽0).

5 SIMULATION STUDIES

We conducted simulation studies to evaluate the performance of the proposed method. The data were generated from
model (2) with censoring rate 0.20, where 𝜆0(t) = 1, 𝜂 = (−1, 1)T , and Zi = (Zi1, Zi2)T was generated from multivariate
normal with mean 0, variance 1 and correlation 0.4. We considered four examples: (i) one treatment variable with two
latent subgroups of equal size; (ii) multitreatment variable with two subgroups of unequal size; (iii) one treatment variable
with three latent subgroups of equal size; (iv) one treatment variable with a homogeneous effect. Two penalties, group
SCAD and group MCP, were used in the examples to compare their performance with oracle estimators. The parameter
𝛾 was taken as 3.7 and 2.5 for SCAD and MCP, respectively. We set sample size n= 100 or 200 in Examples 1, 2 and 4 and
n= 150 or 300 in Example 3, and let 𝜗= 1 in the majorized ADMM algorithm.

To implement the algorithm, we adopt the warm start to update the solution path of 𝜷 and 𝜂 along different values of
𝜆, and use the modified BIC criterion in Lee et al23 to select the optimal tuning parameter 𝜆 by minimizing

BIC(𝜆) = ln(𝜂̂(𝜆), 𝜷̂(𝜆)) + Cn
log n

n
(K̂(𝜆)p + q),

where Cn = log(nK̂(𝜆) + q). The simulation results are based on 100 replications.

Example 1. We first generated Xi from Bernoulli(0.5)+ 1. Let 1 = {1, … ,n∕2} and 2 = {n∕2 + 1, … ,n}, and the
effects of variable X on the survival time were divided into 2 groups with equal size. We considered the following two
cases to investigate the effect of the size of the difference between the subgroup-specific treatment effects:

Case 1: 𝛽i = −1.5 for i ∈ 1 and 𝛽i = 1.5 for i ∈ 2, that is, 𝜶 = (−1.5, 1.5)T .
Case 2: 𝛽i = −3 for i ∈ 1 and 𝛽i = 3 for i ∈ 2, that is, 𝜶 = (−3, 3)T .

We also compared our approach with the subgroup analysis approach under the logistic-Cox mixture model15 in
Example 1.
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n Method Mean Median SD TPR

Case 1: 𝛼 = (−1.5, 1.5) and 𝜂 = (−1, 1)

100 GMCP 2.10 2 0.333 0.911

GSCAD 2.09 2 0.321 0.909

200 GMCP 2.13 2 0.367 0.922

GSCAD 2.08 2 0.273 0.923

Case 2: 𝛼 = (−3, 3) and 𝜂 = (−1, 1)

100 GMCP 2 2 0 0.978

GSCAD 2 2 0 0.979

200 GMCP 2 2 0 0.980

GSCAD 2 2 0 0.984

Note: The true value of K is K = 2. SD represents standard deviation; TPR represents
rate of individuals selected into the subgroups correctly.

T A B L E 1 Simulation results for estimation of group
size K in Example 1

The simulation results for Example 1 are summarized in Tables 1 and 2 and Figure 1. Figure 1 includes two kinds
of fusiongrams for GMCP when n= 100, where one is from one simulated dataset and the other is based on the median
estimate of 100 replications for each fixed tuning parameter. The plots from one dataset show how the group size and
estimates change as the tuning parameter value increases. It is clear that regression coefficients will be estimated as one
group for large enough value of the tuning parameter. As a comparison, the estimates in the fusiongram based on 100
replications are more concentrated. This implies that our ridge initial solution can statistically subgroup the regression
coefficients to some degree. The fusiongram for GSCAD and the fusiongram for n= 200 are similar and so omitted here.
Table 1 reports the estimates of group size K in Example 1. The means and medians of K̂ under both GMCP and GSCAD
selectors are close to the true value. When the difference of treatment effects between two subgroups increases, the true
positive rate (TPR) becomes larger and are closer to 1, indicating identification of the subgroup structure more accurate.
Table 2 further shows the estimates of regression coefficients. We can see that the Means and Medians are close to the
true values of the parameters, and the standard deviations (SDs) reduce as the sample size increases. Noting that the
logistic-Cox mixture model assumes that the parameter K = 2 is given and the grouping membership satisfies a logistic
model, its parameter space is much smaller than our model. Table 2 shows the biases and standard errors of our estimators
are comparable to those obtained by fitting the logistic-Cox mixture model.

Example 2. Suppose Xi = (Xi1, Xi2)T , where Xi1 and Xi2 were generated from Bernoulli(0.5)+ 1 and Uniform(1, 3),
respectively. Set 𝛽i = (−2, 0.5)T for i ∈ 1, and 𝛽i = (2, 3)T for i ∈ 2, where 1 = {1, … , 2n∕5}, and 2 = {2n∕5 +
1, … ,n}. Thus, 𝜶 = (𝛼T

1 , 𝛼
T
2 )

T with 𝛼1 = (−2, 0.5)T and 𝛼2 = (2, 3)T .

Example 3. Suppose that Xi was generated from Bernoulli(0.5)+ 1. Set 1 = {1, … ,n∕3}, 2 = {n∕3 + 1, … , 2n∕3},
and 3 = {2n∕3 + 1, … ,n}. We set 𝛽i = −3 for i ∈ 1, 𝛽i = 0 for i ∈ 2, and 𝛽i = 3 for i ∈ 3. That is 𝜶 = (−3, 0, 3)T .

Example 4. Consider the homogeneous model where Xi was generated from Bernoulli(0.5)+ 1, and 𝛽i ≡ 1 for all i.

The simulation results for Examples 2 to 4 are summarized in Tables S1 to S5 and Figures S1 to S4 in the online
supplementary material. The figures show the fusiongram for estimation in Examples 2 to 4, respectively. Tables S1, S3,
and S5 display the estimates of group size K and the TPR in Examples 2 to 4, respectively. The means and medians of
K̂ under both GMCP and GSCAD selectors are close to the true value, and the TPR are close to 1, which reflect that
our methods can identify the group structure correctly with high probability. As the sample size increases, the SD of K̂
decreases and the TPR increases, which demonstrate the good performances of our approaches. Furthermore, Tables S2,
S4, and S5 report the estimates of the regression coefficients. The Mean and Median of estimators are very close to the
true value, and SD for parameters reduce as the sample size increases.

6 APPLICATION

We applied the proposed method to analyzing the breast cancer data,24,25 which can be found in the “nki” dataset in the
R package “dynpred.” This trail was carried out in the Dutch Cancer Institute, where 295 patients with breast cancer
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T A B L E 2 Simulation results for estimation of regression coefficients in Example 1

n Parameter Method Mean Median SD

Case 1: 𝛼 = (−1.5, 1.5) and 𝜂 = (−1, 1)

100 𝛼 GMCP (−1.760, 1.773) (−1.782, 1.789) (0.413, 0.421)

GSCAD (−1.735, 1.791) (−1.773, 1.778) (0.409, 0.406)

Mixture (−1.545, 1.543) (−1.520, 1.570) (0.500, 0.487)

Oracle (−1.518, 1.586) (−1.505, 1.594) (0.339, 0.287)

𝜂 GMCP (−0.850, 0.844) (−0.869, 0.854) (0.232, 0.236)

GSCAD (−0.843, 0.841) (−0.859, 0.852) (0.229, 0.234)

Mixture (−1.021, 1.013) (−1.020, 1.026) (0.235, 0.242)

Oracle (−1.025, 1.027) (−1.015, 1.012) (0.175, 0.168)

200 𝛼 GMCP (−1.704, 1.667) (−1.715, 1.698) (0.299, 0.287)

GSCAD (−1.750, 1.625) (−1.773, 1.671) (0.307, 0.328)

Mixture (−1.521, 1.550) (−1.516, 1.554) (0.271, 0.256)

Oracle (−1.532, 1.538) (−1.531, 1.522) (0.215, 0.215)

𝜂 GMCP (−0.924, 0.925) (−0.917, 0.910) (0.158, 0.149)

GSCAD (−0.918, 0.910) (−0.916, 0.903) (0.162, 0.162)

Mixture (−1.032, 1.033) (−1.031, 1.033) (0.140, 0.137)

Oracle (−1.020, 1.019) (−1.014, 1.013) (0.112, 0.113)

Case 2: 𝛼 = (−3, 3) and 𝜂 = (−1, 1)

100 𝛼 GMCP (−2.969, 3.171) (−3.013, 3.175) (0.642, 0.471)

GSCAD (−2.976, 3.175) (−3.019, 3.175) (0.645, 0.475)

Mixture (−2.846, 2.879) (−2.944, 3.109) (0.896, 1.124)

Oracle (−3.077, 3.167) (−3.013, 3.137) (0.545, 0.450)

𝜂 GMCP (−0.957, 0.965) (−0.932, 0.969) (0.217, 0.215)

GSCAD (−0.960, 0.968) (−0.936, 0.969) (0.215, 0.218)

Mixture (−0.965, 0.968) (−0.975, 1.004) (0.281, 0.296)

Oracle (−1.025, 1.028) (−1.015, 1.015) (0.178, 0.172)

200 𝛼 GMCP (−2.815, 2.931) (−2.831, 2.955) (0.493, 0.436)

GSCAD (−2.856, 2.944) (−2.897, 2.987) (0.487, 0.464)

Mixture (−3.002, 3.013) (−3.008, 3.058) (0.538, 0.572)

Oracle (−3.077, 3.069) (−3.081, 3.040) (0.339, 0.328)

𝜂 GMCP (−0.977, 0.966) (−1.000, 1.006) (0.186, 0.199)

GSCAD (−0.994, 0.976) (−1.005, 1.006) (0.171, 0.186)

Mixture (−1.012, 1.015) (−1.024, 1.020) (0.158, 0.164)

Oracle (−1.021, 1.018) (−1.018, 1.009) (0.114, 0.114)

Note: SD represents standard deviation; Mixture denotes the subgroup analysis results under the logistic-Cox mixture model.15
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(A) Fusiongram based on one dataset
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(B) Fusiongram based on 100 replications

Case 1: = (−1 .5, 1.5)

0.5 1.0 1.5

−
2

0
2

4

λ

β

Case 2: = (−3 , 3)

0.5 1.0 1.5

−
4

−
2

0
2

4
6

λ

β

F I G U R E 1 Fusiongram for estimation of parameter 𝜷 for GMCP in Example 1 when n= 100 [Colour figure can be viewed at
wileyonlinelibrary.com]

were put into two treatment groups by the type of surgery (excision and mastectomy), some of them accompanying with
two kinds of adjuvant therapies, chemotherapy or hormonal therapy. The main goal is to investigate effects of different
surgical treatments on patients’ hazard. Hence we focused on the observed data from 255 patients who were not treated
with the hormonal therapy for the analysis. Let Ui and Ci be survival and censoring times for the ith patient, i= 1, … , n
where n= 255. Let X denote the treatment group indicator defined as 1 for patients treated with excision and 0 for patients
treated with mastectomy. According to the iterative sure independence screening result,26 we took 5 additional baseline
covariates Z1, … , Z5 into consideration, including age (age), the logarithmic intensity ratio for estrogen-receptor status
(mlratio), histological grade (histolgrade= 1 if well differentiated; 0 otherwise), vascular invasion (vasc.inv= 1 for more

http://wileyonlinelibrary.com
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F I G U R E 2 The kernel density plot of the residuals after
controlling for the effects of the five covariates for the patients
treated with the excision in the breast cancer data
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F I G U R E 3 Fusiongram for estimation of parameter 𝜷 in breast cancer data analysis [Colour figure can be viewed at
wileyonlinelibrary.com]

than 3 vessels; 0 otherwise), and the cross-validated version of the prognostic index (PICV). All the continuous covariates
were standardized for convenience.

To check for the possible heterogeneity of treatment effects, we first fitted the homogeneous Cox model based on the
excision treatment group. Figure 2 displays the plot of the kernel density estimate of the martingale residual. We observed
that the distribution has multiple modes, indicating the existence of heterogeneous treatment effects.

To demonstrate the heterogeneity of treatment effects, we fitted the proposed heterogeneous Cox model in (2) using
our subgroup analysis procedure with group MCP and group SCAD penalties, where the optimal tuning parameter was
determined by the modified BIC criterion. Figure 3 displays the fusiongram for the estimate of 𝜷. The grouping and
parameter estimation results with GMCP are summarized in Table 3, while the results with GSCAD are similar and so
are omitted. For comparison, we also provide the estimation results by fitting both the homogeneous Cox model and the
logistic-Cox mixture model15 in the table. It can be seen from the table that the fitted homogenous Cox model could not
detect any significant treatment effect, while both the logistic-Cox mixture approach and the proposed subgroup analysis
approach identified the significant subgroup-specific treatment effects.

Furthermore, we present the grouping result in Table 4 according to the type of surgery. It can be seen from the
table that our subgroup analysis approach identifies 90% of the patients with the excision and 4% of the patients with

http://wileyonlinelibrary.com
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T A B L E 3 Analysis results for breast cancer data

PL Mixture GMCP

Covariate Estimate (ESE) p-value Estimate (ESE) p-value Estimate (ESE) p-value

Subgroup 1 −0.311(0.244) .203 −1.571(0.409) <.001* −3.981(0.575) <.001*

Subgroup 2 –(–) – 1.374(0.425) .001* 1.917(0.343) <.001*

age −0.323(0.110) .003* −0.058(0.146) .689 −0.320(0.109) .003*

mlratio −0.285(0.152) .060 −0.347(0.179) .053 −0.420(0.155) .006*

histolgrade −1.110(0.542) .041* −1.004(0.587) .087 −1.289(0.551) .019*

vasc.inv 0.642(0.250) .010* 0.046(0.324) .889 1.081(0.274) <.001*

PICV 0.421(0.165) .011* 0.534(0.166) .001* 0.505(0.171) .003*

Note: PL represents partial likelihood approach; Mixture denotes the subgroup analysis results under the logistic-Cox mixture model;15 * represents
significance at 0.05 level.

Treatment Subgroup 1 Subgroup 2 Total

Excision 128 15 143

Mastectomy 5 107 112

Total 133 122 255

T A B L E 4 The number of patients with different type of surgery
in two subgroups

the mastectomy as one subgroup and 96% of the patients with the mastectomy and 10% of the patients with exci-
sion as another subgroup. For the patients in subgroup 1, the excision can reduce the hazard and prolong the lifetime
significantly; while for the patients in subgroup 2, the mastectomy is better than the excision. The subgroup anal-
ysis approach15 provides the estimates of the probabilities that patients belong to each subgroup under the logistic
model.

The key difference between our approach and the subgroup analysis approach15 is that the number of the potential
subgroups K and the grouping structure are left completely unspecified in our proposed model, while Wu et al15 assumed
that K = 2 and the subgroup membership satisfies a logistic model. Our subgroup analysis method is more flexible and
applicable.

7 DISCUSSION

In this article, we conduct the subgroup analysis for the heterogeneous Cox model using the concave fusion penalized
partial likelihood approach. The proposed approach can identify the grouping structure and estimate the heterogeneous
covariate effects involved in the model simultaneously and automatically. To obtain an efficient solution to the objective
function, we apply the majorized ADMM algorithm which not only converges faster but also calculates more accurately
than the local quadratic approximated ADMM algorithm suggested by Ma et al.17 Our simulation and real data analysis
demonstrate that the proposed method performs well. We expect that the proposed approach can be extensively used for
subgroup analysis with survival data.

The main differences between our method and Ma et al’s17 are threefold. First, we deal with the Cox model with
heterogeneity and censoring, while they consider the heterogeneous linear model with complete data. Second, we use the
negative partial likelihood-based loss function, while they use the least squares-based loss function. Third, to solve the
minimization problem, we utilize the majorized ADMM algorithm, while they apply the local quadratic approximated
ADMM algorithm.

Furthermore, the proposed method can be extended to handling the case where the unknown number of subgroups
and the dimension of covariates can increase with sample size in the proposed heterogeneous Cox model. For this
situation, we propose to use the criterion function
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Qn(𝜂, 𝜷) = 𝓁n(𝜂, 𝜷) +
∑
i<j

p(1)
𝛾 (||𝛽i − 𝛽j||, 𝜆1) +

q∑
j=1

p(2)
𝛾 (𝜂j, 𝜆2).

With the penalty functions p(1)
𝛾 (⋅, 𝜆1) and p(2)

𝛾 (⋅, 𝜆2), we can conduct subgroup analysis and variable selection simultane-
ously.
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APPENDIX A . PROOFS OF THEOREMS

To establish the asymptotic properties of the proposed estimator, we need the following regularity conditions.
(C1) The end time of study 𝜏 satisfies that ∫ 𝜏

0 𝜆0(t)dt < ∞.
(C2) The covariates Xi and Zi satisfy that ||Xi||≤ c1 and ||Zi||≤ c2 with probability 1.
(C3) The dimension of covariates p, q and the true cluster size K0 are constants. The sizes of 0,k satisfy that |0,k|∕n → pk

for k= 1, … , K0 when n goes to infinity.
(C4) Set the penalty function 𝜌𝛾 (t) = 𝜆−1p𝛾 (t, 𝜆). Suppose that 𝜌𝛾 (t) is symmetric, nondecreasing and concave on [0,∞).

𝜌𝛾 (t) is constant when t ≥ a𝜆, where a is a positive constant. Furthermore, 𝜌𝛾 (0) = 0 and the derivative 𝜌′𝛾 (t) satisfies
that 𝜌′𝛾 (0+) = 1.

We introduce more notation before proving the theorems.
Let S(l)(𝜽,B, t) = n−1∑n

i=1 Yi(t)B⊗l
i exp(BT

i 𝜽), where a⊗l = 1, a, aaT for l= 0, 1, 2. Define the score function

Ũn(𝜽) = −
n∑

i=1
∫

𝜏

0

[
Bi −

S(1)(𝜽,B, t)
S(0)(𝜽,B, t)

]
dNi(t),

and the Hessian matrix

H̃n(𝜽) =
n∑

i=1
∫

𝜏

0

[
S(2)(𝜽,B, t)
S(0)(𝜽,B, t)

−
{

S(1)(𝜽,B, t)
S(0)(𝜽,B, t)

}⊗2
]

dNi(t).

Let S(k,l)(𝜽,B, t) = 1|0,k|∑i∈0,k
Yi(t)B⊗l

i exp(BT
i 𝜽), where l= 0, 1, 2 and k= 1, … , K0. Then we have

S(l)(𝜽,B, t) = 1
n

n∑
i=1

Yi(t)B⊗l
i exp(BT

i 𝜽) =
K0∑

k=1

|0,k|
n

S(k,l)(𝜽,B, t).

Note that Bi, i ∈ 0,k are independent and identically distributed random vectors. Denote the expectation of S(k,l)(𝜽,B, t)
by s(k,l)(𝜽, t), and s(l)(𝜽, t) =

∑K
k=1 pks(k,l)(𝜽, t), where |0,k|∕n → pk when n→∞. Then we have

sup
t∈[0,𝜏]

|S(k,l)(𝜽,B, t) − s(k,l)(𝜽, t)|∞ p
→ 0,

and supt∈[0,𝜏]|S(l)(𝜽,B, t) − s(l)(𝜽, t)|∞ p
→ 0, where | ⋅ |∞ denotes the maximum norm. Define

Σ(𝜽0) = ∫
𝜏

0

{
s(2)(𝜽0, t)
s(0)(𝜽0, t)

−
(

s(1)(𝜽0, t)
s(0)(𝜽0, t)

)⊗2
}

s(0)(𝜽0, t)𝜆0(t)dt.
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Proof of Theorem 1
(i) The proof of the first part is based on the techniques for the consistency of the M-estimator. Note that

1
n
(
𝓁̃n(𝜽) − 𝓁̃n(𝜽0)

)
= − 1

n

n∑
i=1

∫
𝜏

0

[
BT

i (𝜽 − 𝜽0) − log S(0)(𝜽,B, t)
S(0)(𝜽0,B, t)

]
dNi(t).

Define

An(𝜽) = − 1
n

n∑
i=1

∫
𝜏

0

[
BT

i (𝜽 − 𝜽0) − log S(0)(𝜽,B, t)
S(0)(𝜽0,B, t)

]
Yi(t) exp(BT

i 𝜽0)𝜆0(t)dt

= −∫
𝜏

0

[
S(1)(𝜽0,B, t)T(𝜽 − 𝜽0) − log

{
S(0)(𝜽,B, t)
S(0)(𝜽0,B, t)

}
S(0)(𝜽0,B, t)

]
𝜆0(t)dt

as the compensator of 1
n

(
𝓁̃n(𝜽) − 𝓁̃n(𝜽0)

)
, and Mi(t) = Ni(t) − ∫ t

0 Yi(u) exp(BT
i 𝜽0)𝜆0(u)du. Since Mi(t) is a locally square

integrable martingale, then

1
n
(
𝓁̃n(𝜽) − 𝓁̃n(𝜽0)

)
− An(𝜽) = − 1

n

n∑
i=1

∫
𝜏

0

[
BT

i (𝜽 − 𝜽0) − log S(0)(𝜽,B, t)
S(0)(𝜽0,B, t)

]
dMi(t)

is also a locally square integrable martingale. Hence 1
n

(
𝓁̃n(𝜽) − 𝓁̃n(𝜽0)

)
− An(𝜽) has a predictable variation process⟨ 1

n
(
𝓁̃n(𝜽) − 𝓁̃n(𝜽0)

)
− An(𝜽),

1
n
(
𝓁̃n(𝜽) − 𝓁̃n(𝜽0)

)
− An(𝜽)

⟩
= 1

n2

n∑
i=1

∫
𝜏

0

⎡⎢⎢⎣
{

BT
i (𝜽 − 𝜽0) − log

∑n
i=1 Yi(t) exp(BT

i 𝜽)∑n
i=1 Yi(t) exp(BT

i 𝜽)

}2

Yi(t) exp(BT
i 𝜽0)𝜆0(t)

⎤⎥⎥⎦ dt

= 1
n ∫

𝜏

0

[
(𝜽 − 𝜽0)TS(2)(𝜽,B, t)(𝜽 − 𝜽0) − 2(𝜽 − 𝜽0)TS(1)(𝜽,B, t) log S(0)(𝜽,B, t)

S(0)(𝜽0,B, t)
+
{

log S(0)(𝜽,B, t)
S(0)(𝜽0,B, t)

}2
]
𝜆0(t)dt.

By Conditions (C2) and (C3), for any k and l, s(k,l)(𝜽, t) and s(l)(𝜽, t) are bounded. Then, by Condition (C1), the predictable
variation process has a finite limit. This gives that limn→∞

1
n

(
𝓁̃n(𝜽) − 𝓁̃n(𝜽0)

)
= A(𝜽), where

A(𝜽) = lim
n→∞

An(𝜽) = −∫
𝜏

0

[
s(1)(𝜽0, t)T(𝜽 − 𝜽0) − log

{
s(0)(𝜽, t)
s(0)(𝜽0, t)

}
s(0)(𝜽0, t)

]
𝜆0(t)dt.

Noting that 𝜽̂or is the global minimizer of 𝓁̃n(𝜽), it is also the global minimizer of 1
n

(
𝓁̃n(𝜽) − 𝓁̃n(𝜽0)

)
. Since A(𝜽) is a convex

function about 𝜽 and has a global minimizer 𝜽0, it follows that 𝜽̂or p
→𝜽0.

(ii) To prove this part, it suffices to show that 1√
n

Ũn(𝜽0) converges to a zero mean multivariate normal distribution

with covariance matrix Σ(𝜽0), and | 1
n

H̃n(𝜽̂
or) − Σ(𝜽0)|∞ p

→ 0. For this, we only need to verify the conditions of theorem
8.2.1 of Fleming and Harrington (1991). Recall that

sup
0≤t≤𝜏

|S(l)(𝜽0,B, t) − s(l)(𝜽0, t)|∞ p
→ 0.

Noting that 𝜕

𝜕𝜽
S(k,0)(𝜽,B, t) = S(k,1)(𝜽,B, t) and 𝜕

𝜕𝜽
S(k,1)(𝜽,B, t) = S(k,2)(𝜽,B, t), we have 𝜕

𝜕𝜽
s(k,0)(𝜽, t) = s(k,1)(𝜽, t) and

𝜕

𝜕𝜽
s(k,1)(𝜽, t) = s(k,2)(𝜽, t), k= 1, … , K. Since s(l)(𝜽, t) is a linear combination of s(k,l)(𝜽, t), it follows that 𝜕

𝜕𝜽
s(0)(𝜽, t) = s(1)(𝜽, t)

and 𝜕

𝜕𝜽
s(1)(𝜽, t) = s(2)(𝜽, t). By Condition (C2), s(l)(𝜽, t) is bounded. In addition, as the composition of continuous functions

is continuous, we then get that s(l)(𝜽0, t), 0 < t < 𝜏 are equicontinuous for l= 0, 1, 2.
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Condition (C2) gives that ||Bi|| ≤√c2
1 + c2

2 with probability 1. Noting that Y i is a decreasing counting process from 1
to 0, and BT

i 𝜽0 > −||Bi|| ⋅ ||𝜽0||, we have

n−1∕2 sup
1≤i≤n,0≤t≤𝜏

||Bi||Yi(t)1{BT
i 𝜽0>−||Bi||⋅||𝜽0||} p

→ 0.

Finally, the convexity of negative partial log-likelihood ensures that 1
n

H̃n(𝜽0) is positive definite and so its limit is

Σ(𝜽0) = ∫
𝜏

0

{
s(2)(𝜽0, t)
s(0)(𝜽0, t)

−
(

s(1)(𝜽0, t)
s(0)(𝜽0, t)

)⊗2
}

s(0)(𝜽0, t)𝜆0(t)dt.

By theorem 8.2.1 in Fleming and Harrington (1991), we conclude the asymptotic normality of 1√
n

Ũn(𝜽0) and | 1
n

H̃n(𝜽̂
or) −

Σ(𝜽0)|∞ p
→ 0.

By the Taylor’s expansion, we get that Ũn(𝜽̂
or) = Ũn(𝜽0) − H̃n(𝜽̃)(𝜽̂

or − 𝜽0), where 𝜽̃ is a vector between 𝜽̂
or and 𝜽0.

Noting that Ũn(𝜽̂
or) = 0, we have

1
n

H̃n(𝜽̃)
√

n(𝜽̂or − 𝜽0) =
1√
n

Ũn(𝜽0).

Using the fact that both 1
n

H̃n(𝜽̂
or) and 1

n
H̃n(𝜽0) converge to Σ(𝜽0) in probability, H̃n(𝜽̃) also converges to Σ(𝜽0) in probabil-

ity. Besides, as 1√
n

Ũn(𝜽0) converges to a zero mean normal distribution with covariance matrix Σ(𝜽0), we conclude that√
n(𝜽̂or − 𝜽0) converges to a normal distribution with zero mean and covariance matrix Σ−1(𝜽0).

Proof of Theorem 2
Define the mapping T∗ ∶ Rnp → RK0p as

T∗(𝜷) =
{|0,k|−1

∑
i∈0,k

𝛽T
i , k = 1, … ,K0

}T

,

and let the one-to-one mapping T ∶ 0 → RK0p satisfying T(𝜷) = T∗(𝜷). For any vector 𝜷 ∈ Rnp, set 𝜶 = T∗(𝜷) and
𝜷∗ = T−1(T∗(𝜷)) = T−1(𝜶). Noting that for any vector 𝜂 ∈ Rq and 𝜷∗ ∈ 0 , we have 𝓁n(𝜂, 𝜷∗) = 𝓁̃n((𝜂T ,𝜶T)T). Hence, 𝜽̂or

defined in Theorem 1 equals to
(
(𝜂̂or)T ,T(𝜷̂or)T

)T
. Consider the neighborhood of (𝜂0, 𝜷0), that is,

Θ = {𝜂 ∈ Rq, 𝜷 ∈ Rnp ∶ ||𝜂 − 𝜂0|| ≤ 𝜙n,max
i
||𝛽i − 𝛽0i|| ≤ 𝜙n},

where 𝜙n → 0 as n goes to infinity. To conclude the theorem, it suffices to clarify the following two steps.
(i) For any (𝜂T , 𝜷T)T ∈ Θ, if (𝜂T , (𝜷∗)T)T ≠ ((𝜂̂or)T , (𝜷̂or)T)T , then Qn(𝜂, 𝜷∗) > Qn(𝜂̂or, 𝜷̂

or).
(ii) For any (𝜂T , 𝜷T)T ∈ Θ and large enough n, Qn(𝜂, 𝜷) ≥ Qn(𝜂, 𝜷∗).
In fact, by Theorem 1, we have P

(
(𝜂̂or, 𝜷̂

or) ∈ Θ
)
→ 1. If (i) and (ii) hold, for any (𝜂T , 𝜷T)T ∈ Θ satisfying (𝜂T , (𝜷∗)T)T ≠

((𝜂̂or)T , (𝜷̂or)T)T and large enough n, we have Qn(𝜂, 𝜷) > Qn(𝜂̂or, 𝜷̂
or). That means that there is a local minimizer of

Qn(𝜂, 𝜷; 𝜆) satisfying that (𝜂̂(𝜆), 𝜷̂(𝜆)) = (𝜂̂or, 𝜷̂
or) with probability tend to 1.

For (i), since 𝓁n(𝜂, 𝜷∗) = 𝓁̃n
(
(𝜂T ,𝜶T)T) > 𝓁̃n

(
((𝜂̂or)T , (𝜶̂or)T)T) = 𝓁n(𝜂̂or, 𝜷̂

or), we only need to consider the penalty
function Pn(𝛽) = 𝜆

∑
i<j𝜌𝛾 (||𝛽i − 𝛽j||). Note that 𝛽∗i = 𝛽∗j when subjects i and j are from the same group. Thus,

Pn(𝛽∗) = 𝜆
∑

i<j,i∈0,k ,j∈0,k′

𝜌𝛾 (||𝛽∗i − 𝛽∗j ||) = 𝜆
∑
k≠k′

|0,k||0,k′ |
2

𝜌𝛾 (||𝛼k − 𝛼k′ ||).
For any (𝜂T , 𝜷T)T ∈ Θ, we have maxi||𝛽i − 𝛽0i|| ≤ 𝜙n. Then for any k≠ k′,

||𝛼k − 𝛼k′ || ≥ ||𝛼0k − 𝛼0k′ || − ||𝛼k − 𝛼0k|| − ||𝛼0k′ − 𝛼k′ || ≥ ||𝛼0k − 𝛼0k′ || − 2 max
k
||𝛼k − 𝛼0k||
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≥ b − 2 max
k

||||||
|||||||0,k|−1

∑
i∈0,k

(𝛽i − 𝛽0i)
||||||
|||||| ≥ bn − 2|0,k|−1 max

k

∑
i∈0,k

||(𝛽i − 𝛽0i)||
≥ b − 2 max

i
||𝛽i − 𝛽0i|| ≥ b − 2𝜙n > a𝜆. (A1)

The last inequality follows since b > a𝜆 and b ≫ 𝜙n. By Condition (C4), 𝜌𝛾 (||𝛼k − 𝛼k′ ||) is a constant, and Pn(𝜷∗) is only
dependent on sample size n for any (𝜂T , 𝜷T)T ∈ Θ, which can be denoted as Cn. By the fact that (𝜂̂or, 𝜶̂or) is the unique
global minimizer of 𝓁̃n(𝜂,𝜶), we get

Qn(𝜂, 𝜷∗) = 𝓁n(𝜂, 𝜷∗) + Cn > 𝓁n(𝜂̂or, 𝜷̂
or) + Cn = Qn(𝜂̂or, 𝜷̂

or)

when (𝜂T , (𝜷∗)T)T ≠ ((𝜂̂or)T , (𝜷̂or)T)T . Thus, (i) is concluded.
For (ii), by the Taylor’s expansion, we have

Qn(𝜂, 𝜷) − Qn(𝜂, 𝜷∗) =
𝜕𝓁n(𝜂, 𝜷)

𝜕𝜷T

|||||𝜷=𝜷̃(𝜷 − 𝜷∗) +
𝜕Pn(𝜷)
𝜕𝜷T

|||||𝜷=𝜷̃(𝜷 − 𝜷∗) =∶ Γ1 + Γ2,

where 𝜷̃ is a vector between 𝜷 and 𝜷∗.
We first consider the second term Γ2. Note that Pn(𝜷) = 𝜆

∑
i<j,i∈0,k ,j∈0,k′

𝜌𝛾 (||𝛽i − 𝛽j||). Then

Γ2 =
𝜕Pn(𝜷)
𝜕𝜷T

|||||𝜷=𝜷̃(𝜷 − 𝜷∗)

= 𝜆
∑

n≥j>i≥1
𝜌′𝛾 (||𝛽 i − 𝛽 j||) (𝛽 i − 𝛽 j)T

||𝛽 i − 𝛽 j|| (𝛽i − 𝛽∗i ) + 𝜆
∑

1≤j<i≤n
𝜌′𝛾 (||𝛽 j − 𝛽 i||)−(𝛽 j − 𝛽 i)T

||𝛽 j − 𝛽 i|| (𝛽i − 𝛽∗i )

= 𝜆
∑

1≤i<j≤n
𝜌′𝛾 (||𝛽 i − 𝛽 j||) (𝛽 i − 𝛽 j)T

||𝛽 i − 𝛽 j||
{
(𝛽i − 𝛽∗i ) − (𝛽j − 𝛽∗j )

}
.

On one hand, when subjects i and j are from different groups, that is, i ∈ 0,k and j ∈ 0,k′ , k≠ k′, we have

||𝛽 i − 𝛽 j|| ≥ ||𝛽0i − 𝛽0j|| − 2 max
i
||𝛽 i − 𝛽0i|| = ||𝛼0k − 𝛼0k′ || − 2 max

i
||𝛽 i − 𝛽0i||.

Since (𝜂, 𝜷) ∈ Θ, we can see that maxi||𝛽i − 𝛽0i|| ≤ 𝜙n. By (A1), we have maxk||𝛼k − 𝛼0k|| ≤ 𝜙n for 𝜶 = T∗(𝜷). Then 𝜷∗

satisfies that maxi||𝛽∗i − 𝛽0i|| ≤ 𝜙n. By the definition of 𝜷̃, we have maxi||𝛽 i − 𝛽0i|| ≤ 𝜙n, and ||𝛽 i − 𝛽 j|| ≥ b − 2𝜙n > a𝜆. By
Condition (C4), 𝜌𝛾 (t) is a constant when t > a𝜆 and 𝜌′𝛾 (t) ≡ 0 when t > a𝜆. Thus, when subjects i and j are from different
groups, 𝜌′𝛾 (||𝛽 i − 𝛽 j||) ≡ 0. On the other hand, 𝛽∗i = 𝛽∗j when i and j are from the same group. Hence (𝛽 i−𝛽 j)T||𝛽 i−𝛽 j|| = (𝛽i−𝛽j)T||𝛽i−𝛽j|| and

𝜌′𝛾 (||𝛽 i − 𝛽 j||) (𝛽 i − 𝛽 j)T

||𝛽 i − 𝛽 j||
{
(𝛽i − 𝛽∗i ) − (𝛽j − 𝛽∗j )

}
= 𝜌′𝛾 (||𝛽 i − 𝛽 j||)||𝛽 i − 𝛽 j||.

Note that

max
k

max
i,j∈0,k

||𝛽 i − 𝛽 j|| = max
k

max
i,j∈0,k

||𝛽 i − 𝛽∗i + 𝛽∗i − 𝛽∗j + 𝛽∗j − 𝛽 j||
≤ 2 max

i
||𝛽 i − 𝛽∗i || ≤ 2 max

i
(||𝛽 i − 𝛽0i|| + ||𝛽∗i − 𝛽0i||) ≤ 4𝜙n.

By Condition (C4), we have

Γ2 =
K0∑

k=1

∑
{i,j∈0,k ,i<j}

𝜆𝜌′𝛾 (||𝛽 i − 𝛽 j||)||𝛽i − 𝛽j|| ≥ K0∑
k=1

∑
{i,j∈0,k ,i<j}

𝜆𝜌′𝛾 (4𝜙n)||𝛽i − 𝛽j||.
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Now we turn to the first term Γ1. Let

Ui =
𝜕𝓁n(𝜂, 𝜷)

𝜕𝛽i

||||𝜷=𝜷̃ = −∫
𝜏

0
XidNi(t) + ∫

𝜏

0

Yi(t)Xi exp(ZT
i 𝜂 + XT

i 𝛽 i)
1
n

∑n
j=1 Yj(t) exp(ZT

j 𝜂 + XT
j 𝛽 j)

dN(t), (A2)

where N(t) = 1
n

∑n
i=1 Ni(t). Then after some calculation, we have

Γ1 =
n∑

i=1
UT

i (𝛽i − 𝛽∗i ) =
K0∑

k=1

∑
i∈0,k

UT
i (𝛽i − 𝛽∗i ) =

K0∑
k=1

∑
i,j∈0,k

UT
i (𝛽i − 𝛽j)|0,k| =

K0∑
k=1

∑
i,j∈0,k

UT
i (𝛽i − 𝛽j)
2|0,k| +

K0∑
k=1

∑
i,j∈0,k

UT
j (𝛽j − 𝛽i)
2|0,k|

=
K0∑

k=1

∑
i,j∈0,k

(Ui − Uj)T(𝛽i − 𝛽j)
2|0,k| =

K0∑
k=1

∑
{i,j∈0,k ,i<j}

(Ui − Uj)T(𝛽i − 𝛽j)|0,k| ≥ −
K0∑

k=1

∑
{i,j∈0,k ,i<j}

2 max
i
||Ui|| ⋅ ||𝛽i − 𝛽j|||min| ,

where |min| = mink=1,… ,K0 |0,k|. Following the same clues as before, for any (𝜂, 𝜷) ∈ Θ, we have (𝜂, 𝜷̃) ∈ Θ. Then, by
Condition (C2) and (A2), we can find a constant CU such that maxi||Ui|| ≤ CU with probability 1.

Note that limn→∞𝜌
′
𝛾 (4𝜙n) = 1 and |min| goes to infinity as n→∞. For large enough n, we can get that

Qn(𝜂, 𝜷) − Qn(𝜂, 𝜷∗) = Γ1 + Γ2 ≥
K0∑

k=1

∑
{i,j∈0,k ,i<j}

||𝛽i − 𝛽j|| [𝜆𝜌′𝛾 (4𝜙n) − 2CU∕|min|] ≥ 0.

Thus, (ii) is concluded.

Proof of Theorem 3

Proof. Similar to the proof of Theorem 2, we define the mapping T and T* when K0 = 1 and 0 = . For any vector
𝜷 ∈ Rnp, set 𝜶 = T∗(𝜷) ∈ Rp and 𝜷∗ = T−1(𝜶) ∈ . The neighborhood of true parameter Θ and 𝜙n are the same as those
in Theorem 2. Then we only need to show the following two steps.

(i) For any (𝜂T , 𝜷T)T ∈ Θ, if (𝜂T , (𝜷∗)T)T ≠ ((𝜂̂or)T , (𝜷̂or)T)T , then Qn(𝜂, 𝜷∗) > Qn(𝜂̂or, 𝜷̂
or).

(ii) For any (𝜂T , 𝜷T)T ∈ Θ and large enough n, Qn(𝜂, 𝜷) ≥ Qn(𝜂, 𝜷∗).
For (i), when there is only one group, we have 𝛽∗i ≡ 𝜶 and so Pn(𝜷∗) = Pn(𝜷̂

or) ≡ 0. Since 𝓁n(𝜂, 𝜷∗) = 𝓁n(𝜂̂or, 𝜷̂
or), it

follows that Qn(𝜂, 𝜷∗) > Qn(𝜂̂or, 𝜷̂
or).

For (ii),

Qn(𝜂, 𝜷) − Qn(𝜂, 𝜷∗) =
𝜕𝓁n(𝜂, 𝜷)

𝜕𝜷T

|||||𝜷=𝜷̃(𝜷 − 𝜷∗) +
𝜕Pn(𝜷)
𝜕𝜷T

|||||𝜷=𝜷̃(𝜷 − 𝜷∗) =∶ Γ1 + Γ2,

where 𝜷̃ is a vector between 𝜷 and 𝜷∗. We first consider the second term

Γ2 =
𝜕Pn(𝜷)
𝜕𝜷T

|||||𝜷=𝜷̃(𝜷 − 𝜷∗) = 𝜆
∑

1≤i<j≤n
𝜌′𝛾 (||𝛽 i − 𝛽 j||) (𝛽 i − 𝛽 j)T

||𝛽 i − 𝛽 j||
{
(𝛽i − 𝛽∗i ) − (𝛽j − 𝛽∗j )

}
.

Since i and j are from the same group, we have 𝛽∗i = 𝛽∗j and (𝛽 i−𝛽 j)T||𝛽 i−𝛽 j|| = (𝛽i−𝛽j)T||𝛽i−𝛽j|| . Furthermore, maxi,j||𝛽 i − 𝛽 j|| ≤ 4𝜙n. Then
by Condition (C4), we get that

Γ2 = 𝜆
∑

1≤i<j≤n
𝜌′𝛾 (||𝛽 i − 𝛽 j||)||𝛽 i − 𝛽 j|| ≥ 𝜆

∑
1≤i<j≤n

𝜌′𝛾 (4𝜙n)||𝛽 i − 𝛽 j||.
For the first term Γ1, we have

Ui =
𝜕𝓁n(𝜂, 𝜷)

𝜕𝛽i

||||𝜷=𝜷̃ = −∫
𝜏

0
XidNi(t) + ∫

𝜏

0

Yi(t)Xi exp(ZT
i 𝜂 + XT

i 𝛽 i)
1
n

∑n
j=1 Yj(t) exp(ZT

j 𝜂 + XT
j 𝛽 j)

dN(t),
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where N(t) = 1
n

∑n
i=1 Ni(t). Since there is a constant CU such that maxi||Ui|| ≤ CU with probability 1, it yields that

Γ1 ≥ −
∑

1≤i<j≤n

2 max
i
||Ui|| ⋅ ||𝛽i − 𝛽j|||n| ≥ −

∑
1≤i<j≤n

2CU ||𝛽i − 𝛽j|||n| .

Noting that limn→∞𝜌
′
𝛾 (4𝜙n) = 1, we obtain that for large enough n,

Qn(𝜂, 𝜷) − Qn(𝜂, 𝜷∗) = Γ1 + Γ2 ≥ ∑
1≤i<j≤n

||𝛽i − 𝛽j|| [𝜆𝜌′𝛾 (4𝜙n) − 2CU∕|n|] ≥ 0.

Hence, (ii) is concluded. ▪


